BMC Bioinformatics

The latest research articles published by BMC Bioinformatics
  • An evidence-based approach to identify aging-related genes in Caenorhabditis elegans
    [Feb 2015]

    Background: Extensive studies have been carried out on Caenorhabditis elegans as a model organism to elucidate mechanisms of aging and the effects of perturbing known aging-related genes on lifespan and behavior. This research has generated large amounts of experimental data that is increasingly difficult to integrate and analyze with existing databases and domain knowledge. To address this challenge, we demonstrate a scalable and effective approach for automatic evidence gathering and evaluation that leverages existing experimental data and literature-curated facts to identify genes involved in aging and lifespan regulation in C. elegans. Results: We developed a semantic knowledge base for aging by integrating data about C. elegans genes from WormBase with data about 2005 human and model organism genes from GenAge and 149 genes from GenDR, and with the Bio2RDF network of linked data for the life sciences. Using HyQue (a Semantic Web tool for hypothesis-based querying and evaluation) to interrogate this knowledge base, we examined 48,231 C. elegans genes for their role in modulating lifespan and aging. HyQue identified 24 novel but well-supported candidate aging-related genes for further experimental validation. Conclusions: We use semantic technologies to discover candidate aging genes whose effects on lifespan are not yet well understood. Our customized HyQue system, the aging research knowledge base it operates over, and HyQue evaluations of all C. elegans genes are freely available at http://hyque.semanticscience.org.
    Categories: Journal Articles
  • Effective alignment of RNA pseudoknot structures using partition function posterior log-odds scores
    [Feb 2015]

    Background: RNA pseudoknots play important roles in many biological processes. Previous methods for comparative pseudoknot analysis mainly focus on simultaneous folding and alignment of RNA sequences. Little work has been done to align two known RNA secondary structures with pseudoknots taking into account both sequence and structure information of the two RNAs. Results: In this article we present a novel method for aligning two known RNA secondary structures with pseudoknots. We adopt the partition function methodology to calculate the posterior log-odds scores of the alignments between bases or base pairs of the two RNAs with a dynamic programming algorithm. The posterior log-odds scores are then used to calculate the expected accuracy of an alignment between the RNAs. The goal is to find an optimal alignment with the maximum expected accuracy. We present a heuristic to achieve this goal. The performance of our method is investigated and compared with existing tools for RNA structure alignment. An extension of the method to multiple alignment of pseudoknot structures is also discussed. Conclusions: The method described here has been implemented in a tool named RKalign, which is freely accessible on the Internet. As more and more pseudoknots are revealed, collected and stored in public databases, we anticipate a tool like RKalign will play a significant role in data comparison, annotation, analysis, and retrieval in these databases.
    Categories: Journal Articles
  • Mutations and CpG islands among hepatitis B virus genotypes in Europe
    [Feb 2015]

    Background: Hepatitis B virus (HBV) genotypes have a distinct geographical distribution and influence disease progression and treatment outcomes. The purpose of this study was to investigate the distribution of HBV genotypes in Europe, the impact of mutation of different genotypes on HBV gene abnormalities, the features of CpG islands in each genotype and their potential role in epigenetic regulation. Results: Of 383 HBV isolates from European patients, HBV genotypes A-G were identified, with the most frequent being genotype D (51.96%) in 12 countries, followed by A (39.16%) in 7 countries, and then E (3.66%), G (2.87%), B (1.57%), F (0.52%) and C (0.26%). A higher rate of mutant isolates were identified in those with genotype D (46.7%) followed by G (45.5%), and mutations were associated with structural and functional abnormalities of HBV genes. Conventional CpG island I was observed in genotypes A, B, C, D and E. Conventional islands II and III were detected in all A-G genotypes. A novel CpG island IV was found in genotypes A, D and E, and island V was only observed in genotype F. The A-G genotypes lacked the novel CpG island VI. “Split” CpG island I in genotypes D and E and “split” island II in genotypes A, D, E, F and G were observed. Two mutant isolates from genotype D and one from E were found to lack both CpG islands I and III. Conclusions: HBV genotypes A-G were identified in European patients. Structural and functional abnormalities of HBV genes were caused by mutations leading to the association of genotypes D and G with increased severity of liver disease. The distribution, length and genetic traits of CpG islands were different between genotypes and their biological and clinical significances warrant further study, which will help us better understand the potential role of CpG islands in epigenetic regulation of the HBV genome.
    Categories: Journal Articles
  • BACA: bubble chArt to compare annotations
    [Feb 2015]

    Background: DAVID is the most popular tool for interpreting large lists of gene/proteins classically produced in high-throughput experiments. However, the use of DAVID website becomes difficult when analyzing multiple gene lists, for it does not provide an adequate visualization tool to show/compare multiple enrichment results in a concise and informative manner.ResultWe implemented a new R-based graphical tool, BACA (Bubble chArt to Compare Annotations), which uses the DAVID web service for cross-comparing enrichment analysis results derived from multiple large gene lists. BACA is implemented in R and is freely available at the CRAN repository (http://cran.r-project.org/web/packages/BACA/). Conclusion: The package BACA allows R users to combine multiple annotation charts into one output graph by passing DAVID website.
    Categories: Journal Articles
  • MBBC: an efficient approach for metagenomic binning based on clustering
    [Feb 2015]

    Background: Binning environmental shotgun reads is one of the most fundamental tasks in metagenomic studies, in which mixed reads from different species or operational taxonomical units (OTUs) are separated into different groups. While dozens of binning methods are available, there is still room for improvement. Results: We developed a novel taxonomy-independent approach called MBBC (Metagenomic Binning Based on Clustering) to cluster environmental shotgun reads, by considering k-mer frequency in reads and Markov properties of the inferred OTUs. Tested on twelve simulated datasets, MBBC reliably estimated the species number, the genome size, and the relative abundance of each species, independent of whether there are errors in reads. Tested on multiple experimental datasets, MBBC outperformed two state-of-the-art taxonomy-independent methods, in terms of the accuracy of the estimated species number, genome sizes, and percentages of correctly assigned reads, among other metrics. Conclusions: We have developed a novel method for binning metagenomic reads based on clustering. This method is demonstrated to reliably predict species numbers, genome sizes, relative species abundances, and k-mer coverage in simple datasets. Our method also has a high accuracy in read binning. The MBBC software is freely available at http://eecs.ucf.edu/~xiaoman/MBBC/MBBC.html.
    Categories: Journal Articles
  • Data-intensive analysis of HIV mutations
    [Feb 2015]

    Background: In this study, clustering was performed using a bitmap representation of HIV reverse transcriptase and protease sequences, to produce an unsupervised classification of HIV sequences. The classification will aid our understanding of the interactions between mutations and drug resistance. 10,229 HIV genomic sequences from the protease and reverse transcriptase regions of the pol gene and antiretroviral resistant related mutations represented in an 82-dimensional binary vector space were analyzed. Results: A new cluster representation was proposed using an image inspired by microarray data, such that the rows in the image represented the protein sequences from the genotype data and the columns represented presence or absence of mutations in each protein position.The visualization of the clusters showed that some mutations frequently occur together and are probably related to an epistatic phenomenon. Conclusion: We described a methodology based on the application of a pattern recognition algorithm using binary data to suggest clusters of mutations that can easily be discriminated by cluster viewing schemes.
    Categories: Journal Articles
  • Evaluation and improvements of clustering algorithms for detecting remote homologous protein families
    [Feb 2015]

    Background: An important problem in computational biology is the automatic detection of protein families (groups of homologous sequences). Clustering sequences into families is at the heart of most comparative studies dealing with protein evolution, structure, and function. Many methods have been developed for this task, and they perform reasonably well (over 0.88 of F-measure) when grouping proteins with high sequence identity. However, for highly diverged proteins the performance of these methods can be much lower, mainly because a common evolutionary origin is not deduced directly from sequence similarity. To the best of our knowledge, a systematic evaluation of clustering methods over distant homologous proteins is still lacking. Results: We performed a comparative assessment of four clustering algorithms: Markov Clustering (MCL), Transitive Clustering (TransClust), Spectral Clustering of Protein Sequences (SCPS), and High-Fidelity clustering of protein sequences (HiFix), considering several datasets with different levels of sequence similarity. Two types of similarity measures, required by the clustering sequence methods, were used to evaluate the performance of the algorithms: the standard measure obtained from sequence–sequence comparisons, and a novel measure based on profile-profile comparisons, used here for the first time. Conclusions: The results reveal low clustering performance for the highly divergent datasets when the standard measure was used. However, the novel measure based on profile-profile comparisons substantially improved the performance of the four methods, especially when very low sequence identity datasets were evaluated. We also performed a parameter optimization step to determine the best configuration for each clustering method. We found that TransClust clearly outperformed the other methods for most datasets. This work also provides guidelines for the practical application of clustering sequence methods aimed at detecting accurately groups of related protein sequences.
    Categories: Journal Articles
  • PCalign: a method to quantify physicochemical similarity of protein-protein interfaces
    [Feb 2015]

    Background: Structural comparison of protein-protein interfaces provides valuable insights into the functional relationship between proteins, which may not solely arise from shared evolutionary origin. A few methods that exist for such comparative studies have focused on structural models determined at atomic resolution, and may miss out interesting patterns present in large macromolecular complexes that are typically solved by low-resolution techniques. Results: We developed a coarse-grained method, PCalign, to quantitatively evaluate physicochemical similarities between a given pair of protein-protein interfaces. This method uses an order-independent algorithm, geometric hashing, to superimpose the backbone atoms of a given pair of interfaces, and provides a normalized scoring function, PC-score, to account for the extent of overlap in terms of both geometric and chemical characteristics. We demonstrate that PCalign outperforms existing methods, and additionally facilitates comparative studies across models of different resolutions, which are not accommodated by existing methods. Furthermore, we illustrate potential application of our method to recognize interesting biological relationships masked by apparent lack of structural similarity. Conclusions: PCalign is a useful method in recognizing shared chemical and spatial patterns among protein-protein interfaces. It outperforms existing methods for high-quality data, and additionally facilitates comparison across structural models with different levels of details with proven robustness against noise.
    Categories: Journal Articles
  • Sensitive and highly resolved identification of RNA-protein interaction sites in PAR-CLIP data
    [Feb 2015]

    Background: PAR-CLIP is a recently developed Next Generation Sequencing-based method enabling transcriptome-wide identification of interaction sites between RNA and RNA-binding proteins. The PAR-CLIP procedure induces specific base transitions that originate from sites of RNA-protein interactions and can therefore guide the identification of binding sites. However, additional sources of transitions, such as cell type-specific SNPs and sequencing errors, challenge the inference of binding sites and suitable statistical approaches are crucial to control false discovery rates. In addition, a highly resolved delineation of binding sites followed by an extensive downstream analysis is necessary for a comprehensive characterization of the protein binding preferences and the subsequent design of validation experiments. Results: We present a statistical and computational framework for PAR-CLIP data analysis. We developed a sensitive transition-centered algorithm specifically designed to resolve protein binding sites at high resolution in PAR-CLIP data. Our method employes a Bayesian network approach to associate posterior log-odds with the observed transitions, providing an overall quantification of the confidence in RNA-protein interaction. We use published PAR-CLIP data to demonstrate the advantages of our approach, which compares favorably with alternative algorithms. Lastly, by integrating RNA-Seq data we compute conservative experimentally-based false discovery rates of our method and demonstrate the high precision of our strategy. Conclusions: Our method is implemented in the R package wavClusteR 2.0. The package is distributed under the GPL-2 license and is available from BioConductor at http://www.bioconductor.org/packages/devel/bioc/html/wavClusteR.html.
    Categories: Journal Articles
  • A systematic evaluation of high-dimensional, ensemble-based regression for exploring large model spaces in microbiome analyses
    [Feb 2015]

    Background: Microbiome studies incorporate next-generation sequencing to obtain profiles of microbial communities. Data generated from these experiments are high-dimensional with a rich correlation structure but modest sample sizes. A statistical model that utilizes these microbiome profiles to explain a clinical or biological endpoint needs to tackle high-dimensionality resulting from the very large space of variable configurations. Ensemble models are a class of approaches that can address high-dimensionality by aggregating information across large model spaces. Although such models are popular in fields as diverse as economics and genetics, their performance on microbiome data has been largely unexplored. Results: We developed a simulation framework that accurately captures the constraints of experimental microbiome data. Using this setup, we systematically evaluated a selection of both frequentist and Bayesian regression modeling ensembles. These are represented by variants of stability selection in conjunction with elastic net and spike-and-slab Bayesian model averaging (BMA), respectively. BMA ensembles that explore a larger space of models relative to stability selection variants performed better and had lower variability across simulations. However, stability selection ensembles were able to match the performance of BMA in scenarios of low sparsity where several variables had large regression coefficients. Conclusions: Given a microbiome dataset of interest, we present a methodology to generate simulated data that closely mimics its characteristics in a manner that enables meaningful evaluation of analytical strategies. Our evaluation demonstrates that the largest ensembles yield the strongest performance on microbiome data with modest sample sizes and high-dimensional measurements. We also demonstrate the ability of these ensembles to identify microbiome signatures that are associated with opportunistic Candida albicans colonization during antibiotic exposure. As the focus of microbiome research evolves from pilot to translational studies, we anticipate that our strategy will aid investigators in making evaluation-based decisions for selecting appropriate analytical methods.
    Categories: Journal Articles
  • SubPatCNV: approximate subspace pattern mining for mapping copy-number variations
    [Jan 2015]

    Background: Many DNA copy-number variations (CNVs) are known to lead to phenotypic variations and pathogenesis. While CNVs are often only common in a small number of samples in the studied population or patient cohort, previous work has not focused on customized identification of CNV regions that only exhibit in subsets of samples with advanced data mining techniques to reliably answer questions such as ?Which are all the chromosomal fragments showing nearly identical deletions or insertions in more than 30% of the individuals??. Results: We introduce a tool for mining CNV subspace patterns, namely SubPatCNV, which is capable of identifying all aberrant CNV regions specific to arbitrary sample subsets larger than a support threshold. By design, SubPatCNV is the implementation of a variation of approximate association pattern mining algorithm under a spatial constraint on the positional CNV probe features. In benchmark test, SubPatCNV was applied to identify population specific germline CNVs from four populations of HapMap samples. In experiments on the TCGA ovarian cancer dataset, SubPatCNV discovered many large aberrant CNV events in patient subgroups, and reported regions enriched with cancer relevant genes. In both HapMap data and TCGA data, it was observed that SubPatCNV employs approximate pattern mining to more effectively identify CNV subspace patterns that are consistent within a subgroup from high-density array data. Conclusions: SubPatCNV available through http://sourceforge.net/projects/subpatcnv/is a unique scalable open-source software tool that provides the flexibility of identifying CNV regions specific to sample subgroups of different sizes from high-density CNV array data.
    Categories: Journal Articles
  • Semi-supervised adaptive-height snipping of the hierarchical clustering tree
    [Jan 2015]

    Background: In genomics, hierarchical clustering (HC) is a popular method for grouping similar samples based on a distance measure. HC algorithms do not actually create clusters, but compute a hierarchical representation of the data set. Usually, a fixed height on the HC tree is used, and each contiguous branch of samples below that height is considered a separate cluster. Due to the fixed-height cutting, those clusters may not unravel significant functional coherence hidden deeper in the tree. Besides that, most existing approaches do not make use of available clinical information to guide cluster extraction from the HC. Thus, the identified subgroups may be difficult to interpret in relation to that information. Results: We develop a novel framework for decomposing the HC tree into clusters by semi-supervised piecewise snipping. The framework, called guided piecewise snipping, utilizes both molecular data and clinical information to decompose the HC tree into clusters. It cuts the given HC tree at variable heights to find a partition (a set of non-overlapping clusters) which does not only represent a structure deemed to underlie the data from which HC tree is derived, but is also maximally consistent with the supplied clinical data. Moreover, the approach does not require the user to specify the number of clusters prior to the analysis. Extensive results on simulated and multiple medical data sets show that our approach consistently produces more meaningful clusters than the standard fixed-height cut and/or non-guided approaches. Conclusions: The guided piecewise snipping approach features several novelties and advantages over existing approaches. The proposed algorithm is generic, and can be combined with other algorithms that operate on detected clusters. This approach represents an advancement in several regards: (1) a piecewise tree snipping framework that efficiently extracts clusters by snipping the HC tree possibly at variable heights while preserving the HC tree structure; (2) a flexible implementation allowing a variety of data types for both building and snipping the HC tree, including patient follow-up data like survival as auxiliary information.The data sets and R code are provided as supplementary files. The proposed method is available from Bioconductor as the R-package HCsnip.
    Categories: Journal Articles
  • Decomposing the space of protein quaternary structures with the interface fragment pair library
    [Jan 2015]

    Background: The physical interactions between proteins constitute the basis of protein quaternary structures. They dominate many biological processes in living cells. Deciphering the structural features of interacting proteins is essential to understand their cellular functions. Similar to the space of protein tertiary structures in which discrete patterns are clearly observed on fold or sub-fold motif levels, it has been found that the space of protein quaternary structures is highly degenerate due to the packing of compact secondary structure elements at interfaces. Therefore, it is necessary to further decompose the protein quaternary structural space into a more local representation. Results: Here we constructed an interface fragment pair library from the current structure database of protein complexes. After structural-based clustering, we found that more than 90% of these interface fragment pairs can be represented by a limited number of highly abundant motifs. These motifs were further used to guide complex assembly. A large-scale benchmark test shows that the native-like binding is highly likely in the structural ensemble of modeled protein complexes that were built through the library. Conclusions: Our study therefore presents supportive evidences that the space of protein quaternary structures can be represented by the combination of a small set of secondary-structure-based packing at binding interfaces. Finally, after future improvements such as adding sequence profiles, we expect this new library will be useful to predict structures of unknown protein-protein interactions.
    Categories: Journal Articles
  • Rational selection of experimental readout and intervention sites for reducing uncertainties in computational model predictions
    [Jan 2015]

    Background: Understanding the dynamics of biological processes can substantially be supported by computational models in the form of nonlinear ordinary differential equations (ODE). Typically, this model class contains many unknown parameters, which are estimated from inadequate and noisy data. Depending on the ODE structure, predictions based on unmeasured states and associated parameters are highly uncertain, even undetermined. For given data, profile likelihood analysis has been proven to be one of the most practically relevant approaches for analyzing the identifiability of an ODE structure, and thus model predictions. In case of highly uncertain or non-identifiable parameters, rational experimental design based on various approaches has shown to significantly reduce parameter uncertainties with minimal amount of effort. Results: In this work we illustrate how to use profile likelihood samples for quantifying the individual contribution of parameter uncertainty to prediction uncertainty. For the uncertainty quantification we introduce the profile likelihood sensitivity (PLS) index. Additionally, for the case of several uncertain parameters, we introduce the PLS entropy to quantify individual contributions to the overall prediction uncertainty. We show how to use these two criteria as an experimental design objective for selecting new, informative readouts in combination with intervention site identification. The characteristics of the proposed multi-criterion objective are illustrated with an in silico example. We further illustrate how an existing practically non-identifiable model for the chlorophyll fluorescence induction in a photosynthetic organism, D. salina, can be rendered identifiable by additional experiments with new readouts. Conclusions: Having data and profile likelihood samples at hand, the here proposed uncertainty quantification based on prediction samples from the profile likelihood provides a simple way for determining individual contributions of parameter uncertainties to uncertainties in model predictions. The uncertainty quantification of specific model predictions allows identifying regions, where model predictions have to be considered with care. Such uncertain regions can be used for a rational experimental design to render initially highly uncertain model predictions into certainty. Finally, our uncertainty quantification directly accounts for parameter interdependencies and parameter sensitivities of the specific prediction.
    Categories: Journal Articles
  • Amyloid precursor protein interaction network in human testis: sentinel proteins for male reproduction
    [Jan 2015]

    Background: Amyloid precursor protein (APP) is widely recognized for playing a central role in Alzheimer's disease pathogenesis. Although APP is expressed in several tissues outside the human central nervous system, the functions of APP and its family members in other tissues are still poorly understood. APP is involved in several biological functions which might be potentially important for male fertility, such as cell adhesion, cell motility, signaling, and apoptosis. Furthermore, APP superfamily members are known to be associated with fertility. Knowledge on the protein networks of APP in human testis and spermatozoa will shed light on the function of APP in the male reproductive system. Results: We performed a Yeast Two-Hybrid screen and a database search to study the interaction network of APP in human testis and sperm. To gain insights into the role of APP superfamily members in fertility, the study was extended to APP-like protein 2 (APLP2). We analyzed several topological properties of the APP interaction network and the biological and physiological properties of the proteins in the APP interaction network were also specified by gene ontologyand pathways analyses. We classified significant features related to the human male reproduction for the APP interacting proteins and identified modules of proteins with similar functional roles which may show cooperative behavior for male fertility. Conclusions: The present work provides the first report on the APP interactome in human testis. Our approach allowed the identification of novel interactions and recognition of key APP interacting proteins for male reproduction, particularly in sperm-oocyte interaction.
    Categories: Journal Articles
  • Nonparametric Bayesian clustering to detect bipolar methylated genomic loci
    [Jan 2015]

    Background: With recent development in sequencing technology, a large number of genome-wide DNA methylation studies have generated massive amounts of bisulfite sequencing data. The analysis of DNA methylation patterns helps researchers understand epigenetic regulatory mechanisms. Highly variable methylation patterns reflect stochastic fluctuations in DNA methylation, whereas well-structured methylation patterns imply deterministic methylation events. Among these methylation patterns, bipolar patterns are important as they may originate from allele-specific methylation (ASM) or cell-specific methylation (CSM). Results: Utilizing nonparametric Bayesian clustering followed by hypothesis testing, we have developed a novel statistical approach to identify bipolar methylated genomic regions in bisulfite sequencing data. Simulation studies demonstrate that the proposed method achieves good performance in terms of specificity and sensitivity. We used the method to analyze data from mouse brain and human blood methylomes. The bipolar methylated segments detected are found highly consistent with the differentially methylated regions identified by using purified cell subsets. Conclusions: Bipolar DNA methylation often indicates epigenetic heterogeneity caused by ASM or CSM. With allele-specific events filtered out or appropriately taken into account, our proposed approach sheds light on the identification of cell-specific genes/pathways under strong epigenetic control in a heterogeneous cell population.
    Categories: Journal Articles
  • YersiniaBase: a genomic resource and analysis platform for comparative analysis of Yersinia
    [Jan 2015]

    Background: Yersinia is a Gram-negative bacteria that includes serious pathogens such as the Yersinia pestis, which causing plague, Yersinia pseudotuberculosis, Yersinia enterocolitica. The remaining species are generally considered non-pathogenic to humans, although there is evidence that at least some of these species can cause occasional infections using distinct mechanisms from the more pathogenic species. With the advances in sequencing technologies, many genomes of Yersinia have been sequenced. However, there is currently no specialized platform to hold the rapidly-growing Yersinia genomic data and to provide analysis tools particularly for comparative analyses, which are required to provide improved insights into their biology, evolution and pathogenicity.DescriptionTo facilitate the ongoing and future research of Yersinia, especially those generally considered non-pathogenic species, a well-defined repository and analysis platform is needed to hold the Yersinia genomic data and analysis tools for the Yersinia research community. Hence, we have developed the YersiniaBase, a robust and user-friendly Yersinia resource and analysis platform for the analysis of Yersinia genomic data. YersiniaBase has a total of twelve species and 232 genome sequences, of which the majority are Yersinia pestis. In order to smooth the process of searching genomic data in a large database, we implemented an Asynchronous JavaScript and XML (AJAX)-based real-time searching system in YersiniaBase. Besides incorporating existing tools, which include JavaScript-based genome browser (JBrowse) and Basic Local Alignment Search Tool (BLAST), YersiniaBase also has in-house developed tools: (1) Pairwise Genome Comparison tool (PGC) for comparing two user-selected genomes; (2) Pathogenomics Profiling Tool (PathoProT) for comparative pathogenomics analysis of Yersinia genomes; (3) YersiniaTree for constructing phylogenetic tree of Yersinia. We ran analyses based on the tools and genomic data in YersiniaBase and the preliminary results showed differences in virulence genes found in Yersinia pestis and Yersinia pseudotuberculosis compared to other Yersinia species, and differences between Yersinia enterocolitica subsp. enterocolitica and Yersinia enterocolitica subsp. palearctica. Conclusions: YersiniaBase offers free access to wide range of genomic data and analysis tools for the analysis of Yersinia. YersiniaBase can be access at http://yersinia.um.edu.my.
    Categories: Journal Articles
  • Single-molecule dataset (SMD): a generalized storage format for raw and processed single-molecule data
    [Jan 2015]

    Background: Single-molecule techniques have emerged as incisive approaches for addressing a wide range of questions arising in contemporary biological research [ 1-4]. The analysis and interpretation of raw single-molecule data benefits greatly from the ongoing development of sophisticated statistical analysis tools that enable accurate inference at the low signal-to-noise ratios frequently associated with these measurements. While a number of groups have released analysis toolkits as open source software [5-14], it remains difficult to compare analysis for experiments performed in different labs due to a lack of standardization. Results: Here we propose a standardized single-molecule dataset (SMD) file format. SMD is designed to accommodate a wide variety of computer programming languages, single-molecule techniques, and analysis strategies. To facilitate adoption of this format we have made two existing data analysis packages that are used for single-molecule analysis compatible with this format. Conclusion: Adoption of a common, standard data file format for sharing raw single-molecule data and analysis outcomes is a critical step for the emerging and powerful single-molecule field, which will benefit both sophisticated users and non-specialists by allowing standardized, transparent, and reproducible analysis practices.
    Categories: Journal Articles
  • Fast and robust group-wise eQTL mapping using sparse graphical models
    [Jan 2015]

    Background: Genome-wide expression quantitative trait loci (eQTL) studies have emerged as a powerful tool to understand the genetic basis of gene expression and complex traits. The traditional eQTL methods focus on testing the associations between individual single-nucleotide polymorphisms (SNPs) and gene expression traits. A major drawback of this approach is that it cannot model the joint effect of a set of SNPs on a set of genes, which may correspond to hidden biological pathways. Results: We introduce a new approach to identify novel group-wise associations between sets of SNPs and sets of genes. Such associations are captured by hidden variables connecting SNPs and genes. Our model is a linear-Gaussian model and uses two types of hidden variables. One captures the set associations between SNPs and genes, and the other captures confounders. We develop an efficient optimization procedure which makes this approach suitable for large scale studies. Extensive experimental evaluations on both simulated and real datasets demonstrate that the proposed methods can effectively capture both individual and group-wise signals that cannot be identified by the state-of-the-art eQTL mapping methods. Conclusions: Considering group-wise associations significantly improves the accuracy of eQTL mapping, and the successful multi-layer regression model opens a new approach to understand how multiple SNPs interact with each other to jointly affect the expression level of a group of genes.
    Categories: Journal Articles
  • Predicting protein functions using incomplete hierarchical labels
    [Jan 2015]

    Background: Protein function prediction is to assign biological or biochemical functions to proteins, and it is a challenging computational problem characterized by several factors: (1) the number of function labels (annotations) is large; (2) a protein may be associated with multiple labels; (3) the function labels are structured in a hierarchy; and (4) the labels are incomplete. Current predictive models often assume that the labels of the labeled proteins are complete, i.e. no label is missing. But in real scenarios, we may be aware of only some hierarchical labels of a protein, and we may not know whether additional ones are actually present. The scenario of incomplete hierarchical labels, a challenging and practical problem, is seldom studied in protein function prediction. Results: In this paper, we propose an algorithm to Predict protein functions using Incomplete hierarchical LabeLs (PILL in short). PILL takes into account the hierarchical and the flat taxonomy similarity between function labels, and defines a Combined Similarity (ComSim) to measure the correlation between labels. PILL estimates the missing labels for a protein based on ComSim and the known labels of the protein, and uses a regularization to exploit the interactions between proteins for function prediction. PILL is shown to outperform other related techniques in replenishing the missing labels and in predicting the functions of completely unlabeled proteins on publicly available PPI datasets annotated with MIPS Functional Catalogue and Gene Ontology labels. Conclusion: The empirical study shows that it is important to consider the incomplete annotation for protein function prediction. The proposed method (PILL) can serve as a valuable tool for protein function prediction using incomplete labels. The Matlab code of PILL is available upon request.
    Categories: Journal Articles