Journal Articles

A large-scale conformation sampling and evaluation server for protein tertiary structure prediction and its assessment in CASP11

BMC Bioinformatics - Thu, 10/22/2015 - 19:00
Background: With more and more protein sequences produced in the genomic era, predicting protein structures from sequences becomes very important for elucidating the molecular details and functions of these proteins for biomedical research. Traditional template-based protein structure prediction methods tend to focus on identifying the best templates, generating the best alignments, and applying the best energy function to rank models, which often cannot achieve the best performance because of the difficulty of obtaining best templates, alignments, and models. Methods: We developed a large-scale conformation sampling and evaluation method and its servers to improve the reliability and robustness of protein structure prediction. In the first step, our method used a variety of alignment methods to sample relevant and complementary templates and to generate alternative and diverse target-template alignments, used a template and alignment combination protocol to combine alignments, and used template-based and template-free modeling methods to generate a pool of conformations for a target protein. In the second step, it used a large number of protein model quality assessment methods to evaluate and rank the models in the protein model pool, in conjunction with an exception handling strategy to deal with any additional failure in model ranking. Results: The method was implemented as two protein structure prediction servers: MULTICOM-CONSTRUCT and MULTICOM-CLUSTER that participated in the 11th Critical Assessment of Techniques for Protein Structure Prediction (CASP11) in 2014. The two servers were ranked among the best 10 server predictors. Conclusions: The good performance of our servers in CASP11 demonstrates the effectiveness and robustness of the large-scale conformation sampling and evaluation. The MULTICOM server is available at: http://sysbio.rnet.missouri.edu/multicom_cluster/.
Categories: Journal Articles

Phylogenomics and sequence-structure-function relationships in the GmrSD family of Type IV restriction enzymes

BMC Bioinformatics - Thu, 10/22/2015 - 19:00
Background: GmrSD is a modification-dependent restriction endonuclease that specifically targets and cleaves glucosylated hydroxymethylcytosine (glc-HMC) modified DNA. It is encoded either as two separate single-domain GmrS and GmrD proteins or as a single protein carrying both domains. Previous studies suggested that GmrS acts as endonuclease and NTPase whereas GmrD binds DNA. Methods: In this work we applied homology detection, sequence conservation analysis, fold recognition and homology modeling methods to study sequence-structure-function relationships in the GmrSD restriction endonucleases family. We also analyzed the phylogeny and genomic context of the family members. Results: Results of our comparative genomics study show that GmrS exhibits similarity to proteins from the ParB/Srx fold which can have both NTPase and nuclease activity. In contrast to the previous studies though, we attribute the nuclease activity also to GmrD as we found it to contain the HNH endonuclease motif. We revealed residues potentially important for structure and function in both domains. Moreover, we found that GmrSD systems exist predominantly as a fused, double-domain form rather than as a heterodimer and that their homologs are often encoded in regions enriched in defense and gene mobility-related elements. Finally, phylogenetic reconstructions of GmrS and GmrD domains revealed that they coevolved and only few GmrSD systems appear to be assembled from distantly related GmrS and GmrD components. Conclusions: Our study provides insight into sequence-structure-function relationships in the yet poorly characterized family of Type IV restriction enzymes. Comparative genomics allowed to propose possible role of GmrD domain in the function of the GmrSD enzyme and possible active sites of both GmrS and GmrD domains. Presented results can guide further experimental characterization of these enzymes.
Categories: Journal Articles

AlloPred: prediction of allosteric pockets on proteins using normal mode perturbation analysis

BMC Bioinformatics - Thu, 10/22/2015 - 19:00
Background: Despite being hugely important in biological processes, allostery is poorly understood and no universal mechanism has been discovered. Allosteric drugs are a largely unexplored prospect with many potential advantages over orthosteric drugs. Computational methods to predict allosteric sites on proteins are needed to aid the discovery of allosteric drugs, as well as to advance our fundamental understanding of allostery. Results: AlloPred, a novel method to predict allosteric pockets on proteins, was developed. AlloPred uses perturbation of normal modes alongside pocket descriptors in a machine learning approach that ranks the pockets on a protein. AlloPred ranked an allosteric pocket top for 23 out of 40 known allosteric proteins, showing comparable and complementary performance to two existing methods. In 28 of 40 cases an allosteric pocket was ranked first or second. The AlloPred web server, freely available at http://www.sbg.bio.ic.ac.uk/allopred/home, allows visualisation and analysis of predictions. The source code and dataset information are also available from this site. Conclusions: Perturbation of normal modes can enhance our ability to predict allosteric sites on proteins. Computational methods such as AlloPred assist drug discovery efforts by suggesting sites on proteins for further experimental study.
Categories: Journal Articles

Intracellular Information Processing through Encoding and Decoding of Dynamic Signaling Features

PLoS Computational Biology - Thu, 10/22/2015 - 16:00

by Hirenkumar K. Makadia, James S. Schwaber, Rajanikanth Vadigepalli

Cell signaling dynamics and transcriptional regulatory activities are variable within specific cell types responding to an identical stimulus. In addition to studying the network interactions, there is much interest in utilizing single cell scale data to elucidate the non-random aspects of the variability involved in cellular decision making. Previous studies have considered the information transfer between the signaling and transcriptional domains based on an instantaneous relationship between the molecular activities. These studies predict a limited binary on/off encoding mechanism which underestimates the complexity of biological information processing, and hence the utility of single cell resolution data. Here we pursue a novel strategy that reformulates the information transfer problem as involving dynamic features of signaling rather than molecular abundances. We pursue a computational approach to test if and how the transcriptional regulatory activity patterns can be informative of the temporal history of signaling. Our analysis reveals (1) the dynamic features of signaling that significantly alter transcriptional regulatory patterns (encoding), and (2) the temporal history of signaling that can be inferred from single cell scale snapshots of transcriptional activity (decoding). Immediate early gene expression patterns were informative of signaling peak retention kinetics, whereas transcription factor activity patterns were informative of activation and deactivation kinetics of signaling. Moreover, the information processing aspects varied across the network, with each component encoding a selective subset of the dynamic signaling features. We developed novel sensitivity and information transfer maps to unravel the dynamic multiplexing of signaling features at each of these network components. Unsupervised clustering of the maps revealed two groups that aligned with network motifs distinguished by transcriptional feedforward vs feedback interactions. Our new computational methodology impacts the single cell scale experiments by identifying downstream snapshot measures required for inferring specific dynamical features of upstream signals involved in the regulation of cellular responses.
Categories: Journal Articles

Laminar Neural Field Model of Laterally Propagating Waves of Orientation Selectivity

PLoS Computational Biology - Thu, 10/22/2015 - 16:00

by Paul C. Bressloff, Samuel R. Carroll

We construct a laminar neural-field model of primary visual cortex (V1) consisting of a superficial layer of neurons that encode the spatial location and orientation of a local visual stimulus coupled to a deep layer of neurons that only encode spatial location. The spatially-structured connections in the deep layer support the propagation of a traveling front, which then drives propagating orientation-dependent activity in the superficial layer. Using a combination of mathematical analysis and numerical simulations, we establish that the existence of a coherent orientation-selective wave relies on the presence of weak, long-range connections in the superficial layer that couple cells of similar orientation preference. Moreover, the wave persists in the presence of feedback from the superficial layer to the deep layer. Our results are consistent with recent experimental studies that indicate that deep and superficial layers work in tandem to determine the patterns of cortical activity observed in vivo.
Categories: Journal Articles

Qualitative and Quantitative Protein Complex Prediction Through Proteome-Wide Simulations

PLoS Computational Biology - Thu, 10/22/2015 - 16:00

by Simone Rizzetto, Corrado Priami, Attila Csikász-Nagy

Despite recent progress in proteomics most protein complexes are still unknown. Identification of these complexes will help us understand cellular regulatory mechanisms and support development of new drugs. Therefore it is really important to establish detailed information about the composition and the abundance of protein complexes but existing algorithms can only give qualitative predictions. Herein, we propose a new approach based on stochastic simulations of protein complex formation that integrates multi-source data—such as protein abundances, domain-domain interactions and functional annotations—to predict alternative forms of protein complexes together with their abundances. This method, called SiComPre (Simulation based Complex Prediction), achieves better qualitative prediction of yeast and human protein complexes than existing methods and is the first to predict protein complex abundances. Furthermore, we show that SiComPre can be used to predict complexome changes upon drug treatment with the example of bortezomib. SiComPre is the first method to produce quantitative predictions on the abundance of molecular complexes while performing the best qualitative predictions. With new data on tissue specific protein complexes becoming available SiComPre will be able to predict qualitative and quantitative differences in the complexome in various tissue types and under various conditions.
Categories: Journal Articles

Ion-Exchangeable Molybdenum Sulfide Porous Chalcogel: Gas Adsorption and Capture of Iodine and Mercury

Journal of American Chemical Society - Thu, 10/22/2015 - 15:07

Journal of the American Chemical SocietyDOI: 10.1021/jacs.5b09110
Categories: Journal Articles

Organic Radical-Assisted Electrochemical Exfoliation for the Scalable Production of High-Quality Graphene

Journal of American Chemical Society - Thu, 10/22/2015 - 15:05

Journal of the American Chemical SocietyDOI: 10.1021/jacs.5b09000
Categories: Journal Articles

N-Acyl Amino Acid Ligands for Ruthenium(II)-Catalyzed meta-C–H tert-Alkylation with Removable Auxiliaries

Journal of American Chemical Society - Thu, 10/22/2015 - 15:01

Journal of the American Chemical SocietyDOI: 10.1021/jacs.5b08435
Categories: Journal Articles

Sialic Acid-Imprinted Fluorescent Core–Shell Particles for Selective Labeling of Cell Surface Glycans

Journal of American Chemical Society - Thu, 10/22/2015 - 13:28

Journal of the American Chemical SocietyDOI: 10.1021/jacs.5b08482
Categories: Journal Articles

A Cu/Pd Cooperative Catalysis for Enantioselective Allylboration of Alkenes

Journal of American Chemical Society - Thu, 10/22/2015 - 09:41

Journal of the American Chemical SocietyDOI: 10.1021/jacs.5b09146
Categories: Journal Articles

Elucidating nitric oxide synthase domain interactions by molecular dynamics

Protein Science - Thu, 10/22/2015 - 03:21
Abstract

Nitric oxide synthase (NOS) is a multidomain enzyme that catalyzes the production of nitric oxide (NO) by oxidizing l-Arg to NO and L-citrulline. NO production requires multiple interdomain electron transfer steps between the flavin mononucleotide (FMN) and heme domain. Specifically, NADPH-derived electrons are transferred to the heme-containing oxygenase domain via the flavin adenine dinucleotide (FAD) and FMN containing reductase domains. While crystal structures are available for both the reductase and oxygenase domains of NOS, to date there is no atomic level structural information on domain interactions required for the final FMN-to-heme electron transfer step. Here, we evaluate a model of this final electron transfer step for the heme–FMN–calmodulin NOS complex based on the recent biophysical studies using a 105-ns molecular dynamics trajectory. The resulting equilibrated complex structure is very stable and provides a detailed prediction of interdomain contacts required for stabilizing the NOS output state. The resulting equilibrated complex model agrees well with previous experimental work and provides a detailed working model of the final NOS electron transfer step required for NO biosynthesis.

Categories: Journal Articles

The origin of β-strand bending in globular proteins

BMC Structural Biology - Wed, 10/21/2015 - 19:00
Background: Many β-strands are not flat but bend and/or twist. However, although almost all β-strands have a twist, not all have a bend, suggesting that the underlying force(s) driving β-strand bending is distinct from that for the twist. We, therefore, investigated the physical origin(s) of β-strand bends. Methods: We calculated rotation, twist and bend angles for a four-residue short frame. Fixed-length fragments consisting of six residues found in three consecutive short frames were used to evaluate the twist and bend angles of full-length β-strands. Results: We calculated and statistically analyzed the twist and bend angles of β-strands found in globular proteins with known three-dimensional structures. The results show that full-length β-strand bend angles are related to the nearby aromatic residue content, whereas local bend angles are related to the nearby aliphatic residue content. Furthermore, it appears that β-strands bend to maximize their hydrophobic contacts with an abutting hydrophobic surface or to form a hydrophobic side-chain cluster when an abutting hydrophobic surface is absent. Conclusions: We conclude that the dominant driving force for full-length β-strand bends is the hydrophobic interaction involving aromatic residues, whereas that for local β-strand bends is the hydrophobic interaction involving aliphatic residues.
Categories: Journal Articles

Path Similarity Analysis: A Method for Quantifying Macromolecular Pathways

PLoS Computational Biology - Wed, 10/21/2015 - 16:00

by Sean L. Seyler, Avishek Kumar, M. F. Thorpe, Oliver Beckstein

Diverse classes of proteins function through large-scale conformational changes and various sophisticated computational algorithms have been proposed to enhance sampling of these macromolecular transition paths. Because such paths are curves in a high-dimensional space, it has been difficult to quantitatively compare multiple paths, a necessary prerequisite to, for instance, assess the quality of different algorithms. We introduce a method named Path Similarity Analysis (PSA) that enables us to quantify the similarity between two arbitrary paths and extract the atomic-scale determinants responsible for their differences. PSA utilizes the full information available in 3N-dimensional configuration space trajectories by employing the Hausdorff or Fréchet metrics (adopted from computational geometry) to quantify the degree of similarity between piecewise-linear curves. It thus completely avoids relying on projections into low dimensional spaces, as used in traditional approaches. To elucidate the principles of PSA, we quantified the effect of path roughness induced by thermal fluctuations using a toy model system. Using, as an example, the closed-to-open transitions of the enzyme adenylate kinase (AdK) in its substrate-free form, we compared a range of protein transition path-generating algorithms. Molecular dynamics-based dynamic importance sampling (DIMS) MD and targeted MD (TMD) and the purely geometric FRODA (Framework Rigidity Optimized Dynamics Algorithm) were tested along with seven other methods publicly available on servers, including several based on the popular elastic network model (ENM). PSA with clustering revealed that paths produced by a given method are more similar to each other than to those from another method and, for instance, that the ENM-based methods produced relatively similar paths. PSA applied to ensembles of DIMS MD and FRODA trajectories of the conformational transition of diphtheria toxin, a particularly challenging example, showed that the geometry-based FRODA occasionally sampled the pathway space of force field-based DIMS MD. For the AdK transition, the new concept of a Hausdorff-pair map enabled us to extract the molecular structural determinants responsible for differences in pathways, namely a set of conserved salt bridges whose charge-charge interactions are fully modelled in DIMS MD but not in FRODA. PSA has the potential to enhance our understanding of transition path sampling methods, validate them, and to provide a new approach to analyzing conformational transitions.
Categories: Journal Articles

Crawling and Gliding: A Computational Model for Shape-Driven Cell Migration

PLoS Computational Biology - Wed, 10/21/2015 - 16:00

by Ioana Niculescu, Johannes Textor, Rob J. de Boer

Cell migration is a complex process involving many intracellular and extracellular factors, with different cell types adopting sometimes strikingly different morphologies. Modeling realistically behaving cells in tissues is computationally challenging because it implies dealing with multiple levels of complexity. We extend the Cellular Potts Model with an actin-inspired feedback mechanism that allows small stochastic cell rufflings to expand to cell protrusions. This simple phenomenological model produces realistically crawling and deforming amoeboid cells, and gliding half-moon shaped keratocyte-like cells. Both cell types can migrate randomly or follow directional cues. They can squeeze in between other cells in densely populated environments or migrate collectively. The model is computationally light, which allows the study of large, dense and heterogeneous tissues containing cells with realistic shapes and migratory properties.
Categories: Journal Articles
Syndicate content