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Abstract

We present a vision system for the 3-D model-
based tracking of unconstrained human movement.
Using image sequences acquired simultaneously from
multiple views, we recover the 3-D body pose at each
time instant without the use of markers. The pose-
recovery problem is formulated as a search problem
and entails �nding the pose parameters of a graphical
human model whose synthesized appearance is most
similar to the actual appearance of the real human in
the multi-view images. The models used for this pur-
pose are acquired from the images. We use a decom-
position approach and a best-�rst technique to search
through the high dimensional pose parameter space.
A robust variant of chamfer matching is used as a
fast similarity measure between synthesized and real
edge images.

We present initial tracking results from a large new
Humans-In-Action (HIA) database containing more
than 2500 frames in each of four orthogonal views.
They contain subjects involved in a variety of activ-
ities, of various degrees of complexity, ranging from
the more simple one-person hand waving to the chal-
lenging two-person close interaction in the Argentine
Tango.

1 Introduction

The ability to recognize humans and their activities
by vision is a key feature in the pursuit to design a
machine capable of interacting intelligently and ef-
fortlessly with a human-inhabited environment. Be-
sides this long-term goal, there are many applications
possible in the more near term, e.g. in virtual real-
ity, \smart" surveillance systems, motion analysis in
sports, choreography of dance and ballet, sign lan-
guage translation and gesture-driven user interfaces.
In many of these applications a non-intrusive sensory
method based on vision is preferable over a (in some
cases not even feasible) method that relies on mark-
ers attached to the bodies of human subjects.

Our approach to looking at humans and recogniz-
ing their activities has two major components:

1. body pose recovery and tracking

2. recognition of movement patterns

We consider the case where we have multiple sta-
tionary (visible-light) cameras, previously calibrated,
and we observe one or more humans performing some
action from multiple viewpoints. The aim of the �rst

component is to reconstruct from the sequence of
multi-view frames the (approximate) 3-D body pose
of the human(s) at each time instant; this serves as
input to the movement recognition component. In an
earlier paper [5] we considered movement recognition
as a classi�cation problem and we used a Dynamic
Time Warping method to match a test sequence with
several reference sequences representing prototypical
activities. The features used for matching were vari-
ous 3-D joint angles of the human body. In this pa-
per, we deal only with the pose recovery and tracking
component.

The outline of this paper is as follows. First, Sec-
tion 2 provides a motivation for our choice of a 3-D re-
covery approach rather than a 2-D approach. In Sec-
tion 3 we discuss 3-D human modeling issues and the
(semi-automatic) model acquisition procedure used
by our system. Section 4 deals with the pose recovery
and tracking component. Included is a bootstrapping
procedure to start the tracking or to re-initialize it
if it fails. Section 5 presents new experimental re-
sults in which successful unconstrained whole-body
movement is demonstrated on two subjects. These
are initial results 1 _derived from a large Humans-In-
Action (HIA) database containing two subjects in-
volved in a variety of activities, of various degree of
complexity. We discuss our results and possible im-
provements in Section 6. Finally, Section 7 contains
our conclusions.

2 2-D vs. 3-D

One may question whether it is desirable or feasi-
ble to try to recover 3-D body pose from 2-D im-
age sequences for the purpose of recognizing human
movement. An alternative approach is to work di-
rectly with 2-D features derived from the images, us-
ing some form of 2-D model [7] [11] or not [3] [16].

Recognition systems using 2-D model-free features
have been able to claim early successes in matching
human movement patterns. For constrained types of
human movement (such as walking parallel to the im-
age plane, involving periodic motion), many of these
features have been successfully used for classi�cation,
as in [16]. This may indeed be the easiest and best so-
lution for several applications. But we �nd it unlikely
that reliable recognition of more unconstrained and
complex human movement (e.g. humans wandering
around, making di�erent gestures while walking and

1The tracking results described in this paper are
also available as video clips from our home pages.



turning) can be achieved using these types of fea-
tures exclusively. With respect to using 2-D model-
based features, we note that few systems actually
derive the features they use for movement match-
ing. Self-occlusion makes the 2-D tracking problem
hard for arbitrary movements and thus existing sys-
tems assume some a-priori knowledge of the type of
movement and/or the viewpoint under which it is ob-
served. 2-D labeling and tracking under more general
conditions is attempted by [11].

We therefore investigate in this paper the more
general-purpose approach of recovering 3-D pose
through time, in terms of 3-D joint angles de�ned
with respect to a human-centered 3-D motion recov-
ery from 2-D images is often an ill-posed problem. In
the case of 3-D pose tracking, however, we can take
advantage of the large available a-priori knowledge
about the kinematic and shape properties of the hu-
man body to make the problem tractable. Tracking
also is well supported by the use of a 3-D human
model which can predict events such as (self) occlu-
sion and (self) collision. Once 3-D tracking is suc-
cessfully completed, we have the bene�t of being able
to use the 3-D joint angles as features for movement
matching, which are viewpoint independent and di-
rectly linked to the body pose. Compared with 3-D
joint coordinates, they are less sensitive to variations
in the size of humans.

The techniques described in this paper lead to
tracking on a �ne scale, with the obtained joint an-
gles being within a few degrees of their true values.
Besides providing meaningful generic features for a
movement matching component, such techniques are
of independent interest for their use in virtual reality
applications. In other applications, such as surveil-
lance, continuous �ne-scale 3-D tracking will not al-
ways be necessary, and can be combined with track-
ing on a more coarse level (for example, considering
the human body as a single unit), changing the mode
of operation from one to another depending on con-
text.

3 3-D body modeling and model
acquisition

3-D graphical models for the human body generally
consist of two components: a representation for the
skeletal structure (the \stick �gure") and a represen-
tation for the esh surrounding it. The stick �gure
is simply a collection of segments and joint angles
with various degree of freedom at the articulation
sites. The representation for the esh can either be
surface-based (using polygons, for example) or vol-
umetric (using cylinders, for example). There is a
trade-o� between the accuracy of representation and
the number of parameters used in the model. Many
highly accurate surface models have been used in the
�eld of graphics [1] to model the human body, often
containing thousands of polygons obtained from ac-
tual body scans. In vision, where the inverse problem
of recovering the 3-D model from the images is much
harder and less accurate, the use of volumetric prim-
itives has been preferred to "esh out" the segments

because of the lower number of model parameters in-
volved.

For our purposes of tracking 3-D whole-body mo-
tion, we currently use a 22-DOF model (3 DOF for
the positioning of the root of the articulated struc-
ture, 3 DOF for the torso and 4 DOF for each arm
and each leg), without modeling the palm of the hand
or the foot, and using a rigid head-torso approxima-
tion. See [1] for more sophisticated modeling. Re-
garding shape, we felt that simple cylindrical primi-
tives (possibly with elliptic XY-cross-sections) [4] [8]
[18] would not represent body parts such as the head
and torso accurately enough. Therefore, we employ
the class of tapered super-quadrics [12]; these include
such diverse shapes as cylinders, spheres, ellipsoids
and hyper-rectangles. So far, we have obtained satis-
factory modeling results with these primitives alone
(see experiments); a more general approach also al-
lows deformations of the shape primitives [12] [14].

We derive the shape parameters from the projec-
tions of occluding contours in two orthogonal views,
parallel to the zx- and zy-planes. This involves the
human subject facing the camera frontally and side-
ways. We assume 2-D segmentation in the two or-
thogonal views; a way to obtain such a segmentation
is proposed in [10]. Back-projecting the 2-D pro-
jected contours of a quadric gives the 3-D occlud-
ing contours, after which a coarse-to-�ne search pro-
cedure is used over a reasonable range of parame-
ter space to determine the best-�tting quadric. Fit-
ting uses chamfer matching (see the next section) as
a similarity measure between the �tted and back-
projected occluding 3-D contours. Figure 3 shows
frontal and side views of the recovered torso and head
for two persons: DARIU and ELLEN. Figure 4 shows
their complete recovered models in a graphics render-
ing. These models are used in the tracking experi-
ments of Section 5.

4 Pose recovery and tracking

The general framework for our tracking component
is inspired by the early work of O'Rourke and Badler
[19] and is illustrated in Figure 1a. Four main compo-
nents are involved: prediction, synthesis, image anal-
ysis and state estimation. The prediction component
takes into account previous states up to time t to
make a prediction for time t+ 1. It is deemed more
stable to do the prediction at a high level (in state
space) than at a low level (in image space), allow-
ing an easier way to incorporate semantic knowledge
into the tracking process. The synthesis component
translates the prediction from the state level to the
measurement (image) level, which allows the image
analysis component to selectively focus on a subset of
regions and look for a subset of features. Finally, the
state-estimation component computes the new state
using the segmented image.

The above framework is general and can also be
applied to other model-based tracking problems. In
the remainder of this section, we discuss how the
components are implemented in our system for the
case of tracking humans, and how this relates to ex-



isting work. In the �rst subsection we cover the pose
estimation component, the second subsection briey
covers the other components.

4.1 Pose estimation

Our approach to pose recovery is based on a generate-
and-test strategy. The problem is formulated as
a search problem and entails �nding the pose pa-
rameters of a graphical human model whose synthe-
sized appearance is most similar to the actual ap-
pearance of the real human. (see Figure 1b). This
approach has the advantage that the measure of
similarity between synthesized appearance and ac-
tual appearance can now be based on whole con-
tours and/or regions rather than on a few points.
So far, existing systems which work on real images
using this strategy have had limitations: Perales and
Torres [15] describe a system which involves input
from a human operator. Hogg [8] and Rohr [18]
deal with the restricted movement of walking par-
allel to image plane, for which the search space is
essentially one-dimensional. Downton and Drouet
[4] attempt to track unconstrained upper-body mo-
tion, but must conclude that the tracking gets lost
due to propagation of errors. Goncalves et al. [6]
use a Kalman-�ltering approach to track arm move-
ment from single-view images where the shoulder re-
mains �xed. Finally, work by Rehg and Kanade [17]
is geared towards �nger tracking. We aim to improve
the previous approaches, where applicable, along the
following lines.

- Similarity measure

In our approach the similarity measure between
model view and actual scene is based on arbitrary
edge contours rather than on straight line approxi-
mations (as in [18], for example); we use a robust
variant of chamfer matching [2]. The directed cham-
fer distance DD(T;R) between a test point set T and
a reference point set R is obtained by summing the
distances between each point in set T to its nearest
point in R

DD(T;R) =
X

t2T

dd(t;R) =
X

t2T

minr2R k t� r k

(1)

and its normalized version is

DD(T;R) = DD(T;R)=jT j (2)

DD(T;R) can be e�ciently obtained in a two-pass
process by pre-computing the chamfer distance on
a grid to the reference set. The resulting distance
map is the so-called \chamfer image" (see Figures 6b
and 6c). It would be e�cient if we could use only
DD(M;S) during pose search (as done in [2]), where
M and S are the projected model edges and scene
edges, respectively. In that case, the scene cham-
fer image would have to be computed only once, fol-
lowed by fast access for di�erent model projections.
However, using this measure alone has the disadvan-
tage (which becomes apparent in experiments) that

it does not contain information about how close the
reference set is to the test set. For example, a single
point can be really close to a large straight line, but
we may not want to consider the two entities very
similar. We therefore use the undirected normalized
chamfer distance D(T;R)

D(T; R) = (DD(T;R) +DD(R;T ))=2 (3)

A further modi�cation is to perform outlier rejec-
tion on the distribution dd(t;R). Points t for which
dd(t;R) > � are rejected outright; the mean � and
standard deviation � of the resulting distribution is
used to reject points t for which dd(t;R) > � + 2�.

We note that other measures could (and) have
been used to evaluate a hypothesized model pose,
which work directly on the scene image: correlation
(see [6] and [17]) and average contrast value along
the model edges (a measure commonly used in the
snake literature). The reason we opted for prepro-
cessing the scene image (i.e. applying an edge de-
tector) and chamfer matching is that it provides a
gradual measure of similarity between two contours
while having a long-range e�ect in image space. It is
gradual since it is based on distance contributions of
many points along both model and scene contours;
as two identically contours are moved apart in image
space the average closest distance between points in-
creases gradually. This e�ect is noticeable over a
range up to threshold �, in the absence of noise. The
two factors, graduality and long-range, make (cham-
fer) distance mapping a suitable evaluation measure
to guide a search process. Correlation and average
contrast along a contour, on the other hand, typically
provide strong peak responses but rapidly declining
o�-peak responses.

- Multiview approach

By using a multi-view approach we achieve tighter
3-D pose recovery and tracking of the human body
than from using one view only; body poses and move-
ments that are ambiguous from one view can be dis-
ambiguated from another view. We synthesize ap-
pearances of the human model for all the available
views, and evaluate the appropriateness of a 3-D pose
based on the similarity measures for the individual
views (see Figure 1b).

- Search

Search techniques are used to prune the high di-
mensional pose parameter space (see also [13]). We
currently use best-�rst search; we do this because a
reasonable initial state can be provided by a pre-
diction component during tracking or by a boot-
strapping method at start-up. The use of a well-
behaved similarity measure derived from multiple
views, as discussed before, is likely to lead to a search
landscape with fairly wide and pronounced maxima
around the correct parameter values; this can be well
detected by a local search technique such as best-
�rst. Nevertheless, the fact remains that the search-
space is very large and high-dimensional (22 dimen-
sions per human, in our case); this makes \straight-
on" search daunting. The proposed solution to this



is search space decomposition. De�ne the original N -
dimensional search space � at time t as

� = ffp1g � ::� fpNgg;

fpig = fp̂i ��1i; ::; p̂i +�2ig; step �3i (4)

where P̂ = (p̂1; ::; p̂N ) is the state prediction for time
t. We de�ne the decomposed search space �� as

�� = (�1;�2) (5)

�1 = ffpi1g � ::� fpiM g � fp̂iM+1
g � ::� fp̂iN gg (6)

�2 = ff~pi1g � ::� f~piM g � fpiM+1
g � :::� fpiN gg (7)

where (~pi1 ; ::; ~piM ) is derived from the best solu-
tion to searching �1. The above search space de-
composition can be applied recursively and can be
represented by a tree in which non-leaf nodes rep-
resent search spaces to be further decomposed and
leaf nodes are search spaces to be actually processed.
The recursive scheme we propose for the pose recov-
ery of K humans is illustrated in Figure 2. In or-
der to search for the pose of the i-th human in the
scene we synthesize humans 1; :::; i � 1 with the
best pose parameters found earlier, and synthesize
humans i + 1; :::; K with their predicted pose pa-
rameters. We search for the best torso/head con�g-
uration of the i-th human while keeping the limbs at
their predicted values, etc.

We have found in practice that it is more stable
to include the torso-twist parameter in the arms (or
legs) search space, instead of in the torso/head search
space. This is because the observed contours of the
torso alone are not very sensitive to twist. Given that
we keep the root of the articulated �gure �xed at the
torso center, the dimensionalities of the search spaces
we actually search are 5, 9, and 8, respectively.

- Initialization

Our bootstrapping procedure for starting the
tracking currently handles the case where moving
objects (i.e. humans) do not overlap and are posi-
tioned against a stationary background. The proce-
dure starts with background subtraction, followed by
a thresholding operation to determine the region of
interest; see Figure 5. This operation can be quite
noisy, as shown in the �gure. The aim is to deter-
mine from this binary image the major axis of the
region of interest; in practice this is the axis of the
prevalent torso-head con�guration. Together with
the major axis of another view, this allows the deter-
mination of the major 3-D axis of the torso. Addi-
tional constraints regarding the position of the head
along the axis (currently, implemented as a simple
histogram technique) allow a fairly precise estima-
tion of all torso parameters, with the exception of
the torso twist which is searched for, together with
the arms/legs parameters, in a coarse to �ne fashion.

The determination of the major axis can be
achieved robustly by iteratively applying a principal
component analysis (PCA) [9] on data points sam-
pled from the region of interest. This process results
in the removal of the data points corresponding to
the hands if they are located lateral to the torso, and
also of other types of noise. In Figure 5 the succes-
sive approximations to the major axis are shown by
straight lines in increasingly light colors.

4.2 The other components

Our prediction component works in batch mode and
uses a constant acceleration model for the pose pa-
rameters. In other words, a second degree polynomial
is �tted at times t; :::; t� T +1, and its extrapolated
value at time t + 1 is used for prediction. The syn-
thesis component uses a standard graphics renderer
to give the model projections for the various cam-
era views. Finally, the image analysis component
applies an edge detector to the real images, performs
linking, and groups the edges into constant curvature
segments. These segments are each considered as a
unit and either accepted or rejected into the �ltered
scene edge map, a decision which is based on their
directed chamfer distances to the projected model
edges; see Figure 6. This process facilitates the re-
moval of unwanted contours which could disturb the
scene chamfer image (in Figure 6, for example, back-
ground edges around the head area in the original
edge image are absent in the �ltered edge image).

5 Experiments

We compiled a large data base containing multi-view
images of human subjects involved in a variety of
activities. These activities are of various degrees of
complexity, ranging from single-person hand waving
to the challenging two-person close interaction of the
Argentine Tango. The data was taken from four
(near-) orthogonal views (FRONT, RIGHT, BACK
and LEFT) with the cameras placed wide apart in
the corners of a room for maximum coverage; see
Figure 7. The background is fairly complex; many
regions contain bar-like structures and some regions
are highly textured (observe the two VCR racks in
lower-right image of Figure 7). The subjects wear
tight-�tting clothes. Their sleeves are of contrasting
colors, simplifying edge detection somewhat in cases
where one body part occludes another.

Because of disk space and speed limitations, the
more than one hour's worth of image data was �rst
stored on (SVHS) video tape. A subset of this
data was digitized (properly aligned by its time code
(TC)) and makes up the HIA database, which cur-
rently contains more than 2500 frames in each of the
four views.

The cameras were calibrated using an iterative,
non-linear least squares method developed by Szeliski
and Kang [20] and kindly made available to us.
Figure 7 illustrates the outcome; the epipolar lines
shown in the RIGHT, BACK and LEFT views cor-
respond to the selected points in the FRONT view.
One can see that corresponding points lie very close
to or on top of the epipolar lines. Observe how all the
epipolar lines emanate from one single point in the
BACK view: the FRONT camera center lies within
its view.

Our system is implemented under A.V.S. (Ad-
vanced Visualization System). Following its data
ow network model, it consists of independently run-
ning modules, receiving and passing data through
their interconnections. The implemented A.V.S. net-



work bears a close resemblance to Figure 1(b). The
parameter space was bounded in each angular dimen-
sion by � 15 degrees, and in each spatial dimension
by � 10 cm around the predicted parameter values.
The discretization was 5 degrees and 5 cm, respec-
tively. We kept these values constant during track-
ing.

Figure 9 (a)-(c) illustrates tracking for persons
DARIU and ELLEN. The movement performed can
be described as raising the arms sideways to a 90
degree extension, followed by rotating both elbows
forward. Moderate opposite torso movement takes
place for balancing as arms are moved forward and
backwards. The current recovered 3-D pose is illus-
trated by the projection of the model in the four
views, shown in white. The displayed model pro-
jections include for visual purposes the edges at the
intersections of body parts; these were not included
in the chamfer matching process. It can be seen that
tracking is quite successful, with a good �t for the
recovered 3-D pose of the model for the four views.
Figure 8 shows some of the recovered pose parame-
ters for the DARIU sequence.

6 Discussion

As we process more sequences of our HIA database
our aim is to be able to process the more com-
plex sequences, involving fast-varying poses, multiple
bodies and close interaction (see for example Figure
9(d)). We consider several improvements to our sys-
tem. On the image processing level, we are inter-
ested in a tighter coupling between prediction and
segmentation. Currently, the image processing com-
ponent applies a general- purpose edge-detector and
uses prediction only for �ltering purposes. We are
interested in more actively using the prediction in-
formation through the use of deformable templates.
On the algorithmic level, we are interested in meth-
ods of further constraining the search space, based
on either image ow or stereo correspondence.

7 Conclusions

We have presented a new vision system for the 3-D
model-based tracking of unconstrained human move-
ment from multiple views. A large Humans In Ac-
tion database has been compiled for which initial
tracking results were shown. We draw the follow-
ing two conclusions from these initial experimental
results. First, our calibration and human modeling
procedures support a (perhaps surprisingly) good 3-
D localization of the model such that its projection
matches the all-around camera views. This is good
news for the feasibility of any multi-view 3-D model-
based tracking method, not just ours. Second, the
proposed pose recovery and tracking method based
on, among others, the chamfer distance as similarity
measure, is indeed able to maintain a good �t over
time. This is encouraging as we turn to the more
complex sequences.
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Figure 1: Tracking and pose-search cycle
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Figure 2: A decomposition of the pose-search space

Figure 3: Frontal and side views of the recovered
torso and head for the DARIU and ELLEN model

Figure 4: The recovered 3-D models ELLEN and
DARIU say \hi!"



Figure 5: Robust major axis estimation using itera-
tive PCA (cameras FRONT and RIGHT). Successive
approximations to the major axis are shown in lighter
colors.

(a) Scene edge image (after preprocessing)

(b) �ltered edge image (model prediction in grey,
accepted edges in black)

(c) chamfer image

Figure 6: Image processing

Figure 7: Epipolar geometry of cameras FRONT
(upper-left), RIGHT (upper-right), BACK (lower-
left) and LEFT (lower-right): epipolar lines are
shown corresponding to the selected points from the
view of camera FRONT
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Figure 8: Recovered 3-D pose parameters vs. frame
number, D-TwoElbRot; (top) and (middle):
LEFT and RIGHT ARM, abduction- (x), elevation-
(o), twist- (+) and extension-angle (*) (bottom):
TORSO, abduction- (x), elevation- (o), twist-angle
(+) and x- (dot), y- (dashdot) and z-coordinate
(solid)



(a) D-TwoElbowRot, t = 0 (b) D-TwoElbowRot, t = 25

(c) E-TwoElbowRot, t = 10 (d) DE-Tango t = �1

Figure 9: (a)-(b) Tracking sequence D-TwoElbowRot (t = 0; 25), (c) Tracking sequence E-TwoElbowRot
(t = 10), (d) Manual 3-D positioning for DE-Tango; cameras FRONT, RIGHT, BACK and LEFT.


