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1 Introduction

Partitioned sampling is a technique which was introduced in [17] for avoiding
the high cost of particle �lters when tracking more than one object. In fact
this technique can reduce the curse of dimensionality in other situations too.
This paper describes how to use partitioned sampling on articulated objects,
obtaining results that would be impossible with standard sampling methods.
Because partitioned sampling is the statistical analogue of a hierarchical search,
it makes sense to use it on articulated objects, since links at the base of the
object can be localised before moving on to search for subsequent links.

A new concept relating to particle �lters, termed the survival rate is intro-
duced, which sheds light on the e�cacy of partitioned sampling. The domain of
articulated objects also highlights two important features of partitioned sampling
which are discussed here for the �rst time: �rstly, that the number of particles
allocated to each partition can be varied to obtain the maximum bene�t from a
�xed computational resource; and secondly, that the number of likelihood eval-
uations (the most expensive operation in vision-based particle �lters) required
can be halved by taking advantage of the way the likelihood function factorises
for an articulated object.

Another important contribution of the paper is the presentation of a vision-
based \interface-quality" hand tracker: a self-initialising, real-time, robust and
accurate system of su�cient quality to be used for complex interactive tasks
such as drawing packages. The tracker models the hand as an articulated object
and partitioned sampling is the crucial component in achieving these favourable
properties. The system tracks a user's hand on an arbitrary background using
a standard colour camera, in such a way that the hand can be employed as a
4-dimensional mouse (planar translation and the orientations of the thumb and
index �nger).

Hand gesture recognition is the subject of much research, for a wide vari-
ety of applications and by a plethora of methods. Kohler and Schr�oter [13] give
a comprehensive survey. We are not aware of any hand tracking system which
combines the speed, robustness, accuracy and simple hardware requirements of
the system described here. Among the more successful systems which recover



continuous parameters (rather than recognising gestures from a discrete \vocab-
ulary"), some use a stereo rig (e.g. [5, 20]), some are not real time (e.g. [3, 9]),
while others do not appear to have su�cient accuracy for the applications envis-
aged here (e.g. [1, 2, 8, 11, 12]). Of these, [1, 11] are the closest to our system in
terms of the method used. In both cases, the tracking is good enough to permit
navigation through a virtual environment, but not for the �ne adjustment of
interactive visual tools (e.g. drawing at pixel accuracy).

2 Partitioned sampling and the e�ciency of particle

�lters

Partitioned sampling is a way of applying particle �lters (also known as the
Condensation algorithm e.g. [11]) to tracking problems with high-dimensional
con�guration spaces, without incurring the large computational cost that would
normally be expected in such problems. In this section we �rst review particle
�lters, then explain why the large computational cost arises, and �nally describe
the basic idea behind partitioned sampling.

2.1 Particle �lters

Consider a tracking problem with con�guration space X � R
d . Recall that Con-

densation expresses its belief about the system at time t by approximating the
posterior probability distribution p(xjZt), where Zt is the history of observa-
tions Z1; : : :Zt made at each time step, and x 2 X . The distribution p(xjZt) is
approximated using a weighted particle set (xi; �i)

n
i=1, which can be interpreted

as a sum of �-functions centred on the xi with real, non-negative weights �i
(one requires that

P
i �i = 1). Each time step of the Condensation algorithm

is just an update according to Bayes' formula, implemented using operations
on particle sets which can be shown to have the desired e�ects (as n ! 1)
on the underlying probability distributions. One step of Condensation can be
conveniently represented on a diagram as follows:
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	p(xjZt�1) - � - ��
QQ ��

QQ�h(x0jx) - ��
QQ ��

QQ� f(Ztjx0) -
�




�

	p(x0jZt) (1)

where the � symbol denotes resampling, � denotes convolving with dynam-
ics, and � denotes multiplication by the observation density. Speci�cally, the
resampling operation � maps (xi; �i)

n
i=1 to (x0i; 1=n)

n
i=1, where each x0i is se-

lected independently from the the fx1; : : :xng with probability proportional to
�i. This operation has no e�ect on the distribution represented by the parti-
cle set, but often helps to improve the e�ciency with which it is represented.
The dynamical convolution operation � maps (xi; �i)

n
i=1 to (x

0

i; �i)
n
i=1, where x

0

i

is a random draw from the conditional distribution h(x0jxi). Its e�ect on the
distribution represented by the particle set is to transform a distribution p(x)
into

R
h(x0jx)p(x)dx. Finally, the multiplication operation � maps (xi; �i)

n
i=1

to (xi; �
0

i)
n
i=1, where �0i / �if(Z

tjxi). Its probabilistic e�ect is to transform a



distribution p(x) into the distribution proportional to p(x)f(Ztjx). Hence, the
overall e�ect of diagram (1) on the distribution p(xjZt�1) is to transform it into
the distribution proportional to f(Ztjx0)

R
h(x0jx)p(xjZt�1)dx | precisely the

Bayes update rule for dynamical di�usion governed by h(x0jx) and likelihood
function f(Ztjx0).

2.2 The survival diagnostic and survival rate

In assessing the e�cacy of particle �lters we have found two quantities to be of
use: the survival diagnostic D and the survival rate �. The survival diagnostic1

is de�ned for a particle set (xi; �i)
n
i=1 as

D =

 
nX
i=1

�2i

!
�1

: (2)

Intuitively, it can be thought of as indicating the number of particles which would
survive a resampling operation. Two extreme cases make this clear. If �1 = 1 and
all the other weights are zero, then D = 1 | only one particle will survive the
resampling. On the other extreme, if every weight is equal to 1=n, then D = n.
In this case, every particle would be chosen exactly once by an ideal resampling
operation, so all n particles would survive.2 Any particle set lies somewhere be-
tween these two extremes. The survival diagnostic indicates whether tracking
performance is reliable or not: a low value of D indicates that estimates (e.g.
of the mean) based on the particle set may be unreliable, and that there is sig-
ni�cant danger of the tracker losing lock on its target. The di�cult problem of
assessing the performance of particle �lters is discussed in the statistical litera-
ture (e.g. [4, 6, 7, 14]) and no single approach has met with resounding success.
In our experience, the survival diagnostic is as useful as any other indicator and
has the signi�cant advantage of having negligible computational cost.

Whereas the survival diagnostic is a property of a given particle set, the
survival rate is a property of a given prior p(x) and posterior p0(x). Speci�cally,
the survival rate is given by

� =

�Z
p0(x)2=p(x) dx

�
�1

: (3)

(See theorem 2 of [7] for another use of this quantity.) Again, a special case
is instructive. Suppose p is a uniform distribution on a set Xp � X of volume
Vp, and that p0 is also uniform, on a smaller subset Xp0 � Xp of volume Vp0 .
Then p0=p is equal to Vp=Vp0 everywhere on Xp0 , so that � = Vp0=Vp. That is,

1 Doucet [6] calls it the estimated e�ective sample size. See also [4].
2 In fact, if truly random resampling is employed, a certain fraction of the particles
would not survive even in this case. But in practice one uses a deterministic version
of the resampling operation which selects every particle the appropriate number of
times.



the survival rate is just the ratio of the volume of the posterior to the volume
of the prior. It turns out that this interpretation is valid in more general cases
too. Let l(x) = p0(x)=p(x) be the likelihood function and de�ne a particle set
(xi; �i) which represents p

0 by letting the xi be i.i.d. draws from p(x) and setting
�i = l(xi). Then it can be shown (see appendix) that for large n,

D � �n: (4)

This explains our terminology: � is called the survival rate because when mul-
tiplied by n it is approximately the number of particles expected to survive a
resampling. Hence we expect the overall tracking performance to be related to
the survival rate at each time step: if the survival rate is too low, the tracker
will be in danger of producing inaccurate estimates or losing lock altogether.

Example Figure 1 shows an example of a survival rate � calculated for a contour
likelihood in a real image. In this particular example, in which the con�guration
space is the one-dimensional interval [�150; 150], the value of � was calculated
numerically as 0.20. (In more realistic multi-dimensional examples, typical values
of � are much lower than this.) Equation (4) can also be veri�ed directly by
simulations for this simple example.
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Fig. 1. Survival rate. A contour likelihood of the kind used in section 3.1 is graphed
for a range of o�sets in the x-direction from a template. Taking a uniform prior p on
the interval I = [�150; 150], the survival rate � for this particular likelihood function
can be calculated numerically as 0.20. This corresponds to the \volume" �I indicated
on the graph.



2.3 More dimensions means more particles

The survival rate concept makes it easy to see why particle �lters require so many
extra particles to achieve the same level of performance as the dimension of the
con�guration space increases. An informal argument runs as follows. Fix (by trial
and error, if necessary) a value Dmin which represents the minimum acceptable
survival diagnostic for successful tracking of a given object with a given steady-
state prior p(x) on a con�guration space X . Then according to (4), we should
take n � Dmin=� to achieve D � Dmin, where � is the survival rate for this
particular problem. Now consider tracking two such objects. By the de�nition
of the survival rate (3), it is easy to see the survival rate for the two-object
problem is �2, so that to achieve the same level of tracking performance (i.e. the
same minimum survival diagnostic) we must take n � Dmin=�

2. Since typically
�� 1, this is a substantial additional requirement. Note this does not contradict
the well-known result that the variance of standard Monte Carlo estimators is
independent of the dimension of the con�gurations space. The general recipe of
\sample from a prior, then weight by a likelihood" can be regarded as a type
of importance sampling, and it is well-known that importance sampling scales
badly with dimension. [18] gives a lucid explanation of these phenomena.

Partitioned sampling essentially eliminates the need for these additional par-
ticles. The intuition that � is the ratio of the posterior and prior volumes gives
a hint as to how this problem could be solved. Take the simple case of track-
ing 2 objects A and B, whose con�gurations are described respectively by the
one-dimensional variables xA; xB 2 [0; 1]. Suppose the survival rate for the one-
object problem is �: then as remarked above, we have a survival rate �0 = �2

for the two-object problem. Figure 2 shows a schematic representation of the
situation. The intuition behind partitioned sampling is that instead of searching
the entire unit square for the lightly shaded area �0, we can divide the search
into two stages: �rst, a search of the horizontal axis only, which will attempt to
populate the dark shaded area �. This step will have survival rate �. Second, we
try to populate the lightly shaded area. This second step will also have survival
rate of approximately �, since the relative area of the dark shade to light shade
is �0=�. This is the key idea behind partitioned sampling. It remains to show
how we can \populate" certain parts of the con�guration space with particles
in the desired manner. This is done using an operation on particle sets called
weighted resampling.

2.4 Weighted resampling

Let g(x) be a strictly positive, continuous function on X called the weight-

ing function. The weighted resampling function is analogous to the importance
function used in standard importance sampling [19]. Weighted resampling with
respect to g is an operation on a particle set which \populates" the peaks of
g with particles, without altering the distribution actually represented by the
particle set. Given a particle set (xi; �i)

n
i=1, weighted resampling produces a

new set (x0i; �
0

i)
n
i=1 as follows. First de�ne some \importance" weights �i =



0 1
0

1

Fig. 2. Intuition behind partitioned sampling. To locate the peak of a 2D likeli-
hood function, which has area �0 = �2, the search is split into two stages, each of which
has survival rate �. The �rst stage populates the dark shaded area with particles, and
the second stage populates the light shaded area.

g(xi)=
Pn

j=1 g(xj). Next, select indices k1; k2; : : : kn by setting ki = j with prob-
ability �j , independently for i = 1; : : : n. Finally, set x0i = xki and �0i = �ki=�ki .
This last choice of weights has the e�ect of precisely counteracting the extent to
which the particles were \biased" by the importance weights. A proof that the
weighted resampling operation does not alter the underlying distribution can be
found in [15]. On a Condensation diagram, the operation of weighted resampling
with respect to g is denoted � g.

2.5 Partitioned sampling

Partitioned sampling is a generic term for the strategy which consists of di-
viding the state space into two or more \partitions", and sequentially applying
the dynamics for each partition followed by an appropriate weighted resampling
operation. For example, the two-object problem described above could be im-
plemented as the following condensation diagram:
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�

	p(xjZt�1) - � - ��
QQ ��

QQ�hA(x
0jx) - � g

- ��
QQ ��

QQ�hB(x
00jx0) - ��

QQ ��
QQ�f(Ztjx00) -
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�

	p(xjZt)
(5)



where we have assumed the dynamics can be decomposed as

h(x00jx) =

Z
x

0

hB(x
00jx0)hA(x

0jx)dx0: (6)

The algorithm is formally valid for any choice of hA, hB satisfying (6), and for
any g; the objective of partitioned sampling is to use one's intuition about the
problem to choose a decomposition of the dynamics, and a weighting function g,
which are bene�cial. In the example shown in �gure 2, the overall strategy is to
populate the dark shaded region �rst, so hA should be such that some particles
are di�used into dark region, g should be peaked in the dark region, and hB
should be such that particles already in the dark region are not di�used out of
it. A natural choice, therefore, is to take hA to be the dynamics for object A, g
to be a likelihood function for the location of object A only, and hB to be the
dynamics for object B. This was the approach taken by the authors of [17].

3 Partitioned sampling for articulated objects

Although the preceding discussion was phrased for clarity in terms of multiple
objects, partitioned sampling is not restricted to improving the e�ciency of
multiple object tracking. In fact, it can be used whenever the following conditions
hold.

� The con�guration space X can be partitioned as a Cartesian product X =
X1 �X2.

� The dynamics h can be decomposed as h = h1 � h2, where h2 acts on X2.
This means that if x = (x1;x2) and x

0 = (x01;x
0

2) with xi;x
0

i 2 Xi, and x
0 is

a random draw from h2(�jx), then x
0

1 = x1. Informally, the second partition
of the dynamics does not change the value of the projection of any particle
into the �rst partition of the con�guration space.3 We refer to this later as
property (?).

� A weighting function g1 de�ned on X1 is available, which is peaked in the
same region as the posterior restricted to X1.

There is also an obvious generalisation to k > 2 partitions: the con�guration
space is partitioned as X = X1� : : :�Xk, the dynamics as h = h1 � : : :�hk with
each hj acting on Xj � : : :�Xk, and we have weighting functions g1; g2; : : : gk�1

with each gj peaked in the same region as the posterior restricted to Xj .

One example of such a system is an articulated object. The example given in
this paper is of a hand tracker which models the �st, index �nger and thumb as
an articulated rigid object with three joints. The partitioned sampling algorithm

3 This condition is stronger than necessary, but a more general discussion would ob-
scure the important idea.



used for this application is shown in the following Condensation diagram:

�
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QQ�hf(x
0jx) - � ff
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�

	p(x0000jZt)

(7)

The subscript `f' stands for \�st", `th1' for \�rst thumb joint", `th2' for \second
thumb joint", and `i' for \index �nger". So the con�guration space is partitioned
into 4 parts:

� Xf � scale, orientation, and x and y translation of the �st
� Xth1 � joint angle of base of thumb
� Xth2 � joint angle of tip of thumb
� Xi � joint angle of index �nger

The dynamics are decomposed as h = hf � hth1 � hth2 � hi with the last three
operations consisting of a deterministic shift plus Gaussian di�usion within the
appropriate partition only. Note that although X is a shape space of splines,
it is not described by the linear parameterisation normally used for such shape
spaces. Instead it is parameterised by the 7 physical variables listed above (scale,
orientation, x and y translation, and the 3 joint angles), so that any x is an
element of R7 .

3.1 Likelihood function and weighting functions

It remains to specify the measurement likelihood f(Zjx). Recall that the param-
eters x correspond to a B-spline in the image. A one-dimensional grey-scale edge
operator is applied to the normal lines to this B-spline at 28 points (8 on the
main hand, 6 on each of the thumb joints and 8 on the index �nger). Each of
the 28 resulting \edges" (actually points which are the nearest above-threshold
responses of a 1D operator) has a normal distance �i from the B-spline, which
would be zero if the model �tted the image edges perfectly. By assuming (i) the
deviations of the model from the template shape are Gaussian, (ii) that such
deviations are independent on di�erent normal lines, and (iii) there is a �xed
probability of �nding no edge, it is easy to see that the form of f(Zjx) should
be

log f(Zjx) / const +
X
m

�m
2; (8)

where the constant was set by hand for this application. We can also exploit the
fact that the portion of a normal line on the interior of the B-spline should be
skin-coloured. This is re
ected by adding to (8) the output of correlating the



(colour) normal line pixel values with a colour template. Full details on densities
of the form (8) can be found in [15, 16], for example.

Recall there are 28 measurement lines on the hand template: 8 on the �st,
6 on each of the thumb joints and 8 on the index �nger. Since the likelihood
factorises as a product of likelihoods for individual measurement lines, this gives
us a convenient way to re-express the likelihood:

f(Zjx) = ff(Zf jxf) fth1(Zth1jxf ;xth1) fth2(Zth2jxf ;xth1;xth2) fi(Zijxf ;xi) (9)

where, for example, Zf are the measurements on the 8 �st locations, xf are the
components of x which specify the con�guration of the �st, and similarly for the
other subscripts.

The factorisation (9) immediately suggests the use of ff , fth1 and fth2 as
weighting functions, since they should be peaked at the correct locations of the
�st and thumb joints respectively. This is precisely what the implementation
does; hence the presence of ff , fth1 and fth2 on diagram (7).

3.2 Dividing e�ort between the partitions

An important advantage of partitioned sampling is that the number of parti-
cles devoted to each partition can be varied. Partitions which require a large
number of particles for acceptable performance can be satis�ed without incur-
ring additional e�ort in the other partitions. For instance, in the hand tracking
application, the �st often moves rapidly and unpredictably whereas the joint
angles of �nger and thumb tend to change more slowly. Hence we use n1 = 700
particles for the �st partition, but only n2 = n3 = 100 particles for the two
thumb partitions and n4 = 90 for the index �nger partition. A glance at dia-
gram (7) shows this produces a substantial saving, since at every time-step we
avoid calculating fth1(Zth1jx), fth2(Zth2jx) and fi(Zijx) for over 600 values of x
that would otherwise have been required.

Note that the analysis of section 2.3, in terms of survival rates, cannot nec-
essarily be used to determine the optimum allocation of particles between the
partitions. If the dynamics and observations in each partition are completely in-
dependent, and inaccuracies in the estimated parameters for each partition are
equally costly, then one can show that the number of particles in each partition
should be inversely proportional to the survival rate for that partition. However,
these conditions are never satis�ed for an articulated object. Indeed, almost the
opposite is true in the hand-tracking case. For one thing, since the intended ap-
plication is a drawing tool based on the position of the �nger tip, inaccuracies
of many pixels are acceptable in the �st position, provided only that lock is not
lost on the �nger tip. However, even small errors in the �nger tip position will
degrade the performance of the drawing tool greatly. Thus one might think that
the majority of particles should be devoted to the �nger tip partition.

Two factors militate against this conclusion, however. One is that the precise
location of the �nger tip is in fact determined by an auxiliary least-squares �tting
operation mentioned later; hence the imperative for accuracy in this partition is



not so great. Second, it is of overwhelming importance that lock is not lost on
the �st, because the search lines for locating �nger and thumb are placed relative
to the �st. Experiment showed that this factor is the most crucial, which is why
the majority of particles are devoted to the �st partition.

So far we have not been able to develop a coherent theory for choosing how to
allocate the particles between partitions in such cases, and can only recommend
careful experimentation. Some insight can be gained by studying simulated data,
however. Figure 3 shows the results of tracking a simulated articulated chain
with several links. The state space is divided into one partition for each link,
and a �xed number of particles was divided between these in various ways. The
graphs show the variance (in pixels2) of the end-point of the articulated object,
as estimated by partitioned sampling averaged over 200 frames. Several di�erent
runs were made for each set of parameter values; the curves shown are the best-�t
(least-squares) quartics through all data points. Figure 3(a) is for a 3-link object
whose dynamics have equal variance at each link. A total of 300 particles were
available; 100 were allocated to the �nal partition and the remaining particles
divided between the �rst two partitions. Because the dynamics and likelihood
function are the same for each partition, the survival rates are similar for each
partition, and as we might expect, the minimum variance is achieved by equally
dividing these particles between the �rst two partitions.

1.8

2.2

2.4

2.6

2.0

variance

0.25 0.5 0.75

proportion of particles in first partition

50

100

150

200

250

300

350

400

variance

0.750.50.25 1.0

proportion of particles in first three (of six) partitions

(a) equal noise on each link (b) additional noise on �rst three (of six) links

Fig. 3. Allocating resources to di�erent partitions. (a) Because the variance of
the dynamics for each link is equal, the survival rate for each partition is approximately
the same and the best allocation of particles is to distribute them evenly between parti-
tions. (b) Now the variance of the dynamics on early partitions is 9 times higher than
the later ones, so the survival rates on early partitions are lower and it is best to devote
a higher proportion of the particles to these partitions.

Figure 3(b) is a more extreme example. Now there are 6 links, and the �rst
three links have dynamics which are much \noisier" than the last three links.
Speci�cally, the �rst three links have the same dynamics h123(�jx) and the last
three share a di�erent conditional density h456(�jx) for their dynamics. The den-
sities h123; h456 were Gaussian with var(h123) = 9var(h456). Because of the higher
variance of the dynamics, the survival rate for particles in the �rst three parti-



tions is lower than those in the last three; hence we expect that it will be most
e�cient to devote the majority of particles to the �rst three partitions. This is
indeed the case; from the graph it appears that the best results are achieved
when 60-70% of the particles are devoted to the �rst three partitions. Notice
the extremely high variances for many data points outside this range: these are
caused by the tracker losing lock on the early partitions.

3.3 Articulated objects can be evaluated twice as fast

In the particular case in which the overall likelihood f(Zjx) can be expressed as a
product (9) of the weighting functions and another easily calculated function (in
this case, fi), the diagram (7) can be given a simpler form which uses standard
resampling rather than weighted resampling:
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(10)

One can check the equivalence by just writing out in detail the algorithm de-
scribed by each diagram. The key is property (?) mentioned in section 3: e.g. the
\�st" component xf of a particle does not change after the �st partition, so the
value of ff for the particle does not change either. In other words, the evaluation
of any given importance function commutes with the dynamics from subsequent
partitions.

The reformulation of (7) as (10) is important because the computational ex-
pense of the hand tracking largely resides in evaluating the likelihood functions.
Using diagram (7), the likelihood of each measurement line (except those on the
index �nger) is evaluated twice | once as part of a weighting function, and once
as part of the �nal likelihood function. In diagram (10), each measurement line
is examined only once.

3.4 Other details

Initialisation and re-initialisation are handled by the ICondensation mechanism
of [11]. Various standard tools, such as background subtraction (which can be
performed on an SGI Octane very cheaply using the alpha-blending hardware),
and least-squares �tting of an auxiliary spline to the tip of the index �nger, are
used to re�ne the performance of the tracker. Details of these tools can be found
in our technical report [10].



4 Results: a vision-based drawing package

The hand tracker described in the previous section was implemented on an SGI
Octane with a single 175MHz R10000 CPU. Using 700 samples for the hand
base, 100 samples for each of the thumb joints and 90 samples for the index
�nger, the tracker consumes approximately 75% of the machine cycles, which
allows real-time operation at 25Hz with no dropped video frames even while
other applications are running on the machine. The tracker is robust to clutter
(�gure 4), including skin-coloured objects (�gure 5). The position of the index
�nger is located with considerable precision (�gure 5) and the two articulations
in the thumb are also recovered with reasonable accuracy (�gure 6).

Fig. 4. Heavy clutter does not hinder the hand tracker. Even moving the papers on the
desk to invalidate the background subtraction does not prevent the Condensation tracker
functioning. The �ngertip localisation is less robust, however, and jitter increases in
heavily cluttered areas.

We have developed a simple drawing package to explore the utility of a vision-
based hand tracker for user-interface tasks. The tracking achieved is su�ciently
good that it can compete with a mouse for freehand drawing, though (currently)
at the cost of absorbing most of the processing of a moderately powerful worksta-
tion. It is therefore instructive to consider what additional strengths of the vision
system we can exploit to provide functionality which could not be reproduced
using a mouse.

The current prototype drawing package provides only one primitive, the free-
hand line. When the thumb is extended, the pointer draws, and when the thumb
is placed against the hand the virtual pen is lifted from the page. Immediately
we can exploit one of the extra degrees of freedom estimated by the tracker,
and use the orientation of the index �nger to control the width of the line be-



Fig. 5. Left: Skin-coloured objects do not distract the tracker. Here two hands are
present in the image but tracking remains �xed to the right hand. If the right hand were
to leave the �eld of view the tracker would immediately reinitialise on the left hand.
Middle and right: The index �nger is tracked rotating relative to the hand body. The
angle of the �nger is estimated with considerable precision, and agile motions of the
�ngertip, such as scribbling gestures, can be accurately recorded.

ing produced. When the �nger points upwards on the image, the pen draws
with a default width, and as the �nger rotates the width varies from thinner
(�nger anti-clockwise) to thicker (�nger clockwise) | see �gure 7. The scarcity
of variable-thickness lines in computer-generated artwork is a testament to the
di�culty of producing this e�ect with a mouse.

The fact that a camera is observing the desk also allows other intriguing
features not directly related to hand-tracking. We have implemented a natural
interface to translate and rotate the virtual workspace for the modest hardware
investment of a piece of black paper (�gure 8). The very strong white-to-black
edges from the desk to the paper allow the paper to be tracked with great pre-
cision using a simple Kalman �lter, at low computational cost. Translations and
rotations of the paper are then re
ected in the virtual workspace, a very sat-
isfying interface paradigm. While one hand draws, the other hand can adjust
the workspace to the most comfortable position. Figure 9 is a still from a movie
which shows the system in action; this movie is available at [15]. In the future
it should be possible to perform discrete operations such as switching between
drawing tools using simple static gesture recognition on one of the hands. Track-
ing both hands would allow more complex selection tasks, for example continuous
zooming, or colour picking.

5 Conclusion

It has been shown that the technique of partitioned sampling can be applied
to articulated objects. A new concept termed the \survival rate" of particles in
a particle �lter was used to explain why partitioned sampling works, and some
special features of the application to articulated objects were exploited for signif-
icant computational improvements. Although some progress has been made, the
question of how to allocate a �xed number of particles between partitions has



Fig. 6. The two degrees of freedom of the thumb are tracked. The thumb angles
are not very reliably estimated. This is probably partly because the joints are short, and
so o�er few edges to detect, and more importantly because the shape model gives a poor
approximation to the thumb when it opposes. The gross position of the thumb can be
extracted consistently enough to provide a stable switch which can be used analogously
to a mouse button.

not been answered coherently and this must be the subject of future work. An-
other open problem, not previously mentioned, is that our current \articulated
partitioned" approach takes no account of the tree structure of the object: every
link must be sampled as a chain even though the physical structure is a tree.
Our present approach is valid mathematically, but it would be more appropriate,
and possibly more e�cient, to take account of the tree structure.

A hand-tracking system using partitioned sampling on articulated objects
was described. It is of su�cient quality for very demanding interactive tasks.
The main features of the system are robustness (from the Condensation algo-
rithm), instantaneous initialisation and near-perfect responsiveness (from im-
portance sampling based on colour segmentation) and inexpensive addition of
extra degrees of freedom (from partitioned sampling). The system runs on a
single-processor workstation with a standard colour camera and no additional
hardware. Even in the simple drawing package described it is easily possible to
produce �gures which could not comfortably be produced with a mouse, and
to do so using natural gestures and a natural, changing desk environment. We
believe this system has signi�cant implications for the everyday use of virtual
environments with interactive computer vision.

A Appendix

An informal proof of (4) follows; more details can be found in [15]. Recall the
scenario of section 2.2: a particle set (xi; �i)

n
i=1 has been formed with prior (or

\proposal density") p(x) and weighted by likelihood p0(x)=p(x), resulting in a



Fig. 7. Line thickness is controlled using the orientation of the index �nger. The
top image shows a line drawn with the index �nger pointing to the left, producing a
thin trace. In the bottom image the �nger pointed to the right and the line is fatter. Of
course if the �nger angle varies while the line is being drawn, a continuous variation
of thickness is produced.

posterior p0(x). Some simple calculations give

D =
�Pn

i=1 �
(n)
i

2��1

by de�nition of D, equation (2)
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The second line uses the fact (see [15]) that for large n, the normalisation con-
stant for the weights is approximately 1=n | so �i � p0(xi)=(np(xi)).
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