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AbstractÐThis paper presents the formulations and techniques that we have

developed for the three-dimensional, model-based, motion estimation of human

movement from multiple cameras. Our method is based on the spatio-temporal

analysis of the subject's silhouette and it has the advantage that the subject does

not have to wear markers or other devices. We present tracking results from

experiments involving the recovery of complex motions in the presence of

significant occlusion.

Index TermsÐMotion estimation, human motion estimation, deformable models,

model-based tracking, physics-based modeling.
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1 INTRODUCTION

IMAGE-BASED, three-dimensional, human shape estimation and
motion tracking are important and challenging research problems
and their importance stems from numerous applications such as:
1) posture and gait analysis for training athletes and physically
challenged persons, 2) human body, hands, and face animation,
and 3) automatic annotation of human activities in video
databases. Although for some applications (e.g., determining if a
person is moving towards or away from you), information about
the movement of the centroid of the silhouette is adequate, for
others, detailed shape and motion information for the body parts is
required. For example, the use of complex models such as those of
humans or other articulated objects and the modeling of their
motions is often necessary. In such cases, even the most skilled
modelers and animators are not able to accurately reproduce the
respective shapes and motions. If synthesized motion is to be
compelling, we must create virtual actors that appear realistic
when they move. Other applications, such as vision-based
computer interfaces [27], [30], ergonomics, anthropometry, and
human factors design require additional analysis of the data to
facilitate certain tasks or activities. An example of such an analysis
is the performance measurement of athletes, as well as patients
with psychomotor disabilities and the rapid prototyping of
rehabilitation aids [21].

Currently, motion tracking is performed using mechanical,

electro-magnetic, and image-based techniques. A comprehensive

review of the mechanical and electromagnetic systems can be

found in [10]. Image-based systems can be lumped into three broad

categories: techniques that use active markers, techniques that use

passive markers, and techniques that do not use markers. Since

placing markers on the subjects is cumbersome and alters their

natural motion, a nonintrusive sensory method based on vision is

preferable. Indeed, there is a need for accurate measurement of the

three-dimensional motion of moving body parts without interfer-

ing with the dynamics of the moving bodies. In the following, we

offer only a very brief review of the marker-free image-based

human tracking methods due to space limitations. The reader is
referred to [17], [1], [11] for comprehensive reviews.

Recently, a number of alternative solutions to tracking of
human bodies have been proposed. Gavrila [12] formulated the
pose-recovery as a search problem and he employed a hierarchical
decomposition approach to cope with the high dimensionality of
the search space. Wachter [31] presented a model-based approach,
where a prior human body model is fit to the image by an iterated
extended Kalman filter using both edge and region measurements.
Bregler [4] developed a region-based estimation framework (using
twists and exponential maps), whose cost function is based on the
optic flow. In Yamamoto's work [33], tracking is performed by
estimating the pose increment of the body parts from multiple
images by assuming small increments in pose change, while in
[34], scene constraints are employed to reduce the model's
degrees-of-freedom. Wren [32] coupled a 3D dynamic model of
the human body with models of human behavior to track end-
effectors like the head and the hands using a blob-based approach.
Cham [5] developed a probabilistic multiple-hypothesis frame-
work for tracking articulated objects, where the key insight is the
representation and tracking the modes in the posterior state
density function. Delamarre [6] presented a force-based method
for tracking humans, which is based on the ideas of force-based
tracking presented in [18] and elaborated in this paper. Deutscher
[7] developed a modified particle filter for search in high
dimensional configuration spaces that resulted in very robust
human motion tracking. Finally, Ormoneit [25] presented an
analysis method based on statistical learning and Bayesian
tracking. However, for many of the systems cited above, no
information is provided about the accuracy of the tracking.
Concerning model-based tracking of self-occluding articulated
objects, Rehg and Kanade [29] present a novel representation of
self-occlusion in configuration space by using a kinematic model to
predict occlusions and windowed appearance templates to track
partially occluded objects. In our work, occlusion is computed
dynamically based on the predicted motion and the tracking is
based on the occluding contours. The singularity problems that
arise in tracking articulated objects were studied in [24]. However,
the effect of the shape of the parts was not taken in consideration in
that study. Concerning initial posture estimation, methods have
been presented that use either one [4], [22], or multiple cameras [2],
[6], [12], [16], [18]. Recently, we proposed a technique [3] for
simultaneously estimating a human's anthropometric measure-
ments (up to a scale parameter) and pose from a single image that
can be used for initializing video-based, three-dimensional, human
motion tracking. Concerning model acquisition, existing ap-
proaches use models of the human body whose parts are either
approximated with simple shapes and their dimensions have been
manually measured [13], [29], or models whose shape and/or
dimensions have been determined based on camera input data. In
this second category, methods have been developed to obtain
models of human body parts from multiple cameras [14], [19], [15],
[28] or range data [8]. Specifically, to overcome problems that stem
from using approximate shape models for the estimation of 3D
human motion, we have previously developed [19] a method for
estimating the shape of a subject's body parts that allows the
creation of an anthropometrically correct graphical model of a
subject. The method is based on fusing observations (from multiple
cameras) from a subject performing a set of motions according to a
protocol designed to reveal the structure of the human body.

In most applications, the human subject is available. Therefore,
to capture the motion of an unencumbered subject and to
overcome the problems due to variations among subjects in the
shape of their body, we propose the following approach: First,
automatically acquire a three-dimensional model of the subject
using computer vision techniques [19]. Then, employ this model to
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track the unconstrained movement of a subject's body parts by
using multiple cameras and by actively selecting the subset of the
cameras that provide the most informative views. In this paper, we
develop a formal framework for tracking the motion of human
body parts from one or multiple cameras based on information
extracted from the occluding contours. In particular, our system
has a motion analysis and a motion playback part. The analysis
part is based on the spatio-temporal analysis of the subject's
silhouette from image sequences acquired simultaneously from
multiple cameras. The input to the analysis is a sequence of
grayscale images taken from multiple views. The output of the
analysis part are the three-dimensional positions and orientations
of the subject's body parts at each time instant, from which the
trajectories, velocities, and accelerations can be computed. The
motion playback part couples the estimated motion parameters
with a customized physics-based graphical model of the partici-
pant resulting in real-time human motion animation. The motion
playback system is presented in detail at [20]. Since the system is
noninvasive, the person under observation (the subject) can move
freely without interference from the system and without markers
annoying him/her. In the current implementation, we assume that
the background of the scene is static, the subject is wearing tight
fitting clothes, no significant bulging of the muscles is observable
and that the parts being tracked are detectable.

The main contributions presented in this paper are the
extensions of deformable model-based tracking framework to:
1) track 3D articulated objects from 2D contours using the
algorithm in Section 3 and 2) handle articulated objects with parts
which are possibly occluding each other using information from
multiple cameras. In particular, we present an active approach to
the ordering/selection of a set of cameras that is based on the
visibility of each part and the observability of its predicted motion
from a given camera. Our system advances the state of the art in
human motion tracking because:

1. our method is based on the use of occluding contours and
it obviates the need for markers or other devices,

2. the accuracy of tracking of body parts in live video data is
comparable to the accuracy achieved using markers,

3. the animated graphical model is anthropometrically
correct and resembles the subject,

4. the ordering of the cameras based is accomplished in an
active and time varying fashion,

5. since we are using multiple cameras, we can mitigate the
difficulties arising due to occlusion among body parts and
body movements that are ambiguous from one view can be
disambiguated from another view, and

6. the motion capture is based on the whole apparent contour
rather than just a few points.

We used our system to capture the motion of the upper-body
extremities of several subjects performing complex three-dimen-
sional motions in the presence of significant occlusion. However,
there is no theoretical reason that restricts the application of our
system to upper body only.

This paper is organized as follows:1 Section 2 briefly reviews
the deformable model framework while Section 3 presents the
elements of the motion analysis. The effectiveness of the tracking
algorithms along with a case study is demonstrated in Section 4.

2 DEFORMABLE MODELS AND KINEMATICS

To estimate the motion parameters of a subject's body parts, we
follow the deformable model-based approach [23]. In that
approach, the two-dimensional image data apply forces to a

model. Based on these forces the model translates and rotates to
minimize the discrepancy between its projection and the image
data. The model M extracted during the model building phase
consists of the number of the body parts n, their connectivity and
their respective shape expressed in terms of model-centered
coordinate frames �i (i � 1; . . . ; n) and a noninertial coordinate
frame �. The models used in this work are three-dimensional
surface shape models. For simplicity, let �x denote the position of a
point j on part i with respect to the frame �. Then its position, with
respect to the camera coordinate system C, can be expressed as:
�x � �t� �

CR Cx, where �t is the position of the origin Oc of the
camera frame C with respect to the frame �, �

CR is the matrix that
encapsulates the orientation of C with respect to � and Cx �
�x; y; z�> is the position of the point j on part i with respect to the
frame C. Under perspective projection, the point Cx projects into
an image point Ix � �Ix; Iy�> according to the following equations:
Ix � x

z f;
Iy � y

z f , where f is the focal length of the camera. By
taking the time derivative we get I _x � H C _x where

H � f=z 0 ÿ�x=z2�f
0 f=z ÿ�y=z2�f

� �
:

Finally, I _x � H� �
CR

ÿ1� _x� � H �
CR

ÿ1�L_q� � Lp _q [17].

3 HUMAN MOTION ANALYSIS

To capture the geometric and kinematic parameters of humans in a
nonintrusive, fast, and robust fashion, we have constructed an
experimental testbed (3D-studio) [17]. The imaging hardware of
the 3D-studio consists of three calibrated grayscale cameras placed
in mutually orthogonal configuration [17]. In particular, the input
to the analysis part is a sequence of grayscale images taken from
these cameras. The output is the three-dimensional positions and
orientations of the subject's body parts at each time instant from
which the trajectories, velocities, and accelerations can be
computed. Since our method is model-based, a model of the
subject being tracked will be used in tracking. Having a priori
model of the subject will allow prediction of the occlusions among
body parts.

Modeling Phase: The first phase of our system is the model
building phase, that is, we first extract an accurate shape model of
the body parts of the subject [19]. For the experiments described in
this paper, the subject is asked to perform a set of motions that
permit the acquisition of the anthropometric dimensions of the
subject's upper and lower arms. By employing the Human Body
Part Identification Algorithm [19], we extracted the three-dimen-
sional shape of the upper and lower arm of the subject.

Motion Estimation: We begin by presenting first the principal
steps in motion estimation. In the pseudo-code below, tk denotes
time, startT and endT are the starting and ending times,
respectively, u � �q>; _q>�> where q is the vector of generalized
coordinates that describe the articulated model M of the subject
with n parts. The elements of q are the positions and orientations
of each modeled body part of the subject's body. The vector q

along with the vector _q completely describe the shape and motion
of the articulated model of the subject. The matrix Pstart represents
the uncertainty of the state and is part of the Kalman filter
described later. The motion estimation process proceeds as
follows:

procedure MotionEstimation(startT , endT , M, ustart, Pstart)

tk  startT ; û�tkjtk�  ustart ; P�tkjtk�  Pstart ;

while(tk < endT )

{û�tk�1jtk�, P�tk�1jtk�}  Predict(û�tkjtk�, P�tkjtk�);
SynthesizeAppearance(û�tk�1jtk�);
{BC1; . . . ;BCmg  SelectCameras(û�tk�1jtk�, M);
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MatchAndMeasure(û�tk�1jtk�; fBC1; . . . ;BCmg);
StateUpdate(û�tk�1jtk�; P�tkjtk�, P�tk�1jtk�); tk  tk + 1 ;

The procedure Predict takes into account states up to time tk to
make a prediction for the state of the model at time tk�1. The
procedure SynthesizeAppearance synthesizes the appearance of

the graphical model for each camera while the procedure
MatchAndMeasure establishes the discrepancy between the
predicted and the actual appearance. Then, a new state for the
model is estimated by the procedure StateUpdate so as to
minimize these discrepancies. The process is repeated again for
the following frames in the image sequence. These were the steps
in previous motion estimation methods as well as in [26].
However, since we are using multiple cameras, one of the
questions we are called upon to answer is how many views
should we employ for tracking. Should we process the occluding

contours from all the cameras or from only one? Therefore, we
have added to the algorithm the SelectCameras procedure that (for
each body part) selects the subset of cameras (m � n) that provide
the most informative views for tracking.

Predicting the model's motion: We incorporate the dynamics
of our model into a Kalman filter formulation by treating the

differential equations of motion as the system model, with
uncorrelated modeling error noise w�t�, assumed to be a zero
mean white noise process with known covariance i.e.,
w�t� � N�0;Q�t��. Let also the observation vector z�t� denote
time-varying input data. The system model and the measure-
ment model equations for the Extended Kalman Filter take the
form: _u�t� � A u�t� �w�t� and z�t� � g�u�t�; t� � v�t�, where
u�t� � � _q�t�;q�t��> is the vector of state variables, g�u�t�� is a
nonlinear function which relates the input data to the model's

state [17], and

A � ÿI 0
I 0

� �
:

The vector v�t� represents the uncorrelated measurement error,
as a zero mean white noise process with known covariance i.e.,

v�t� � N�0;V�t��. For initial conditions u�0� � N�û0;P0� and
for uncorrelated system and measurement noises (i.e.,
E�w�t�v���>� � 0), the state estimation equation is given by:

_P�t� �A P�t� �P�t� A> �Q�t�
ÿP�t� G>�û�t�; t� Vÿ1�t� G�û�t�; t� P�t�;

where

G�û�t�; t� � @g�u�t�;t�
@u�t�

�����
u�t��û�t�

:

The entries of matrix G consist of evaluations of the Jacobian

matrix Lp at the various locations of the projected model points.
Synthesizing the appearance of the model: Based on the

predicted position of the shape model, the algorithm synthesizes
the appearance of the model to the different cameras. Therefore,

the projection of the model nodes (for every part) to the image
plane of each camera is computed.

Ordering PhaseÐCamera Selection: Our goal is to track (using
the recovered shape model for the subject) the three-dimensional
position and orientation of the subject's body parts. To alleviate the
problem of degenerate views and severe occlusion from a specific
view, we employ three calibrated cameras placed in a mutually
orthogonal configuration. Specifically, we develop a formal
methodology to track the motion of human body parts from three
sets (or n sets in general) of projected contour sequences, each
taken from a different camera. Should we process the occluding
contours from all the cameras or from only one? Using portions
from all three of them simultaneously to compute forces on a
particular part can result into an incorrect solution due to incorrect
association of contour points to model points. Therefore, at every
step of the computation, we decide which cameras to use by
employing the procedure below.

The procedure ComputePartVisibility computes the visibility
of a subject's body part from a particular camera and the

procedure ComputePredictedMotionObservability computes the
observability of its motion w.r.t the particular camera. For a part i

and a camera Ck; k 2 f1; 2; 3g, we define a visibility index VI i;j and
an observability index OI i;j.

Part Visibility Criterion: We define the visibility index VI i;j, as
the ratio of the area of the visible projection of the part i to the
image plane of camera Ck to its projected area when we do not take
into account the occlusions. According to our definition, a part i is
considered visible from camera k if VI i;k � 0:2. This criterion is
implemented in real time using the hardware of a Silicon Graphics
workstation. The visibility index is a function of the shape and
pose of the object, the pose of the camera, and the pose of other
objects in the scene. To motivate the use of this index, we have
performed a simulation whose purpose was to demonstrate the
change to the visibility of an object (due to occlusions) as a camera
moves around it in a unit sphere (the position of the camera is
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Fig. 1. (a) Side, front, and top views of the subject performing a complex two-arm motion. (b) Recovered three-dimensional pose of the subject's upper and lower arms.

(c) The estimated motion parameters for the motion of the subject's arms have been applied to a customized graphical model of the subject (four different views).



determined by the spherical coordinates � and �). For example,
imagine a sphere enclosing the object and a camera positioned at
any point of this sphere looking at the object. Using the EAI Jack1
software we have generated synthetic images of an arm at a specific
pose (Fig. 2) for different positions of camera around it. Figs. 3a, 3b,
3c, and 3d depict as an intensity value, the value of the visibility
index as the camera sweeps the sphere around the graphical model
of the human. The white areas correspond to positions of the
camera from which the arm is not occluded by other objects
present in the scene. It is hardly a surprise that there is a wide
variation in the visibility index. Our motivation is just to reinforce
that there are zones of high visibility and zones of low visibility.
Therefore, if one has the opportunity to choose a camera from a set
of cameras, it is relevant to chose the cameras that meet the
visibility criteria.

Observability Criterion: The second criterion for view ordering
refers to the observability of motion. Let's assume that we observe
the movement of the upper arm and the forearm of a graphical
model using three cameras. Our algorithm is based on occluding
contour information. The occluding contour prior to movement is
indicated with purple color and the occluding contour after the
movement is indicated with green color. Fig. 4a depicts that the
same motion in 3D induces different changes in the occluding

contours from the three cameras. This change is a function of the

shape and pose of the object, its motion, occlusions, and the pose of

the observer. Our objective is to select the subset of cameras in

which large change occurs. Once a part is considered visible from a

particular camera, we further check if the camera's viewpoint is

degenerate given the predicted motion (based on the Kalman

Filter) of the part. For every node Ci at the current occluding

contour of the model, we determine the nearest point Pi to the

predicted occluding contour and we compute the area of the

polygon with vertices Ci; Ci�1; Pi, and Pi�1 (Fig. 4b). The sum of

these areas is the observability index and summarizes the changes

in the apparent contour of an object for a given motion.
To motivate the use of the observability index, we recorded the

predicted motion observability index as the graphical model

performed the motion detailed in [17]. Figs. 5a, 5b, 5c, and 5d

depict, as an intensity value, the value of the observability index as

a function of the camera position. The white areas correspond to

positions of the camera to which the specific motion for the arm

induces the largest change in image coordinates. In addition, this

map reflects the axes of symmetry of the object. It gives the axes

around which, when the object moves, its apparent contour does

not change.
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Fig. 2. (a), (b), and (c) Starting and (d), (e), and (f) ending position of the right upper arm and forearm of a graphical model.

Fig. 3. (a) Intensity map and (b) iso-contour plot of the variation of the visibility index for the right upper arm of the graphical model. (c) Variation of the visibility index along

� for � � 0. (d) Variation of the visibility index along � for � � 0.

Fig. 4. (a) The same motion in 3D induces different changes in the occluding contours from each of the three cameras. (b) Notation pertaining to the computation of the

observability index.



Matching and Measurement Phase: Having selected the set of
cameras that provide the most information, we employ informa-
tion from the occluding contours to provide constraints to the
estimation of the rotational and translational motion of each of the
parts. In physics-based tracking techniques, image data points
apply forces to the deformable model. Since each point on the
occluding contour is the projection of a 3D model point, the
algorithm has to find a match between the points on the occluding
contour and the points on the model. In other words, the algorithm
has to select for each image data point, the model node it should
apply forces to. To achieve this matching between an occluding
contour point and a model point, we invoke a theorem from
geometry that relates points on the occluding contour of an object
to points on the surface of the object itself (see also [9]). More
specifically, if �xi;j is a point on the surface of a part whose
projection point, Ixi;j on the image plane, lies on the occluding
contour of the part, then the part's normal n at point �xi;j is
parallel to the normal vector n0 of the plane defined by the origin of
the camera coordinate system, the point Ixi;j, and the tangent of the
occluding contour at point Ixi;j, that is n:n0 � 1. Based on the above
theorem, we can establish correspondences between the occluding
contour of a part and its model's projection.

Since we estimate the object's parts and their respective shape
prior to tracking, we can compute the normal ni;j (for simplicity nj)
at the each node j of part i. Also, to characterize the variation of the
normal over each part's model, we compute for each node m of the
part's model the quantity �m � mink2N i

�nm:nk�, where N i is the set
of nodes neighboring node m. Therefore, the variation of each
part's i normal is �i �

Pn
m�1

1
n �m, where n is the number of the

nodes of part i. Specifically, assuming that the initial pose of the
parts is known, for every occluding contour, we employ the
algorithm below:

procedure MatchAndMeasure(û�tk�1jtk�; fBC1; . . . ;BCng);
for j in {fBC1; . . . ;BCng

Fit2DDeformableModel(j);MatchPoints(j,û�tk�1jtk�;
MeasureDifference(û�tk�1jtk�;

The procedure Fit2DDeformableModel fits a two-dimensional
deformable model to the occluding contour in camera j to obtain a
smooth differentiable model of the curve [23]. At every point z of
the occluding contour, we compute the tangent vector Itz and the
vector Ckz, which is normal to the plane defined by the origin of
the camera coordinate system C, point z and Ctz. The procedure
MatchPoints computes the correspondence between nodes on the

model and points on the occluding contour. For every point z on
the occluding contour, it determines the set of the tessellated shape
model nodes Si for the part i whose normal �ini;j (expressed in the
model frame �i) satisfies the relationship: �ini;j:

�ikz � �i. The point
z of the occluding contour will apply forces to the model node j,
which is a member of the set Si and whose Euclidean distance
from the node is the smallest. The procedure MeasureDifference

measures the inconsistencies between the synthesized appearance
of the model and the actual one. In physics-based tracking terms, it
measures the forces that the image points apply to the model. The
force that the point z applies to the node j has two components:
f imz �tk�1� � �zÿ Ixi;j� and f 3D

z �tk�1� � Cni;j ÿ Ckz. The first compo-
nent measures the difference between the position of the matching
points and the second component measures the difference in their
normals. After we compute the force assignments, we estimate the
new pose parameters of the part based on the extended Kalman
filter. The estimation of the motion parameters is achieved by
numerically integrating through time the state estimation equation.

4 RESULTS

In all the experiments, the region of interest has been obtained by
subtracting the current image from the known background and the
outlines have been obtained by applying a variation of the Canny
edge detector to the input image sequence.

To demonstrate the performance of our algorithm, we have
performed a number of experiments (using both synthetic and real
data), which are fully described in [17]. In this paper, due to lack of
space, we present the results from three experiments only. The first
experiment illustrates the robustness to occlusions. During the
modeling phase, the subject did not flex his wrists, therefore the
estimated models for the forearms (Fig. 1b) include the wrists.
Fig. 1a depicts sample input images from the three cameras when
the subject was asked to move his arms in 3D. Fig. 1b depicts the
estimated 3D pose of the subject's parts of the arm. As an example
related to the selection of cameras, for the frame depicted in Fig. 1a
and for the lower right arm the cameras were ordered as follows:
top, side, and front camera. Fig. 1c shows four views for three
frames of an animation which was created by applying the
estimated motion parameters to a customized graphical model of
the subject. The second experiment was designed to assess the
accuracy and robustness of our tracking scheme. The experimental
protocol was the following: a subject was asked to slide the tip of
his right hand along a circular groove 5mm � 0.5mm wide,

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 22, NO. 12, DECEMBER 2000 1457

Fig. 5. (a) Intensity map, and (b) iso-contour plot of the variation of the predicted motion observability index for the right upper arm of the graphical model. (c) Variation of

the observability index along � for � � 0. (d) Variation of the observability index along � for � � 0.

Fig. 6. Tracking of the subject's arm as he slides the tip of his right hand along a circular groove engraved in a glass plate. (d), (e), and (f) Estimated pose of the arm from

the three cameras. (a), (b), and (c) of the 3D studio.



engraved in a glass plate, thus following a circular trajectory of
radius 114.3mm � 0.5mm (Figs. 6a, 6b, and 6c). After tracking
(Figs. 6d, 6e, and 6f) and trajectory reconstruction, an error analysis
was performed, which is presented in [17]. Even by taking into
account human imprecision while following the groove, the mean
error between the ideal and the recovered trajectory of the finger
tip is 1.03cm (with std 4.7mm) for observation distance of 2.5m.
Thus, the error is 0.4 percent. Fig. 7 depicts the recovered path
from several views. In Fig. 7b all the axes have been drawn at the
same scale. However, in Fig. 7a the Z axis is drawn at a smaller
scale to depict the variation of the path. Fig. 7(c) depicts the path in
the transverse plane.

Case Study: As a case study, we utilize this framework for the
generation of personalized rehabilitation aids and present results
on how head motion analysis is applied to the customized design
of a head-controlled feeding device. This work was part of the
UPGRADE project being conducted at the GRASP Lab, in
collaboration with the AI DuPont Institute. The goal of the project
was to merge several state-of-the-art technologies for the rapid
prototyping of rehabilitation aids customized for a specific
physically-challenged user [21].

We have chosen to investigate how a vision-based motion
capture and animation system can be used for the acquisition of
kinematic and geometric data from motion impaired users, in
order to provide measurements to rehabilitation device designers.
Accurate motion tracking would be especially welcome since most
medical research has focused on very specific data such as force
measurements and range of motion information. Because each
person presents a unique neuro-physiological picture, it is essential
to involve the user in a customized design process. While

simulations using ideal trajectories can serve as a reasonable base
for early prototype design, only real data obtained by observing
actual patients constitute sensible inputs to the customizing
process of a one-of-a-kind rehabilitation device.

We considered as a testbed the device showed in Fig. 8b, where
the three-dimensional head and neck motions of a quadriplegic
patient can control a feeding utensil via the extension and
retraction of cables (the cables and the attachment to the patient's
head are not shown for simplicity). In this case, our goal is to
measure how, and to what extent, a given patient can perform the
motion controlling the feeding apparatus. The subject is being
observed by the set of three CCD cameras of the 3D studio. A
deformable model of the subject's head is automatically fitted to
the first image of the sequence and then tracked. Fig. 8a shows the
trajectory followed by a point on the chin of our test subject. Note
that the motion is much more complex than the simple arc one
would expect. The kinematic data thus acquired is used as input to
a virtual prototyping module, where a tentative design for the
feeding device can be simulated and refined. In particular, an
optimization procedure was used to compute the optimal
mechanism dimensions and the motion coupling required to
generate a desired spoon motion based on the recovered user-
specific 3D head trajectory [21]. Eventually, a parameterized CAD
model of the mechanism can be adjusted to the patient's specific
needs and manufactured accordingly (see Fig. 8c). It is crucial to
note that our framework is general and equally allows for other
type of input motions (e.g., arm, leg, ...) to be tracked and used for
other instances of customized manufacturing, such as different
types of rehabilitation aids or more generally other man/machine
interfaces.
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Fig. 7. Three views of the estimated trajectory of the tip of the right hand of the subject.

Fig. 8. Application to rehabilitation aid design. (a) Side view of the subject performing the head motion and the resulting trajectory of a point on the chin as recovered by

the tracking algorithm. (b) Virtual optimization of an experimental feeding mechanism. (c) Pro Engineerß model for the part of the mechanism coupled to the patient's

head and actual early prototype [21].



5 CONCLUSION

In this paper, we presented a mathematical formulation and

implemented a system capable of accurate human motion capture.

We provided an analysis of the criteria that allow the selection of

the subset of cameras that provide the most information for

tracking. In addition, we presented a detailed performance

analysis of the motion tracking technique for the case of tracking

upper body extremities. Our experiments have demonstrated that

we can indeed accurately estimate the motion parameters of a

moving subject and we can create animation sequences through

the vision-based analysis of the video input.
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