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Cloud storage services such as Dropbox and OneDrive provide users with a convenient and reliable way to

store and share data from anywhere, on any device, and at any time. Their cornerstone is the data synchro-

nization (sync) operation, which automatically maps the changes in users’ local file systems to the cloud via a

series of network communications in a timely manner. Without careful design and implementation, however,

the data sync mechanisms could generate overwhelming traffic, causing tremendous financial overhead and

performance penalties to both service providers and end users. This article addresses a simple yet critical

question: Is the current data sync traffic of cloud storage services efficiently used? We first define a novel metric

TUE to quantify the Traffic Usage Efficiency of data synchronization. Then, by conducting comprehensive

benchmark experiments and reverse engineering the data sync processes of eight widely used cloud storage

services, we uncover their manifold practical endeavors for optimizing the TUE, including three intra-file

approaches (compression, incremental sync, and interrupted transfer resumption), two cross-file/-user ap-

proaches (i.e., deduplication and peer-assisted offloading), two batching approaches (file bundling and sync

deferment), and two web-specific approaches (thumbnail views and dynamic content loading). Our measure-

ment results reveal that a considerable portion of the data sync traffic is, in a sense, wasteful and can be

effectively avoided or significantly reduced via carefully designed data sync mechanisms. Most importantly,

our study not only offers practical, actionable guidance for providers to build more efficient, traffic-economic

services, but also helps end users pick appropriate services that best fit their use cases and budgets.
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1 INTRODUCTION

Cloud storage services such as Dropbox, OneDrive, Google Drive, and iCloud Drive provide users
with a convenient and reliable way to store and share data from anywhere, on any device, and at
any time. The users’ data (e.g., documents, photos, and videos) stored in cloud storage are automat-
ically synchronized across all designated devices (e.g., PCs, tablets, and smartphones) connected
to the cloud in a timely manner. With multiplicity of devices – especially mobile devices – that
users possess today, such “anywhere, anytime” features significantly simplify data management
and consistency maintenance, providing an ideal tool for data sharing and collaboration.

In the past few years, cloud storage services have reached phenomenal levels of success, with
the user base growing rapidly. For example, Dropbox has over 500M users who store or update
1.2 billion files every day and make ∼4,000 file edits every second [53]. Also, Google Drive reports
that over 800M users have stored more than 2 trillion files using Google’s service [27]. In China,
despite a late entry into this market in 2012, Baidu Netdisk obtained 400M users in its first 4
years [12].

The key operation of cloud storage services is data synchronization (sync), which automatically
maps the changes in users’ local file systems to the cloud via a series of network communications,
as demonstrated in Figure 1. In a cloud storage service, the user usually needs to assign a designated
local folder (called a “sync folder”) in which every file operation is noticed and synchronized to
the cloud by the client software developed by the service provider. Synchronizing a file involves a
sequence of data sync events, such as transferring the data index, data content, sync notification,
sync status/statistics, and sync acknowledgment. Naturally, each data sync event incurs network
traffic. In this article, this traffic is referred to as data sync traffic.

Without careful design and implementation, however, the data sync mechanisms could generate
overwhelming data sync traffic, causing tremendous financial overhead and performance penalties
to both service providers and end users. From the providers’ perspective, the aggregate sync traffic
from all users is enormous (given the huge number of files uploaded and modified each day) [42].
To get a quantitative understanding, we analyze a large-scale, ISP-level Dropbox trace [16]. The
analysis reveals the following. (1) The sync traffic contributes to more than 90% of the total service
traffic, part of which seems to be avoidable. Note that the total service traffic is equivalent to one-
third of the traffic consumed by YouTube [15]. (2) Data synchronization of a file (sometimes a
batch of files) generates 2.8MB of inbound (client-to-cloud) traffic and 5.18MB of outbound (cloud-
to-client) traffic, on average. If Dropbox stores all the data content in Amazon S31, according to
the pricing policy of S3 [3], the sync traffic would consume nearly $0.05/GB × 5.18MB × 1.2 billion

= $303,500 every day (note that S3 charges only for outbound traffic [3]). These costs grow even
further when we consider that all cloud storage service providers must bear similar costs, not just
Dropbox.

Data sync traffic can also bring considerable (and unexpected) overhead to end users, despite
the fact that basic cloud storage services are generally free. News media have reported about user

1Dropbox used to store all data content in S3, but started to migrate data content to its own deployed MagicPocket object

storage since 2016 [11].
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Fig. 1. Data synchronization principle in a cloud storage service.

complaints of unexpected additional charges from ISPs, typically from mobile users with limited
data usage caps [28, 50, 57]. As a consequence, some users have warned: “Keep a close eye on your
data usage if you have a mobile cloud storage app.’’ In addition, some cloud storage applications
(e.g., large data backup [55]) are also impaired by the bandwidth constraints between user clients
and the cloud. This limitation is regarded as the “dirty secret” of cloud storage services [43]. Hence,
users would also benefit from more efficient sync traffic usage.

This article addresses a simple, yet critical, question: Is data sync traffic of today’s cloud stor-

age services efficiently used? Our goal is to quantify and then optimize the efficiency of data sync
traffic usage, that is, the pivotal network-level efficiency for cloud storage services, which brings
significant benefits for both service provider and end users. For cloud storage service providers,
the incentive is to reduce data sync traffic as much as possible to minimize their operational costs
(without affecting the customers’ experience). For end users of cloud storage services, they desire
more efficient traffic use for better quality of experience and lower cost, especially for energy- and
traffic-constrained devices such as smartphones.

To answer the question rigorously, we define a novel metric named TUE to quantify Traffic

Usage Efficiency of data synchronization. Borrowing a term similar to PUE (Power Usage Effec-

tiveness =
Total facility power
IT equipment power [65], a widely adopted metric for evaluating cloud computing energy

efficiency), we define

TUE =
Total data sync traffic

Data update size
. (1)

When a file is updated (created, modified, or deleted) at the user side, the data update size denotes
the size of altered bits relative to the original local file (or the cloud-stored file if it is not com-
pressed). From the users’ point of view, the data update size is an intuitive and natural signifier
about how much traffic should be consumed. Compared with the absolute value of sync traffic (used
in previous studies [5, 14, 15, 26, 30, 31, 36, 68]), TUE better reveals the essential traffic harnessing
capability of cloud storage services.

In order to gain in-depth understanding of TUE in practice, we conduct comprehensive bench-
mark experiments and reverse engineer the data sync processes of eight widely used cloud-storage
services: Dropbox, Microsoft OneDrive, Google Drive, iCloud Drive, Box, SugarSync, Seafile, and
Baidu Netdisk (Section 3). We examine key impact factors and design choices that are common
across all of these services. Impact factors include file size, file operation, data update size, net-
work environment, hardware configuration, access method, and so on. Here ‘access method refers
to PC client software, web browsers, and mobile apps (via WiFi and 4G). Design choices (of
data sync mechanisms) include data compression level, data sync granularity, data deduplication
granularity, data delivery protocol (C/S or P2P), interrupted transfer handling (redo or resume),
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file bundling and sync deferment (for improved batching), and those web-specific traffic-saving
approaches.

Based on deep diving into impact factors and design choices, we extensively unravel the TUE-
related characteristics and design trade-offs of these popular cloud storage services. We summarize
our measurement results and findings as follows.

We start by studying the intra-file approaches:

• Compression [Section 4.2] is a straightforward approach to optimizing TUE. In practice,
we find that different levels of compression are applied for different access methods. Spe-
cially, the server-side compression level is typically higher than the client side by 5% to 30%
(thus, data download usually consumes less traffic than upload for a user client). During
the data upload, no service ever compresses data with web-based or mobile apps owing
to the concerns of inefficiency of JavaScript and battery consumption of mobile devices in
executing computation-intensive operations.

• Incremental sync [Section 4.3] can greatly reduce the sync traffic of file edits by trans-
ferring only the altered bits or blocks. However, we find that it is supported only by PC
clients of a limited number of services and is never available for web-based or mobile apps.
The obstacles lie in the RESTful architecture, inefficiency of JavaScript execution inside
web-based apps, and energy concerns of mobile apps. On the other hand, our recent re-
search has shown that it can be effectively and efficiently supported with affordable efforts
in web-based and mobile apps [63, 64, 67].

• Interrupted transfer resumption (ITR) [Section 4.4] can avoid repeated data transfer
after a file sync process is interrupted. Our study shows that most services currently sup-
port ITR using a variety of block sequences (sequentially or in parallel) and granularities
(between 128KB and 32MB). The parallel method can remarkably increase the throughput
(by up to 22×), with the cost of more data transfer (2–22 blocks) and traffic waste (up to
100% for a file that is smaller than 96MB) when interruptions happen.

We then study the cross-file/-user approaches:

• Deduplication (Dedup) [Section 5.1] can avoid the transmission of data already stored
both on the server side and client side. Nevertheless, it is not adopted by the web-based apps
of all of the studied services as well as across different users for most services. In particular,
we notice that block-level dedup exhibits trivial superiority (in terms of traffic saving) to
full-file dedup but incurs much higher computation complexity. Hence, using full-file dedup
is generally sufficient to achieve efficient use of sync traffic in realistic scenarios.

• Peer-assisted offloading (P2P) [Section 5.2] can considerably cut down the cloud-side
traffic cost by around 25% for delivering a popular file shared by multiple users. However,
we observe that it is adopted only by Baidu Netdisk, which has a special design for P2P-
based cross-user file sharing in which P2P data are transported via UDP (instead of TCP) to
enhance throughput and parallelism.

We also study the batching approaches:

• Bundling [Section 6.1] small files into a large file can effectively optimize TUE. It has been
pervasively used by PC clients and web-based apps but not mobile apps for most services
simply because they do not offer an operational user interface via which a user can move a
bundle of files into the sync folder all at once.

• Sync deferment [Section 6.2]. Frequent edits to files often lead to large TUE; still worse,
when handling frequent edits, iCloud Drive and SugarSync degrade from incremental sync
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to full-file sync, thus aggravating the traffic overuse. Some services deal with this issue by
actively batching the edits using a fixed sync deferment. However, fixed sync deferments
are inefficient in certain scenarios. Thus, we propose an adaptive sync deferment (ASD)
mechanism to overcome this limitation. In the presence of frequent edits, surprisingly per-
haps, we discover that users with relatively “poor” hardware or Internet access save on sync
traffic because their edits are naturally batched.

Finally, we study the web-specific approaches:

• Thumbnail views (usually in several KBs) [Section 7.1] are used by all services to avoid
loading the real content of certain files when the user just needs a brief understanding (or
sketches) of the files via web browsers. At present, we observe that all services support
thumbnail views for images, over a half support videos, but only OneDrive and Google
Drive support documents, as generating thumbnail views for documents (e.g., Microsoft
Word) turns out to be more complicated.

• Dynamic content loading (DCL) [Section 7.2]. In contrast to thumbnail views that
present a simplified sketch, DCL presents an on-demand part of the actual content of a
file to the user via the web. We find that it is now supported only by Google Drive, where
the pages of a document are dynamically loaded according to user activity. Given that DCL
can make the traffic usage proportional to the pages viewed, it should also be adopted by
the other services that host numerous documents.

In a nutshell, this article illustrates that for today’s cloud storage services, a considerable por-
tion of data sync traffic is, in a sense, wasteful and can be effectively avoided2 or significantly re-
duced through careful design and implementation of data sync mechanisms. Here, we unravel the
tremendous opportunities and realistic avenues for optimizing network-level efficiency. In partic-
ular, our study of TUE provides practical and actionable guidance in two areas: (1) helping service
providers build more efficient, traffic-economic cloud storage services; and (2) helping end users
select appropriate services that best fit their needs and budgets.

2 BACKGROUND

Section 2.1 describes the basic system architecture of cloud storage services and the typical data
sync events. In Section 2.2, we profile their common design framework.

2.1 System Architecture

Mainstream cloud storage services — for example, Dropbox, Baidu Netdisk, and Ubuntu One —
typically adopt a two-cloud system architecture [15, 23, 30, 36] as demonstrated in Figure 2. One
cloud, the object storage cloud (e.g., Amazon S3 and MagicPocket [11]), is employed to host users’
file content as well as the small-sized thumbnail views for certain files (if applicable). The other
cloud, the index/control cloud, is used to maintain users’ account information, online status, file
metadata (e.g., directories), block index (if applicable), and so forth.

Each instance of the client application exchanges three different types of sync traffic to enable
the typical data sync events. First, each client maintains a connection to a front-end server. The
front-end server authenticates each user’s account and stores metadata about the user’s files, in-
cluding the list of the user’s files, their sizes and attributes, and pointers to where the files can be

2Specifically, duplicate data transfer is mostly avoidable through incremental sync, dedup, and P2P; unnecessary data

transfer is mostly avoidable through ITR, sync deferment, and DCL. Avoiding such data transfer usually requires the use

of additional control messages and/or metadata whose size is much smaller than that of the avoided data transfer.
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Fig. 2. Architectural overview of a typical cloud storage service system.

found on the object storage cloud. If the user’s files are each stored in blocks (in the object storage
cloud), there is also a block index coupled with the user/file metadata index.

Second, each client sets up a connection to an object storage server for transferring the file
content or file blocks. If the file is large, the client may need to set up more connections to multiple
object storage servers for parallel transfer (thus significantly increasing the transfer throughput).
Moreover, if data compression is supported by the client, the client will compress files or file blocks
before uploading them to the object storage cloud. In addition, if there are modifications to synced
files and incremental sync is supported by the client, the client will first resort to a local cache or
contact the front-end server for calculating the differences between the synced files and updated
files, and then upload such differences to the object storage cloud as (compressed) binary diffs.

Third, each client maintains a connection to a heartbeat server. Periodically, the client sends
a liveness beacon to the heartbeat server to report its online status and receives sync notifica-
tions from the index/control cloud (e.g., a shared file is modified by another user and should be
re-synced).

In addition to these three types of sync traffic, there is other traffic exchanged between the
two clouds to enable the sync processes, referred to as the inter-cloud traffic. For example, when
incremental sync is executed by the client and the front-end server, the front-end server may have
to read corresponding data from the object storage cloud for calculating the file differences. Further,
for some cloud storage services, the front-end server may need to re-compress users’ files with a
higher compression level (than the client side). In this case, the front-end server also needs to
write novel data into the object storage cloud. However, since the inter-cloud traffic is completely
invisible to users and often goes through dedicated network connections (e.g., LAN connections
inside the same data center [61]), it is not counted as the data sync traffic in our research.

2.2 Common Design Framework

From the perspective of TUE, the common design framework of cloud storage services involves
a number of impact factors and design choices on the client side, server (cloud) side, or network
side. Impact factors include objective factors such as client location, hardware, file size, data up-
date size, network environment, and the like that must be accounted for in the design and use of
cloud storage services. Design choices include subjective design decisions that the system design-
ers make, such as data sync granularity, data compression level, data deduplication granularity,
and so forth. To avoid being trapped by trivial or elusive issues, we select key impact factors and
design choices according to the following two rules:

• Rule 1: The impact factors should be relatively constant or stable so that our research results

can be easily repeated.
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Table 1. Key Impact Factors and Design Choices

Client side Client location Client hardware Access method
File size File operation Data update size Data update rate

Data compression level Sync deferment

Server side Data sync granularity Data dedup granularity (Data compression level)∗

Thumbnail view support Dynamic content loading
Network side Sync traffic Bandwidth Latency

Wired/WiFi/4G connection Data delivery protocol
∗Note: The server-side data compression level may be different from the client-side.

• Rule 2: The design choices should be measurable and service/implementation independent to

make our research methodology widely applicable.

Following Rule 1, we do not study impact factors such as the sync delay (which measures how
long the client synchronizes a file to the cloud) and cloud server location. For example, we observe
that uploading a 1MB JPEG photo to Google Drive may incur an elusive sync delay varying be-
tween several seconds and minutes (under different network environments). Instead, we choose
to study the sync traffic, which is almost invariable in all cases.

Following Rule 2, we do not consider design choices such as metadata structures, file segmenta-
tion, and replication on the cloud side because they require specific or even confidential knowledge
of the back-end cloud implementation.

In the end, we select to study the key impact factors and design choices as listed in Table 1.
Some are self-explanatory or have been explained before. Below, we further explain a few:

• Data update rate denotes how often a file operation happens.
• Sync deferment. When frequent file edits occur, some cloud storage services intentionally

defer the sync process for a certain period of time for batching the file updates.
• Data sync granularity. A file operation is synchronized to the cloud either in a full-file, block-

level, or chunk-level granularity. When the full-file sync is adopted, the whole updated file
is delivered to the cloud; otherwise, only those file blocks/chunks that contain altered bits
(relative to the file stored in the cloud) or simply the altered bits are delivered.

• Data dedup granularity denotes the unit (a full file or a file block) at which data fingerprints
are computed and compared to avoid delivering duplicate data units to the cloud. Note that
data dedup can be performed across different files owned by different users.

• Chunk size andblock size can be ambiguous in a good amount of the literature. In our article,
however, chunk size and block size are distinct in terms of both application scenarios and
typical sizes. Chunk size is mentioned only for intra-file delta sync (Section 4.3), and it is
typically just several KBs. In contrast, block size is mentioned for either intra-file CDC-based
sync (Section 4.3) or inter-file deduplication, and it is typically tens to hundreds of KBs or
several MBs.

• Bandwidth is defined as the peak upload rate between the client and the cloud server. We
measure it by uploading a large file to the cloud and recording the network traffic with the
Wireshark network protocol analyzer. Although bandwidth is not constant on the Internet
(due to the intrinsic dynamics of the Internet), we are able to control it in a fine-grained
manner by using Netfilter/Iptables (which will be discussed in detail in Section 3.1).

• Latency is defined as the round trip time (RTT ) between the client and the cloud. We measure
it by using the standard Ping command. Similarly, although latency is not constant on the
Internet, we are able to control it in a fine-grained manner by using Netfilter/Iptables.
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3 METHODOLOGY

In this section, we first design a variety of benchmark experiments to study the TUE of cloud
storage services (Section 3.1) and then reverse engineer their data sync processes to uncover their
practical endeavors for optimizing the TUE (Section 3.2).

3.1 Benchmark Experiments

Our designed benchmarks span multiple commercial cloud storage services and make use of three
datasets involving diverse client devices at distinct locations and network environments.

Cloud Storage Services. Among today’s dozens of commercial cloud storage services, our re-
search focuses on the following eight services: Dropbox, OneDrive, Google Drive, iCloud Drive,
Box, SugarSync, Seafile, and Baidu Netdisk, as they are either the most popular (in terms of user
base) or the most representative (in terms of data sync mechanism).

Client Locations and Network Connections. Since the vast majority of the above cloud stor-
age services are deployed in the United States, we select two distinct locations to perform each
experiment: SF (San Francisco, United States) and BJ (Beijing, China). In SF, the client device is
connected to the Internet with 20Mbps bandwith; in BJ, the Internet bandwidth is restricted to
within 1.6Mbps. Thus, in a coarse-grained manner, SF represents a location close to the cloud with
fine network connections, while BJ represents a location remote from the cloud with poor network
connections.

Controlled Bandwidth and Latency. To tune the network environment in a fine-grained manner,
we interpose a pair of packet filters (using Netfilter/Iptables) between the client and the cloud.
These filters enable fine-grained adjustment of bandwidth and latency in either direction, that is,
restricting them within or close to given thresholds: for example, bandwidth ≤ 10Mbps and latency
≥ 100msec.

Datasets. Three datasets are used in our research to guide the design of benchmark experiments,
all of which are publicly available. The first dataset (Dropbox-dataset) is a large-scale Dropbox
dataflow trace collected at the ISP level [15] and is available at https://www.simpleweb.org/wiki/
index.php/Traces#Cloud_Storage. The second dataset (PC-dataset) records detailed information
of 222K files in 153 PC users’ local sync folders [33] and is available at http://www.greenorbs.org/
people/lzh/public/traces.zip. The involved services are Google Drive, OneDrive, Dropbox, Box,
UbuntuOne, and SugarSync. The third dataset (Mobile-dataset) consists of HTTP-level request
logs from the front-end servers of a commercial mobile cloud storage service very similar to Google
Drive [35] and is available at http://fi.ict.ac.cn/data/cloud.html.

Controlled File Operations. Guided by the characteristics of the three abovementioned datasets,
we synthetically generate various file operations, including file creations, deletions, edits, and fre-
quent edits. These operations are applied upon both compressed and compressible files.

Client Devices and Software. Ten client devices are employed in the experiments: 5 in SF (S1–S5)
and 5 in BJ (B1–B5). Their detailed hardware information is listed in Table 2. S1/B1 represents a typ-
ical PC at the moment, S2/B2 an outdated PC, S3/B3 an advanced PC with SSD storage, S4/B4 a typ-
ical Android smartphone, and S5/B5 is an iPhone 7. S1–S3 and B1–B3 are installed with Windows
10 and the Chrome-58.0 web browser. For each concerned cloud storage service, we use its latest
client software as of September 2017 – Dropbox 44.4, OneDrive 18.025, Google Drive 3.39, iCloud
Drive for macOS 10.13, Box 4.0, SugarSync 3.9, Seafile 6.1, and Baidu Netdisk 5.7. Additionally,
we archive these client versions at https://www.dropbox.com/s/no21kflue1wrihi/clients.zip?dl=0
to facilitate other researchers easily repeating our experiments and reproducing our results.
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Table 2. Hardware Information of the Experimental Client Devices

Machine CPU Memory Disk Storage

PC: S1 @ SF 4-core Intel i5 @ 1.70GHz 4GB 7200RPM
PC: S2 @ SF Intel Atom @ 1.00GHz 1GB 5400RPM
PC: S3 @ SF 4-core Intel i7 @ 3.10GHz 8GB SSD
Phone: S4 @ SF 4-core ARM @ 2.50GHz 4GB Flash
Phone: S5 @ SF 4-core A10 @ 2.34GHz 2GB Flash
PC: B1 @ BJ 4-core Intel i5 @ 1.70GHz 4GB 7200RPM
PC: B2 @ BJ Intel Atom @ 1.00GHz 1GB 5400RPM
PC: B3 @ BJ 4-core Intel i7 @ 3.10GHz 8GB SSD
Phone: B4 @ BJ 4-core ARM @ 2.50GHz 4GB Flash
Phone: B5 @ BJ 4-core A10 @ 2.34GHz 2GB Flash

3.2 Reverse Engineering the Data Sync Process

Seeking for a comprehensive and in-depth understanding of the TUE optimization mechanisms
used by the studied services, we decompose their data sync processes through sync traffic record-
ing, IP address tracking, HTTP parsing, HTTPS cracking, and source-code reviewing.

First, all of the sync traffic (incoming/outgoing IP packets) generated in the benchmark ex-
periments are recorded using Wireshark. For the Android/iOS smartphones, we route the traffic
through a PC that promiscuously monitors the IP packets using Wireshark. With this network-
level information, we can directly get or calculate the client/server IP addresses, traffic size, and
duration of a concerned data sync process.

Second, we track the IP addresses of involved servers to figure out their geo-locations, domains,
owners, and the like based on the IP lookup service IP-adress.com. With such information, we can
unravel the coarse-grained system architecture of a cloud storage service. For instance, we get
the knowledge that Dropbox is using two different clouds to store the file content and metadata;
moreover, Dropbox has deployed multiple data centers across the world for location-aware data
transfer.

Third, we analyze the HTTP content carried in the sync traffic to dig out more useful infor-
mation. Usually, we can determine the HTTP protocol version, connection type (e.g., Keep-Alive),
host name of the connected server, application data size, and so forth.

Fourth, because all of the studied services have encrypted most application data using HTTPS
(more specifically, TLS), we attempt to crack TLS communication by launching man-in-the-middle
attacks using the Charles web debugging proxy. It turns out that we can crack the HTTPS content
of OneDrive, Box, and Seafile. For the three services, we are able to get detailed information of
each synced file, such as its ID, creation time, modification time, concrete content (i.e., the most
critical and confidential detail), and the IP address of its residential server. For the remaining five
services, we are unable to crack since their clients do not accept the root CA certificates forged
by Charles. Note that for all services, TLS-related traffic overhead is included in our calculation of
sync traffic.

Finally, we thoroughly understand the working process of Seafile by reviewing its public source
code. Thereby, we acquire more detailed information, in particular, its use of content-defined
chunking (CDC) [48], which is more dynamic and complicated than traditional fixed-size chunk-
ing. This greatly facilitates our analysis of Seafile’s measurement results in Sections 4.3, 4.4, 5.1,
and 6.2.
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3.3 Overview of Our Major Findings

Based on the above methodology, we are able to thoroughly unravel the TUE relevant characteris-
tics, design trade-offs, and optimization opportunities of the 8 mainstream cloud storage services.
Detailed research results will be presented in the remainder of the article. As an overview and a
roadmap of our research results, Table 3 summarizes the major findings and their implications.

4 INTRA-FILE APPROACHES

This section presents our measurement results on TUE when a simple operation is performed on
a single file. Based on the results, we discover three intra-file approaches to optimizing TUE.

4.1 File Creation and Deletion

Experiment 1: We first study the simplest case of creating a highly compressed file of Z bytes
inside the sync folder. Thereby, calculating the TUE of file creation becomes straightforward (TUE

=
Total sync traffic

Z bytes ). According to the PC-dataset described in Section 3.1, most compressed files are

small (average= 732KB, median= 3.2KB), and the maximum compressed file size (1.97GB) is below
2.0GB. Hence, we experiment with Z ∈ {1, 1K, 10K, 100K, 1M, 10M, 100M, 1G}.

The second goal of Experiment 1 is to get a quantitative understanding of the overhead traffic,
as TUE heavily depends on the ratio of the overhead traffic over the total sync traffic. Synchro-
nizing a file to the cloud always involves a certain amount of overhead traffic, which arises from
TCP/HTTP(S) connection setup and maintenance, metadata delivery, and the like. Specifically, the
overhead traffic is equal to the total sync traffic excluding the payload traffic for delivering the file
content; thus, in Experiment 1, Overhead traffic ≈ Total sync traffic - Z bytes.

Table 4 lists the results of Experiment 1. We vary the file size from 1B to 1GB, but for brevity
list only four typical sizes: 1B, 1KB, 1MB, and 10MB. The table records the sync traffic generated
by the three typical service access methods: PC client, web (browser) based, and mobile app (via
WiFi and 4G). In general, from Table 4 we have the following finding: TUE for synchronizing a
(compressed) file creation mainly depends on the file size—a small file results in big TUE up to
84,000, while a big file incurs small TUE approaching 1.0.

This finding poses a key question: What is a small size and what is a moderate size? By plotting
the TUE versus File Size relationship (for PC clients) in Figure 3, we get an intuitive conclusion
that a moderate size should be at least 100KB and must exceed 1MB in order to achieve small
TUE—at most 1.5 and must stay below 1.2. Here, we draw the curve only for PC clients since the
corresponding curves for web-based and mobile apps are similar.

Experiment 2: Each file created in Experiment 1 is deleted after it is completely synchronized to
the cloud to acquire the sync traffic information of a file deletion.

The results of Experiment 2 indicate that deletion of a file usually generates negligible (< 100KB)
sync traffic regardless of the cloud storage service, file size, or access method. The reason is
straightforward: when a file f is deleted in the user’s local sync folder, the user client notifies
the cloud to change only some attributes of f rather than remove the content of f . In fact, such
“fake deletion” also facilitates users’ data recovery, such as the version rollback of a file.

4.2 Data Compression

Experiment 3: To study whether data updates are compressed before they are synchronized to
the cloud, we create an X-byte text file inside the sync folder. As a small file is hard to compress, we
experiment with X = 1M, 10M, 100M, and 1G. Each text file is filled with random English words.
If data compression is actually used, the resulting sync traffic should be obviously less than the
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Table 3. Our Major Findings, Their Implications, and Locations of Relevant Sections

Intra-File Approaches Implications

Section 4.1 (File creation): Creating a small file
(<100KB) results in big TUE up to 84,000, while
a big file (>1MB) incurs small TUE approaching
1.0.

(File deletion): Deleting a file incurs
negligible sync traffic; thus, a user does not
need to worry about the traffic for a file
deletion.

Section 4.2 (Compression): Server-side
compression level is typically higher than
client-side by 5%–30%. During the data upload,
no service ever compresses data with
web-based or mobile apps.

Uploading a file usually consumes more
traffic than downloading it. When
uploading a file, the user had better use a
PC client rather than a web browser or a
mobile app.

Section 4.3 (File Edit): Incremental sync is
supported only by PC clients of several services
and never available for web-based or mobile
apps owing to inefficiency of JavaScript
execution inside web-based apps or energy
concerns of mobile apps.

Most of today’s cloud storage services are
built on top of RESTful infrastructure that
support data access only at full-file level.
TUE can be significantly improved by
implementing incremental sync with an
extra mid-layer.

Section 4.4 (Interrupted transfer resumption):
Most services currently support ITR using a
variety of block sequences (sequentially or in
parallel) and granularities (between 128KB and
32MB).

The parallel method can remarkably
increase the throughput (by up to 22×), with
the cost of more data transfer (2–22 blocks)
and traffic waste when interruptions occur.

Cross-File/User Approaches Implications

Section 5.1 (Deduplication): Dedup is not
adopted by web-based apps of all of the studied
services as well as across different users for
most services.

Using full-file dedup is generally sufficient
to achieve efficient use of sync traffic in
realistic scenarios.

Section 5.2 (Peer-assisted offloading): P2P can
considerably cut down the cloud-side traffic
cost by ∼25% but is only adopted by Baidu
Netdisk with a special design to enhance
throughput and parallelism.

As cloud storage-based content sharing is
becoming increasingly popular, we suggest
that the other services also adopt P2P to
achieve cost–benefit trade-offs.

Batching Approaches Implications

Section 6.1 (Bundling): Bundling small files into
a large file can effectively optimize the TUE but
has not been used by the mobile apps of most
services.

An operational UI should be offered in
mobile apps via which a user can move a
bundle of files into the sync folder all at
once.

Section 6.2 (Sync deferment): Frequent edits to
a file often lead to large TUE. Some services
deal with this issue by actively batching the
edits using a fixed sync deferment.

For providers, we demonstrate that an
adaptive sync deferment (ASD) mechanism
that dynamically adjusts the sync deferment
is superior to a fixed sync deferment.

Section 6.3 (Network and hardware): Users
with poor hardware or Internet access save on
sync traffic, as their frequent edits are naturally
batched.

In the presence of frequent edits, today’s
cloud storage services actually bring good
news (in terms of TUE) to such users.

(Continued)
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Table 3. Continued

Web-Specific Approaches Implications
Section 7.1 (Thumbnail views): All services
support thumbnail views for images, over half
support videos, but only two support
documents.

Generating thumbnail views for documents
(e.g., Microsoft Word) seem more
complicated; thus, it can be performed
offline on servers.

Section 7.2 (Dynamic content loading): DCL is
now supported only by Google Drive, where
the pages of a document are dynamically
loaded.

Given that DCL can make traffic use
proportional to the pages viewed, it should
also be adopted by the other services.

Table 4. Sync Traffic of a Compressed File Creation

Service PC client sync traffic (Bytes) Web-based sync traffic (Bytes)

1 1K 1M 10M 1 1K 1M 10M
Dropbox 9K 7K 1.11M 11.0M 18K 11K 1.06M 10.6M
OneDrive 6K 7K 1.06M 10.6M 17K 17K 1.10M 10.8M
Google Drive 4K 4K 1.15M 12.1M 30K 12K 1.49M 10.9M
iCloud Drive 15K 23K 1.08M 10.7M 41K 38K 1.08M 10.3M
Box 2K 5K 1.13M 11.2M 49K 37K 1.12M 11.8M
SugarSync 23K 21K 1.12M 12.2M 38K 13K 1.09M 11.0M
Seafile 4K 5K 1.05M 10.9M 3K 3K 1.05M 10.4M
Baidu Netdisk 24K 26K 1.11M 11.5M 34K 36K 1.15M 11.8M

Service
Mobile app sync traffic (Bytes), WiFi / 4G

1 1K 1M 10M
Dropbox 10K / 23K 10K /24 K 1.12M / 1.09M 11.0M / 10.9M
OneDrive 8K / 30K 9K / 22K 1.06M / 1.10M 10.6M / 11.0M
Google Drive 6K / 36K 6K / 24K 1.37M / 1.11M 12.9M / 10.6M
iCloud Drive 54K / 84K 47K / 87K 1.07M / 1.10M 10.1M / 10.1M
Box 3K / 11K 4K / 13K 1.12M / 1.10M 11.3M / 11.0M
SugarSync 12K / 34K 12K / 35K 1.24M / 1.10M 11.5M / 10.7M
Seafile 5K / 8K 6K / 9K 1.04M / 1.07M 10.8M / 10.8M
Baidu Netdisk 43K / 46K 54K / 51K 1.13M / 1.15M 10.9M / 10.6M

original file size. Furthermore, after each text file is completely synchronized, we download it from
the cloud with a PC client, a web browser, and a mobile app, respectively, to examine whether the
cloud delivers data updates in a compressed form.

As a typical case, the results corresponding to a 10MB text file are listed in Table 5. In the file
upload (UP) phase, only Dropbox, Google Drive, iCloud Drive, and Seafile compress data with PC
clients. No service ever compresses data with web browsers or mobile apps. The motivation of such
a difference is intuitive: web browsers severely suffer from the inefficiency of JavaScript in exe-
cuting computation-intensive operations (e.g., data compressions) [63], and mobile devices might
suffer from the battery consumption of data compression. This shortcoming might be partially
overcome with existing techniques such as Migratory Compression [38], which can help common
compressors (e.g.,. gzip) better and faster compress a file or a batch of files via coarse-grained data
reordering.
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Fig. 3. Relationship between the TUE in log scale and the size of the created file.

Table 5. Sync Traffic of a 10MB Text File Creation

Service

Sync traffic (MB)
PC client Web-based Mobile app, WiFi / 4G

UP DN UP DN UP DN

Dropbox 5.0 4.8 10.4 8.1 10.8 / 11.4 8.4 / 7.9

OneDrive 10.3 10.8 10.3 8.0 11.3 / 11.0 11.3 / 12.9
Google Drive 7.4 10.7 10.7 10.8 10.8 / 11.2 11.0 / 10.9
iCloud Drive 4.6 4.4 10.9 11.2 10.1 / 10.3 10.4 / 10.5
Box 10.4 10.5 10.3 8.0 10.8 / 11.2 8.1 / 7.7

SugarSync 10.7 10.5 10.2 8.0 10.8 / 11.0 10.6 / 10.2
Seafile 5.5 10.5 10.4 10.5 11.3 / 10.9 10.5 / 10.2
Baidu Netdisk 10.5 11.3 10.8 10.5 10.6 / 10.4 11.0 / 10.8

UP: The user uploads the file to the cloud. DN: The user downloads the file from the cloud.

The bold type denotes the cases when the sync traffic is smaller than the file size, which

thus implies the existence of data compression.

Further, we observe that the 10MB text file can be compressed to nearly 4.4MB using the highest-
level WinZip compression on our desktop. Thus, we conclude that the iCloud Drive has made its
best efforts in data compression, while the compression level of Google Drive is quite low.

Next, in the download (DN) phase, Dropbox compresses data with all access methods; Box com-
presses data with web browsers and mobile apps; while OneDrive, iCloud Drive, and SugarSync
compress data with only a single access method. Most importantly, in the above cases, the com-
pression level is generally higher than that in the upload (UP) phase by around 5% to 30%, because
the former is adopted by relatively powerful cloud servers while the latter is adopted by client
devices. Consequently, for a compressible file, downloading it from the cloud usually consumes
less traffic than uploading it to the cloud.

4.3 File Edit and Incremental Sync

Experiment 4: File edits are frequently made by cloud storage users [33, 36]. This section studies a
simple case of file edits: editing a random byte in a compressed file ofZ bytes inside the sync folder
(we are directly modifying a compressed file here rather than compressing a file after editing). In

this case, TUE =
Total sync traffic

1Byte . Similar to what we discussed in Section 4.1, we experiment with

Z ∈{1, 1K, 10K, . . . , 1G} and plot the sync traffic of four typical sizes: 1K, 10K, 100K, and 1M in
Figure 4.

Figure 4 shows that today’s cloud storage services generally use three kinds of data sync gran-
ularities: (1) full-file, (2) block-level, and (3) chunk-level. Accordingly, their data sync mechanisms
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Fig. 4. Sync traffic of a random byte edit, corresponding to the three typical access methods.

are classified into full-file sync, CDC-based sync, and delta sync. The latter two (CDC-based sync
and delta sync) are collectively referred to as incremental sync.

Google Drive is an example of the use of full-file sync. When a random byte is edited in a Z -
byte compressed file, the resulting sync traffic is almost the same as that of creating a new Z -byte
compressed file. In other words, Google Drive deals with each file edit by simply uploading the
full content of the modified file to the cloud and then deleting the old file. Hence, Google Drive is
more suitable for hosting media files (such as photos, music, and videos), which are rarely edited
by users.

Seafile (PC client) is an example of the use of CDC-based sync. When the file size is small (≤
100KB) it looks like full-file sync; when the file size reaches 1MB, the sync traffic is nearly 0.55MB,
on average, varying between 0.14MB and 0.9MB. To demystify the issue, we review the public
source code of Seafile [41] and find that this is attributed to Seafile’s use of CDC [48], which is
more dynamic and complicated than traditional fixed-size chunking — the sync traffic depends on
the specific chunking scheme of a file and the chunking scheme depends on the specific content
of the file [6, 14, 47].

Dropbox (PC client) is an example of the use of delta sync. When a random byte edit occurs, the
resulting sync traffic stays around 50KB, regardless of the size of the modified file. According to
the working principle of the de facto delta sync protocol rsync [56], when a user edits a file from
f to f ′, the client sends a request to the server to kick out the process of delta sync. On receiving
the request, the server first executes fixed-size chunk segmentation and fingerprinting operations
on f and then returns a checksum list of f to the client. After that, based on the checksum list
of f , the client first performs chunk search and comparison operations on f ′ and then generates
both the matching tokens and literal bytes. The matching tokens indicate the overlap between f
and f ′, while the literal bytes represent the novel parts in f ′ relative to f . Consequently, once a
random byte is changed in a file f , in most cases, the whole data chunk that contains this byte
must be delivered for synchronizing f . Therefore, the sync granularity (i.e., the chunk size C)
can be approximately estimated as C ≈ Total sync traffic − Overhead traffic. From the results of
Experiment 1, we understand that the overhead traffic of synchronizing a 1B file with the Dropbox
PC client is nearly 40KB. Therefore, the data sync granularity of Dropbox PC client is estimated as:
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C ≈ 50KB −40KB = 10KB. This is further validated by the recommended default chunk size (i.e.,

from 700B to 16KB) in the original rsync implementation [7]. Moreover, we find that iCloud Drive
and SugarSync also use delta sync for their PC clients, and SugarSync seems to use a larger chunk
size at around 100KB.

Although enabling incremental sync can significantly help reduce the sync traffic of file edits,
implementing it is not an easy job in practice. Most of today’s cloud storage services (e.g., Dropbox)
are built on top of RESTful infrastructure [18] (e.g., Amazon S3 and MagicPocket [11]). To simplify
both providers’ implementation complexity and developers’ programming complexity, RESTful
infrastructure [17] typically supports data access operations only at the full-file level, such as PUT
(upload a new file), GET (download a whole file), and DELETE (delete a whole file). Thus, enabling
incremental sync usually requires an extra mid-layer for transforming MODIFY into GET + PUT +
DELETE in an efficient manner (such as what Dropbox has done [15, 36]). Since file edits frequently
occur, implementing such a mid-layer is worthwhile for improved network-level efficiency.

In contrast, as in Figure 4(b) and Figure 4(c), web-based apps and mobile apps for all services
are still using full-file sync, owing to the inefficiency of JavaScript execution inside web-based
apps [63] and the energy concerns with mobile apps. However, as demonstrated in recent re-
search [13, 63, 64, 67], these obstacles can be practically addressed affordably. In other words,
there is still plenty of space for optimizing network-level efficiency using incremental sync.

4.4 Interrupted Transfer Resumption (ITR)

Experiment 5: The dynamic nature of the Internet implies that network disconnections can hap-
pen to cloud storage clients occasionally. ITR is known to be an effective approach to mitigating
the negative effect caused by network disconnections, especially during the transfer of a large file.
To clarify whether ITR is employed in cloud storage services, we first assign the client to sync a
100MB file to the cloud and then turn off the network connection when the first half (50MB) of the
file has been synced. Ten minutes later, we resume the network connection to see what happens
to the file sync process.

Our experiment results show that most services currently support ITR using a block-based ap-
proach; in particular, OneDrive and Baidu Netdisk support ITR for all access methods. Specifically,
when the client wants to sync a large file to the cloud, it first divides the file into a few blocks [14,
15, 23, 35] and then syncs these blocks to the cloud respectively in a sequential or parallel manner.
In this way, network disconnections impair the transfer of only the block(s) being synced, thus
effectively restricting the negative influence brought by network disconnections.

As listed in Table 6, ITR is implemented with different block sequences (sequentially or in paral-
lel) and granularities (ranging from 128KB to 32MB). OneDrive’s PC clients employ the Windows
BITS Upload protocol [46] to sequentially sync a large file in 16MB blocks. In comparison, Seafile’s
PC clients simultaneously sync multiple blocks (in different sizes) of a large file to the cloud. The
parallel method can remarkably increase the throughput (by up to 22×), with the cost of more
data transfer (2–22 blocks) and traffic waste (up to 100% for a file that is smaller than 96MB) when
interruptions occur.

We also find in Table 6 a notable phenomenon that parallel transferring of data blocks is sup-
ported only by PC clients and not by web browsers or mobile apps. The technical rationale be-
hind this phenomenon is to avoid possible stagnation or even hanging of web browsers caused
by the high computation burden of parallel transferring. For mobile cloud storage apps, there are
no essential technical obstacles that prevent parallel transferring (given that many mobile apps
of other applications can actually support parallel transferring) but for computation and energy
concerns.
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Table 6. Block Sequences and Granularities for Different ITR Implementations in Our Studied Services

Service
Block sequence Block granularity

PC client Web-based Mobile app PC client Web-based Mobile app

Dropbox Parallel (≤ 4) – Sequential 4MB – 4MB

OneDrive Sequential Sequential Sequential 16MB 128KB - 16MB 8MB

Google Drive – – Sequential – – < 256 KB

iCloud Drive Parallel (≤ 3) – – 1MB - 32MB – –

Box – – – – – –

SugarSync Sequential – – 6MB – –

Seafile Parallel (≤ 3) – – 128KB - 4MB – –

Baidu Netdisk Parallel (≤ 22) Sequential Sequential 4MB 4MB 4MB

5 CROSS-FILE/USER APPROACHES

There is considerable data duplication across different files and users, which can be exploited to
optimize the TUE. Also, data reuse among end users can minimize the cloud-side traffic cost for
delivering a popular file. This section investigates what approaches have been taken by today’s
cloud storage services to achieve cross-file/user data sync optimizations.

5.1 Data Deduplication

Experiment 6: Deduplication can avoid the transmission of data already stored both on the server
side and client side. Inferring the deduplication granularity of a cloud storage service requires some
effort, especially when the deduplication block size B (bytes) is not a power of two (i.e., B � 2n ,
where n is a positive integer). To measure the deduplication granularity, we design and implement
Algorithm 1 (named the Iterative Self Duplication Algorithm). It infers the deduplication granu-
larity by iteratively duplicating and uploading one or multiple synthetic file(s) and analyzing the
incurred data sync traffic3. It is easy to prove that the iteration procedure can finish in O (log(B))
rounds. Nevertheless, given that each round may last for a long period of time, we execute Algo-
rithm 1 for all eight concerned cloud storage services under normal network environments and
plot their real-world time consumptions in Figure 5. Even in the worst case (iCloud Drive), Algo-
rithm 1 takes only 210s, thus demonstrating its practicality.

First, we study inter-file data deduplication with respect to an identical user account. By apply-
ing Experiment 6 to the concerned cloud storage services, we determine their data deduplication
granularity in Table 7 (2nd column). In this table, “Full file” means that data deduplication occurs
only at the full-file level, “4MB” (for Dropbox) indicates that the deduplication block size B = 4MB,
and “–” shows that there is no deduplication performed. Note that block-level deduplication nat-
urally implies full-file deduplication but not vice versa.

Second, we study cross-user data deduplication. For each cloud storage service, we first upload
a file f to the cloud and then use another user account to upload f to the cloud again. In this case,
the sync traffic should be trivial if full-file deduplication is performed across users. If the cross-user
full-file deduplication is confirmed, Experiment 6 is run again todetermine the accurate cross-user
deduplication granularity; otherwise, we can conclude that there is no cross-user data deduplica-

3To deal with possible collision of content in different files generated (though the practical collision might be extremely

low), we leverage rsync (the de facto delta sync protocol) to check for common content among the different files generated

in a fine-grained manner (i.e., at a KB level). In all checks, we did not find any collision of content.
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Fig. 5. Real-world execution time of Algo-
rithm 1 for our studied cloud storage services.

Fig. 6. Deduplication ratio and time as
the block size varies between 128KB, . . . ,
16MB, and full file.

Table 7. Data Deduplication Granularity

Service Same user Cross users

PC client & Mobile app PC client & Mobile app

Dropbox 4MB –
OneDrive – –
Google Drive – –
iCloud Drive <128KB –
Box – –
SugarSync Full file Full file
Seafile 8MB –
Baidu Netdisk Full file Full file

We do not list the web-based case where no deduplication is applied.

tion. The results are also shown in Table 7 (the 3rd column), indicating that only SugarSync and
Baidu Netdisk employ cross-user data deduplication.

From the above measurements, we observe that a cloud storage service usually adopts the same
data dedup granularity for PC clients and mobile apps, while the web-based data synchronization
typically does not apply data deduplication. In addition, most services do not support cross-user
deduplication at present, perhaps for privacy and security concerns. Consequently, in terms of data
deduplication, today’s cloud storage services are losing considerable opportunities for optimizing
the TUE.

Further, we compare the two types of deduplication granularities to answer this question: Is the

block-level deduplication much better (i.e., has a much larger deduplication ratio) than the full-file

deduplication? Since the computation complexity of block-level deduplication is generally higher
than that of full-file deduplication, the answer could help decide whether the block-level dedupli-
cation is worthwhile. Note that when referring to the “file blocks,” we are dividing files to blocks
in a simple and natural way, that is to say, by starting from the head of a file with a fixed block
size. Thus, clearly, we are not dividing files into blocks in the best possible manner [1, 45], which
is much more complicated and computation intensive.

As our collected cloud storage trace (PC-dataset, see Section 3.1) in [33] contains both the
full-file hash codes and block-level (128KB – 16MB blocks) hash codes of each tracked file, we
perform trace-driven simulations to determine both the (cross-user) dedup ratio and dedup time

when each dedup granularity is adopted. Here, the dedup ratio =
Size of data before deduplication
Size of data after deduplication , and

the computation complexity mainly comes from client-side MD5 fingerprinting on the PC: B3 @
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ALGORITHM 1: Iterative Self Duplication Algorithm

1: Initialization:
2: Set the lower bound: L = 0 B, and the upper bound: U = +∞ bytes;
3: Guess an initial deduplication, for example, block size: B1 = 4 MB;(According to the mea-

surements of all the existing cloud storage systems we can find, the dedup block size is always
2n bytes,where n is an integer and n ∈ [15, 25].Thus, the initial block size B1 can be reasonably
set as 32 KB (215B), 64 KB, . . . , or 32 MB (225 B),among which 4 MB is the most common.)

4: Step 1:
5: Generate a new compressed file f1 of B1 bytes;
6: Upload f1 to the cloud. When f1 is completely synced, record the total sync traffic: Tr1;

7: Step 2:
8: Generate another file f2 by appending f1 to itself: f2 = f1 + f1 (i.e., the “self duplication”);
9: Upload f2 to the cloud. When f2 is completely synced, record the total sync traffic: Tr2;

10: Step 3:
11: if Tr2 
 Tr1 and Tr2 is small (≈ tens of KBs) then

12: B1 is actually the deduplication block size (B); exit;
13: else there are two cases
14: case 1: Tr2 < 2B1 and Tr2 is not small (implying that B1 > B) then

15: Set B1 as the upper bound: U ← B1, and decrease the guessing value of B1: B1 ← L+U

2 ;
16: case 2: Tr2 > 2B1 (implying that B1 < B) then

17: Set B1 as the lower bound: L ← B1, and increase the guessing value of B1: B1 ← L+U

2 ;
18: goto Step 1;

BJ (see Table 2 for its configuration). The simulation results shown in Figure 6 demonstrate that
the block-level dedup usually exhibits trivial superiority to the full-file dedup in terms of dedup
ratio, while incurring significantly higher computation overhead as for a relatively small block size
(≤ 8MB). Therefore, we have the following implication: For cloud storage providers, in terms of
dedup granularity, supporting full-file dedup is basically sufficient to achieve efficient usage of
sync traffic in realistic scenarios.

5.2 Peer-Assisted Offloading (P2P)

Experiment 7: As a widely used decentralized content delivery technique exploiting end users’
network bandwidths, P2P can minimize cloud-side traffic cost for delivering a popular file shared
by multiple users [2, 9, 39]. To uncover the use of P2P in cloud storage services, we let the client
download several popular large files (specifically, highly compressed videos) from the cloud and
record the actual cloud-side traffic cost. If the cloud-side traffic volume is smaller than the file size,
we can confirm the use of P2P.

Our experiment results show that P2P is adopted only by Baidu Netdisk, which has a special de-
sign for P2P file sharing. In particular, the P2P data are transported via UDP (rather than TCP)
connections to enhance the throughput and parallelism. Quantitatively, higher popularity and
larger file size usually imply more traffic savings owing to more data exchange inside the peer
swarm. In the extreme case for delivering a highly popular large video file, P2P can significantly
cut cloud-side traffic cost by more than 85%. Typically, according to a large-scale measurement
study on Dropbox traffic, P2P can considerably cut cloud-side traffic cost by around 25% [20].

On the other hand, it is quite understandable that all of the other services have not adopted P2P
yet, probably for privacy and security concerns — they were originally designed for file hosting
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Table 8. Average Sync Traffic for 100 Compressed Files’ Creations,
Where Each File is 1KB

Service PC client Web-based Mobile app

Traffic (TUE) Traffic (TUE) Traffic (TUE)
Dropbox 182KB (1.8) 443KB (4.4) 462KB (4.6)
OneDrive 419KB (4.2) 411KB (4.1) –
Google Drive 132KB (1.3) 779KB (7.8) –
iCloud Drive 861KB (8.6) 2.2MB (22) –
Box 280KB (2.8) 1.6MB (16) 241KB (2.4)
SugarSync 2.1MB (21) 549KB (5.5) 1.0MB (10)
Seafile 184KB (1.8) 318KB (3.2) –
Baidu Netdisk 751KB (7.5) 3.2MB (32) 1.7MB (17)

rather than sharing. As content sharing is having an increasing impact on cloud storage bandwidth
consumption [20], we suggest that the other services also adopt peer-assisted offloading in the
future to achieve cost–benefit trade-offs for both providers and users [21].

6 BATCHING APPROACHES

It is known that syncing a small file incurs poor TUE see Section 4.1) while syncing a number
of small files all at once can effectively improve the TUE. In addition to backing up and retriev-
ing files [35], cloud storage services are also widely used for collaboration, such as collaborative
document editing, team project building, and database hosting [36]. These collaboration scenar-
ios all involve a special kind of file operation: frequent edits, which can be batched through sync
deferment.

6.1 File Bundling

Experiment 8: It is reported that the majority of files hosted by cloud storage services are small
[15, 23, 33]. Therefore, a number of small files can be bundled into a moderate-sized file to save
traffic: in particular, overhead traffic. To determine whether file bundling is adopted by today’s
cloud storage services, we first generate 100 (distinct) highly compressed files and then move all

of them into the sync folder at once. Each file is 1KB in size; thus, TUE =
Total sync traffic

100KB . If file
bundling is adopted, the total sync traffic should lie between 100KB and 200KB (the total size of
the 100 files plus the overhead traffic) and the TUE should be between 1.0 and 2.0.

The results in Table 8 reveal that Dropbox, Google Drive, and Seafile have definitely adopted
file bundling for their PC clients as the TUE is as small as less than 2.0. Further, it is possible that
OneDrive and Box have also adopted file bundling for their PC clients because the corresponding
sync traffic (419KB and 280KB) is within an order of magnitude of the data update size (100KB).
On the contrary, SugarSync has not adopted file bundling yet, for the TUE is as large as 21.

The effect of file bundling for the web-based method is generally weaker than that for PC clients
because JavaScript is unable to directly invoke file-level system calls/APIs such as open, close, read,
and write [44]. Instead, JavaScript can access users’ local files only in an indirect and constrained
manner, thus bringing about more overhead traffic. Still worse, file bundling is not used by the
mobile apps of OneDrive, Google Drive, iCloud Drive, and Seafile simply because they do not offer
an operational user interface (UI) via which a user can move a bundle of files into the sync folder
all at once. In fact, implementing such a UI is not difficult for mobile app developers in practice,
since there are off-the-shelf APIs in both Android and iOS Software Development Kit (SDKs).
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6.2 Sync Deferment

Frequent edits imply that a file is edited in a frequent and incremental manner. Thus, they exhibit
diverse data update patterns in terms of data update size and rate. The Dropbox-dataset (see
Section 3.1) reveals that for 8.5% of Dropbox users, more than 10% of their sync traffic is caused
by frequent edits [36]. Further, frequent edits may well incur abundant overhead traffic that far
exceeds the amount of useful data update traffic sent by the user client over time, which is referred
to as the traffic overuse problem [36]. To overcome this problem, some cloud storage services in-
tentionally defer the sync process for a certain period of time to batch the file updates.

Experiment 9: To check the use of sync deferment, we conduct the “X KB/X sec” appending
experiments—we append X random kilobytes to an empty file inside the sync folder every X sec-
onds, until the total appended bytes reach a certain size C (typically C = 1 MB). We use random
bytes since they are difficult to compress, thus preventing file compression from influencing our
measurements of TUE. All of the experiments are performed using S1 @ SF (see Table 2) with
20Mbps of bandwidth, and the RTT latency (between S1 and each cloud) is between 31msec and
77msec. In terms of service access method, we examine the PC client only because almost all fre-
quent edits are generated from PC clients in practice4. Experiments with other benchmarks with
different network environments and hardware configurations will be presented in Section 6.3.

Our goal is threefol by doing the experiments: (1) we observe and understand the sync traffic
and TUE in response to frequent edits; (2) we aim to discover whether the cloud storage service
has used the sync deferment in order to avoid or mitigate the traffic overuse problem; and 3) if the
sync deferment is adopted, we want to measure how long the sync deferment is.

First, to investigate the impact of frequent file edits on the TUE, we examine the cases for
X ∈ {1, 2, . . . , 10}. As depicted in Figure 7, the seven services (excluding Baidu Netdisk) exhibit
diverse and interesting phenomena. First, frequent edits to a file often lead to large TUE (the afore-
mentioned traffic overuse problem); the maximum TUE can reach 6.4, 570, 90, 93, 234, 90, and 190,
respectively. Second, we observe (except in the sync deferment cases: Figure 7(d), 7(f), and 7(g))
that TUE generally decreases as the edit frequency (= 1024

X
) decreases. The reason is straightfor-

ward: though the total data update size is alwaysC = 1MB, a lower data update frequency implies
fewer data sync events and, thus, the overhead traffic is reduced.

A detailed, yet critical, question is this: Why are the maximum TUEvalues of OneDrive (570),

Google Drive (90), iCloud Drive (93), Box (234), SugarSync (90), and Seafile (190) much larger than

that of Dropbox (6.4)? The answer can be found from their data sync mechanisms and granularities
(see Section 4.3). As OneDrive, Google Drive, and Box employ full-file sync, their maximum TUE
values are naturally large. In contrast, as Dropbox employs chunk-level delta sync and the chunk
size is quite small, its maximum TUE value is naturally small. Furthermore, the maximum TUE of
Seafile greatly exceeds that of Dropbox because the chunk size of Seafile is variable and usually
much larger than that of Dropbox, as illustrated in Figure 4(a).

The situation of iCloud Drive and SugarSync is a bit complicated: when we perform a single file
edit, they use fine-grained delta sync to save traffic, as demonstrated in Figure 4(a); in contrast,
when we perform frequent file edits, they both degrade to coarse-grained full-file sync, which
results in enormous traffic cost. To demystify this seemingly weird phenomenon, we measure the
CPU use of the PC client of each cloud storage service on handling a single 10KB appending and
the 10KB/10sec appending experiments. Our measurement results, as listed in Table 9, indicate
that the PC client of iCloud Drive and SugarSync requires higher CPU use on handling a single
file edit than frequent file edits. Hence, we infer that iCloud Drive and SugarSync are trading

4Also, the UIs of web browsers and mobile apps are usually not fit or not convenient for performing frequent edits to a file.
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Fig. 7. TUE of seven cloud storage services in response to controlled frequent file edits. The average RTT
latency between the PC client (at San Francisco) and the cloud server is 62, 31, 77, 43, 42, 71, and 42msec,
respectively. Baidu Netdisk is not included since its PC client does not support frequent edits to a file.

Table 9. Average CPU Utilization (On One Core) of the PC Client of Each Cloud Storage Service on
Handling a Single 10KB Appending and the 10KB/10sec Appending Experiments

Service
CPU Utilization for a single

10KB appending

CPU Utilization for 10KB/10 sec

appending

Dropbox 26.6% 26.6%
OneDrive 6.6% 6.6%
Google Drive 8.2% 8.2%
iCloud Drive 16% 9%

Box 22.6% 22.6%
SugarSync 24.6% 12%

Seafile 4.6% 4.6%

The bold type denotes the cases when the CPU utilization for a single 10KB appending differs from the CPU utilization for

10KB/10 sec appending, which thus implies a serviceâ..s trading increased network traffic cost for reduced computation

cost in the presence of frequent file edits.
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increased network traffic cost for reduced computation cost in the presence of frequent file edits.
In contrast, for Dropbox, OneDrive, Google Drive, Box, and Seafile, their PC client exhibits the
same CPU use on handling a single file edit or frequent file edits because they use the same data
sync mechanism to deal with both edit cases. In addition, Table 9 confirms that delta sync actually
incurs considerably higher CPU use than full-file sync.

On the other hand, there are cases (in Figure 7(d) forX = 1, Figure 7(f) forX ≤ 6, and Figure 7(g)
for X = 1) where the TUE is very small (close to 1.0). According to our observations, 7(d) iCloud
Drive, 7(f) SugarSync, and 7(g) Seafile deal with traffic overuse by batching file updates using a
fixed sync deferment: T seconds (which cannot be reconfigured by users). In Figure 7(d), 7(f),
and 7(g), there is a “spike” of TUE in each figure, indicating the rough range of T . Thus, we infer
that TiCloudDrive ∈ (1, 3) sec, TSugarSync ∈ (5, 7) sec, and TSeafile ∈ (1, 3) sec. Moreover, to determine a
more accurate value of T , we further tune X from integers to floats. Specifically, we experiment
with X = 1.1, 1.2, . . . , 2.9 for iCloud Drive, X = 5.1, 5.2, . . . , 6.9 for SugarSync, and X = 1.1, 1.2,
. . . , 2.9 for Seafile and then find that TiCloudDrive ≈ 2.0sec, TSugarSync ≈ 6.0sec, and TSeafile ≈ 2.0sec.

Sync Deferment, Byte Counter, or Update Counter? One may have the following doubt: Is it

possible that the deferred data synchronization of 7(d) iCloud Drive, 7(f) SugarSync, and 7(g) Seafile

is triggered by a byte counter or an update counter rather than the time threshold (T )? In other
words, the three concerned services may trigger the data synchronization once the number of

uncommitted bytes (byte counter) or the number of uncommitted data updates/operations (update
counter) exceeds a certain value. This doubt can be addressed in two cases:

Case 1: If the data synchronization is triggered by a byte counter, the resulting TUE would be
close to 1.0 for all values ofX according to our previous study on the byte counter–based “efficient
batched synchronization” [36]. This is clearly not true, as illustrated by Figures 7(d), 7(f), and 7(g).
Case 2: If the data synchronization is triggered by an update counter, the resulting TUE in Fig-
ures 7(d), 7(f), and 7(g) would linearly decrease as the edit period (X sec) increases. This is not
true, either.

Therefore, we conclude that the deferred data synchronization is not triggered by a byte counter
or an update counter but rather by a certain period of time.

Limitation of Fixed Sync Deferments. Unfortunately, fixed sync deferments currently em-
ployed by iCloud Drive, SugarSync, and Seafile are considerably limited in terms of usage sce-
narios. As shown in Figures 7(d), 7(f), and 7(g), the traffic overuse problem still occurs when
X > T .

To overcome the limitation of fixed sync deferments, we propose an ASD mechanism. ASD
adaptively tunes its sync deferment (Ti ) to follow the latest (say, the ith) data update. In other
words, when data updates occur more frequently, Ti gets shorter; when data updates occur less
frequently, Ti gets longer. In either case, Ti tends to be slightly longer than the latest inter-update
time so that frequent edits can be properly batched for synchronization (without harming user
experience). Specifically, Ti can be adapted in such an iterative manner:

Ti = min

(
Ti−1

2
+

Δti
2
+ ϵ, Tmax

)
(2)

where Δti is the inter-update time between the (i-1)th and the ith data updates, and ϵ ∈ (0, 1.0) is a
small constant that guaranteesTi to be slightly longer than Δti in a small number of iterations.Tmax

is also a constant representing the upper bound of Ti , as a too large Ti will harm user experience
by bringing about intolerably long sync delay. If iCloud Drive used ASD on handling the “X KB/X
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Fig. 8. The performance (in terms of sync time) and overhead (in terms of sync traffic) of ASD and RSD in a
typical benchmark experiment. During 100sec, ASD performs 3 sync operations using 880KB of traffic, while
RSD performs 6 sync operations using 790KB of traffic.

sec” (X > TiCloudDrive) appending experiments, the resulting TUE will be close to 1.0 rather than the
original 70+ for X ∈{5, 6, 7, 8, 9, 10}. The situation is similar for SugarSync and Seafile.

Further, we note that although ASD is able to minimize sync traffic, it does not always perform
well in terms of sync time (and thus may impair the user experience). To address the issue, Sáiz-
Laudó et al. propose an enhanced, more fine-grained mechanism called rate-based sync deferment

(RSD) to reduce the file sync time of ASD [51]. Seeking a quantitative comparison between ASD
and RSD, we carry out a benchmark experiment using a real desktop client (OneDrive version
18.025). The results in Figure 8 show that RSD can actually reduce the sync time per operation by
around 2× compared with ASD, while bringing a comparable amount of sync traffic.

6.3 Impact of Network and Hardware

Experiment 10, Network Environment: To study the impact of network environment (includ-
ing both bandwidth and latency) on the TUE, we conduct the following two batches of experiments.
The first batch of experiments is performed on B1 @ BJ. It represents a relatively poor network
environment: low bandwidth (nearly 1.6Mbps) and long latency (between 136msec and 299msec)
relative to the cloud server, because the studied cloud storage services (except Baidu Netdisk) are
mainly deployed in the United States. After repeating Experiments 1 through 9 in this network en-
vironment, we compare the results with the corresponding results by using S1 @ SF with abundant
bandwidth (nearly 20Mbps) and short latency (between 31msec and 77msec), which represents a
fine network environment. The second batch of experiments is performed by using S1 @ SF with
controlled bandwidth (between 1.6Mbps and 20Mbps) and latency (between 40msec and 1000msec)
so that we are able to get fine-grained results about how the network environment impacts the
TUE.

From the two batches of experiments, we mainly get the following findings and implications:

• The TUE of a simple file operation is usually not affected by network environment.
• However, in the case of frequent file edits, a user client with relatively low bandwidth or

long latency can usually save more sync traffic.

Specifically, for the first batch of experiments, we plot the TUE of seven cloud storage services
on handling the “X KB/X sec” appending experiment in San Francisco and Beijing in Figure 9,
respectively. In each subfigure, the two curves (“@ SF” vs. “@ BJ”) clearly illustrate that poor net-
work environment leads to smaller TUE, especially when the edit period (X sec) is short (excluding
the sync deferment cases). For the second batch of experiments, as a typical example, we plot the
TUE of OneDrive on handling the “1KB/sec” appending experiment with variable bandwidths and
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Fig. 9. TUE of seven cloud storage services in response to controlled frequent file edits. The average RTT
latency between the PC client at Beijing and the cloud server is 200, 227, 248, 136, 162, 233, and 299msec,
respectively. Baidu Netdisk is not included since its PC client does not support frequent edits to a file.

latencies in Figure 10(a) and Figure 10(b), respectively. In Figure 10(a), the latency is fixed to around
40msec and the bandwidth is tuned from 1.6Mbps to 20Mbps. In Figure 10(b), the bandwidth is fixed
to around 20Mbps and the latency is tuned from 40msec to 1000msec. The two figures illustrate that
higher bandwidth or shorter latency leads to larger TUE for OneDrive. In fact, this phenomenon
happens to all of our studied cloud storage services.

Experiment 11, Hardware Configuration: Next, we examine the impact of hardware configu-
ration on TUE by repeating Experiments 1 through 9 with distinct client machines: S1 (a typical
current machine), S2 (an outdated machine), and S3 (an advanced machine). Their detailed hard-
ware information is listed in Table 2. All of the experiments are performed in SF with abundant
bandwidth (nearly 20Mbps) and short latency (between 31msec and 77msec).

Through the results of Experiment 11, we observe that the TUE of a simple file operation gener-
ally has no relation with hardware configuration, but the TUE of frequent file edits is actually
affected by hardware configuration. As a typical example, in Figure 10(c) we plot the TUE of
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Fig. 10. TUE of OneDrive on handling the (a) “1KB/sec” appending experiment with variable bandwidths,
(b) “1KB/sec” appending experiment with variable latencies, and (c) “X KB/X sec” appending experiment
with distinct hardware configurations.

OneDrive on handling the “X KB/X sec” appending experiment with S1, S2, and S3. The three
curves clearly demonstrate that slower hardware incurs less sync traffic.

Why Do Network Environment and Hardware Configuration Impact TUE? To explore
the reason why network environment and hardware configuration impact the TUE, we analyze
the communication principles of data synchronization for the studied cloud storage services by
reverse engineering their data sync processes (see Section 3.2). The analysis reveals that in the
presence of frequent edits to a file, the user client does not always synchronize every file edit to
the cloud separately. Instead, the user client often naturally (or unintentionally) batches multiple
file edits for data synchronization. Specifically, a new file edit (or a sequence of new file edits) is
synchronized to the cloud server(s) when at least the following two conditions are both satisfied:

Condition 1: The previous file edit (or batch of file edits) has been completely synced to the cloud.
Condition 2: The client machine has finished calculating the latest metadata of the edited file.

Regarding Condition 1, when the network environment is relatively poor, synchronizing the
previous file edit (or the previous batch of file edits) takes more time; thus, the client needs to wait
for a longer period of time to synchronize the new file edit. Regarding Condition 2, when the client
runs on top of slower hardware, calculating the latest metadata (mostly the rolling checksums of
the updated file; see Section 4.3, which is computation intensive) also requires a longer period
of time. Because the failure of either condition will cause the new file edit (or the sequence of
new file edits) to be naturally batched, poor network environment or poor hardware increases the
probability that a file edit gets batched and thereby optimizes the TUE.

Finally, combining all of the findings in this section, we get the following implication. In the
case of frequent file edits, today’s cloud storage services actually bring good news (in terms of
TUE) to those users with relatively poor hardware or Internet access.

6.4 General Insights with Respect to Frequent Edits

In Sections 6.2 and 6.3, we ran several benchmark experiments with respect to frequent edits.
Below, we briefly summarize our observations and insights obtained from the measurement results.
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Table 10. Thumbnail View Traffic and Support for JPEG Images, MPEG-4 Videos,
and Microsoft Word Docs

Service Thumbnail view traffic JPEG MPEG-4 Microsoft Word

Dropbox 66KB Yes Yes –
OneDrive 67KB Yes Yes Yes
Google Drive 44KB Yes Yes Yes
iCloud Drive 978KB Yes – –
Box 362KB Yes Yes –
SugarSync 23KB Yes – –
Seafile 50KB Yes – –
Baidu Netdisk 17KB Yes Yes –

• The traffic overuse problem occurs when there are numerous small edits to files that occur at
intervals on the order of several seconds. Under these situations, cloud storage applications
can hardly batch updates together, causing the amount of sync traffic to be several orders
of magnitude larger than the actual size of the file.

• In general, cloud storage applications synchronize data to the cloud only after the local data
has been indexed and prior synchronizations have been successfully resolved. File edits that
occur within relatively small intervals are likely to be batched owing to file indexing. By
exploiting this principle, some cloud storage services actively batch the edits using a fixed
sync deferment to significantly reduce sync traffic costs.

• The traffic overuse problem is actually made worse by faster network connections and
higher disk speeds. The former make the success acknowledgment of each synchroniza-
tion return in shorter time and the latter accelerate the calculation of file indexes.

7 WEB-SPECIFIC APPROACHES

Among the three access methods to cloud storage services, the web-based method is usually the
worst in terms of efficiency and functionality, as shown in previous sections. Nevertheless, it is the
the most pervasive and OS independent since all the major cloud storage services support web-
based access, while providing only PC clients and mobile apps for a limited set of OS distributions
and devices. In this section, we focus on the traffic-saving approaches specific to web-based access.

7.1 Thumbnail Views

Experiment 12: Thumbnail views are now used by many Internet services to avoid loading the
real content of files when the user is accessing the files via a web browser. A thumbnail view is
typically only severalkilobytess in size, presenting a sketch for an image, a video, or a document
so that the user can get a brief understanding of the file at a glance. Note that a thumbnail view is
more complex than an icon, which indicates only the type of a file. Detecting the use of thumbnail
views is quite straightforward—we just need to “open” a folder that includes a few files via the
web-based method and then observe the resulting sync traffic.

For each cloud storage service, we use the Chrome web browser to open a folder that contains
one JPEG image of 1MB, one Microsoft Word document of 5MB, and one MPEG-4 video of 10MB.
From the experiment results listed in Table 10, we observe that all eight cloud storage services
have used thumbnail views for certain types of files, and the resulting sync traffic (for delivering
the thumbnail views) stays between tens and hundreds of kilobytes, which are much smaller than
the total size of the three files (16MB). Specifically, all services support thumbnail views for JPEG
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Fig. 11. Network traffic use as we gradually view (a) a 3.5MB Microsoft Word document that includes 93
pages and (b) a 4MB PDF file that includes 140 pages, via the Chrome web browser.

images, over half of the services support thumbnail views for MPEG-4 videos, but only OneDrive
and Google Drive support thumbnail views for Microsoft Word documents. This is because gener-
ating thumbnail views for Microsoft Word documents is more complicated than generating thumb-
nail views for JPEG images and MPEG-4 videos. Of course, this complication can be effectively
addressed by calculating the thumbnail views offline on storage servers.

7.2 Dynamic Content Loading (DCL)

Experiment 13: Currently, many cloud storage services provide users with web-based online con-
tent viewing and editing for certain types of files, especially documents. In contrast to thumbnail
views, which present only a simplified sketch, DCL presents an on-demand part of the actual con-
tent of a file to the user. The heuristic behind DCL is intuitive: the user usually intends to view
and/or edit only a part of the file, thus, it is unnecessary to load the entire content of the file. De-
tecting the use of DCL is also straightforward—we just need to “open” a multi-page document via
the web-based method and then observe the resulting sync traffic. Based on the sync traffic and
document size, we can even roughly estimate how much content is loaded from the file.

Our measurement results show that DCL is currently used only by Google Drive to avoid loading
the full content of a document. Typically, only one page is loaded at first, and the remaining pages
are dynamically loaded according to user activity. For example, when we use the Chrome web
browser to open a 3.5MB Microsoft Word document that includes 93 pages in Google Drive, the
resulting traffic use is only 920KB at first. Later, when we gradually view the remaining pages
at a normal reading speed, the traffic use linearly increases as depicted in Figure 11(a). Finally,
when we have viewed all pages, the traffic use just reaches 6MB, slightly exceeding the size of the
document. Additionally, DCL is also applied to Microsoft PowerPoint documents, Microsoft Excel
documents, PDF files (as shown in Figure 11(b)), and so on. Given that DCL can make traffic use
almost proportional to the pages viewed, we suggest that DCL should be adopted by the other
services that host numerous documents.

8 RELATED WORK

As cloud storage services are becoming more pervasive and changing the way people store and
share data, a number of research efforts have been made in both academia and industry, includ-
ing the design and implementation of service infrastructure [8, 13, 23, 39, 40, 49, 58, 59, 61, 67],
integration services with various features and functionalities [10, 24, 25, 29, 34, 36, 52, 54, 66], and
performance measurement [5, 14, 15, 31, 60, 62]. In this article, we concentrate on the data sync
mechanisms that are fundamental to the performance of cloud storage services, together with the
resulting sync traffic use and efficiency.

Dropbox. Dropbox is one of the earliest and most popular cloud storage services; its data sync
mechanism has been studied in depth in [15, 36]. Through an ISP-level large-scale measurement,
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Drago et al. first uncovered the performance bottlenecks of Dropbox due to both the system ar-
chitecture and the data sync mechanism [15]. They suggest a bundling sync scheme with delayed
sync ACK to improve the sync performance of Dropbox. Gonçalves et al. propose a hierarchical
two-layer model for representing Dropbox client behavior and workload patterns [19]. Li et al.
identify a pathological issue that may lead to the “traffic overuse problem” in Dropbox by up-
loading a large amount of unnecessary (overhead) traffic [36]. They devise an efficient batched
sync algorithm (named UDS) to address this issue. Lopez et al. put forward two challenging is-
sues related to the design of Dropbox: fine-grained programmable elasticity and efficient change
notification to millions of users [40]. They propose and implement a novel data sync architecture
(named StackSync) to solve the two issues.

Other Cloud Storage Services. Quite a few measurement studies have covered the traffic use of
other cloud storage services (beyond Dropbox). Hu et al. examine “the good, the bad and the ugly”
of four cloud storage services by comparing their traffic use, delay time, and CPU use of upload-
ing new files [26]. They observe that sync traffic use varies substantially with factors such as file
size, data compressibility, and data duplication levels. Paying attention to some unique quality-of-
service facets, Gracia-Tinedo et al. conduct an active measurement study on Dropbox, Box, and
SugarSync through their RESTful APIs [22]. Drago et al. further compare the system capabilities
of five cloud storage services and find that each service has limitations with regard to data syn-
chronization [14]. Li et al. conduct a comparative study of various data sync mechanisms used
by a number of popular cloud storage services, unravel the pathological processes for their traf-
fic overuse problems, and point out that coarse-grained data sync mechanism design may lead to
severe traffic overuse [37]. Gracia-Tinedo et al. present the internal structure and a massive mea-
surement study of UbuntuOne, paying special attention to the behavior of users that should be
exploited to optimize the performance of data sync operations [23]. All of these studies confirm
the importance of sync traffic use and the possibility of optimizing sync traffic use in an appropri-
ate manner.

Mobile Cloud Storage Services. Owing to the propagation of mobile devices, considerable atten-
tion has been paid to mobile cloud storage services. By analyzing a large-scale sync request dataset
from a commercial mobile cloud storage service, Li et al. find that mobile cloud storage service is
dominated by file uploads, thus suggesting that incremental sync and chunk-level deduplication
can be reasonably omitted in mobile scenarios [35]. In addition, Bai and Zhang note that the inef-
ficiency of today’s mobile cloud storage services stems from the inability of cloud storage services
to monitor and service file operations on mobile devices as well as the loose coupling between mo-
bile apps and storage servers [4]. Based on this insight, they design the StoArranger framework to
coordinate, rearrange, and transform cloud storage communications on mobile devices. Ultimately,
throughout this article, we did not discover substantial differences in network-level efficiency be-
tween WiFi and 4G access methods, implying that the 4G access method (whose traffic is much
more expensive than WiFi traffic) for cloud storage services still deserves extensive optimization.

Comparison with Our Work. While previous work covers the data sync mechanism as one of
the key operations and resulting traffic use, none tries to understand the efficiency of traffic us-
age quantitatively and comprehensively. Due to system complexity and implementation difference,
one can hardly form a general and unified view of traffic use efficiency, not to mention further
improvement. Our work5 is different from and complementary to previous studies by quantifying

5This article extends and improves on its preliminary version [33] (an excerpt also appeared in [32]) in terms of studied

services, research methodology, measurement experiments, target cloud storage techniques, and novel results and findings. In
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and optimizing TUE, the pivotal network-level efficiency for cloud storage services. Based on the
measurements and analysis of eight state-of-the-art cloud storage services, we unravel the key
impact factors and design choices that may significantly affect TUE. Specifically, we consider the
diversity of access methods, client locations, hardware configurations, and network conditions to
match real-world use. Indeed, we discover that these factors lead to different traffic use patterns,
some of which are not expected. Most importantly, we provide easy-to-follow guidance and im-
plications for both service providers and end users to economize their sync traffic use.

9 CONCLUSION

The tremendous increase in data sync traffic has brought growing pains to today’s cloud storage
services in terms of both costs and performance penalties on both server and client sides. Driven
by this industry-wide problem, this article quantifies and analyzes the data sync TUE of eight
widely used cloud storage services by conducting comprehensive benchmark experiments and
reverse engineering their data sync processes. In particular, we uncover their nine-fold practical
endeavors for optimizing the TUE, which are further classified into four types of approaches (intra-
file, cross-file/-user, batching, and web-specific).

Our results and findings illustrate that despite the manifold TUE optimization efforts, much of
the data sync traffic consumed by cloud storage services is unnecessary and can be effectively
avoided or mitigated by careful design and implementation of data sync mechanisms. There is still
enormous space for optimizing the network-level efficiency of cloud storage services. We hope
that our work can stimulate cloud storage designers to enhance their system and software, while
guiding users to pick appropriate services currently available.
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