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360-degree video is a new generation of video streaming technology that promises greater immersiveness

than standard video streams. This level of immersiveness is similar to that produced by virtual reality devices

– users can control the field of view using head movements rather than needing to manipulate external

devices. Although 360-degree video could revolutionize the streaming experience, its large scale adoption is

hindered by a number of factors. 360-degree video streams have larger bandwidth requirements, require faster

responsiveness to user inputs, and users may be more sensitive to lower quality streams.

In this paper, we review standard approaches toward 360-degree video encoding and compare these to

families of approaches that distort the spherical surface to allow oriented concentrations of the 360-degree

view. We refer to these distorted projections as offset projections. Our measurement studies show that most

types of offset projections produce rendered views with better quality than their non-offset equivalents when

view orientations are within 40 or 50 degrees of the offset orientation. Offset projections complicate adaptive

360-degree video streaming because they require a combination of bitrate and view orientation adaptations.

We estimate that this combination of streaming adaptation in two dimensions can cause over 57% extra

segments to be downloaded compared to an ideal downloading strategy, wasting 20% of the total downloading

bandwidth.
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1 INTRODUCTION

As hardware platforms have matured and network capabilities have increased, video streaming has
evolved from low-resolution, desktop-displayed videos to higher resolution videos that are often
played on mobile devices. We are now at the cusp of another transition in video streaming. Larger
number of streaming providers are making 360-degree videos available. These 360-degree videos
enable users to view content from a full spherical panorama rather than from a fixed viewpoint.
These 360-degree videos are viewable in browsers, mobile devices, and, most recently, within virtual
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reality (VR) devices such as Samsung’s GearVR. These viewing venues represent a continuum
on the spectrum of immersiveness – control of the viewport can be actuated through standard
peripheral devices such as the mouse and keyboard or sensors on mobile devices, either by manually
moving the device or moving the device in sync with one’s head movements, simulating real-life
view changes.

This greater level of immersiveness does not come without cost. 360-degree videos encode the
full omnidirectional views in high quality, requiring more storage space and more bandwidth to
transmit over the network. Nowadays, many 360-degree videos are available in 4K quality. That is,
each frame encodes 360-degree views using approximately four thousand horizontal pixels and two
thousand vertical pixels. To stream 4K videos, Netflix recommends the Internet speed to be at least
25 Mbps [6]. On the other hand, according to Akamai’s most recent report, the average broadband
connection speed in the USA is only 15.3 Mbps [1]. When the high bandwidth requirement cannot
be met, users may experience non-smooth playback and degraded streaming quality.

To address this bandwidth scarcity problem, many 360-degree video streaming service providers
have been actively working to address the concerns in encoding and transmitting 360-degree
videos. Much of this effort has gone into encoding schemes that reduce the amount of information
transmitted over the network during streaming. Because people do not generally view the entire
spherical surface in a single video frame, much of the transmission bandwidth (the unviewed
portions of the 360-degree view) is wasted. These schemes typically encode 360-degree views so
that more information is devoted toward a particular direction matching the users’ viewing sections,
wasting less information on unviewed areas.

Facebook recently introduced what we refer to in this paper as the “offset cubic projection” in its
Oculus system. With this scheme, an offset is applied to distort the spherical surface. The distorted
spherical surface is then projected to six cube faces, creating the offset-cubic-projected frame. In
the resulting frame, more pixels in the encoding are mapped to views in one pixel-concentrated
direction of the offset cube than in other directions. For each frame, Oculus encodes separate
360-degree views centered at 22 pixel-concentrated direction on the sphere. It also encodes four
quality levels of these sets of 22 images (for a total of 88 encoded images per frame) to allow for
streaming at different available network bandwidths.

The idea of applying offset to distort the spherical surface to concentrate pixels toward a certain
orientation can be applied to other basic projection schemes as well, including the equirectangular
projection and the barrel projection. Facebook recently also proposed a new variety of the offset
projection scheme – applying the offset to the horizontal plane only.

In this paper, we study the offset cubic projection used in Oculus as well as eight other projection
schemes. These nine schemes are the result of combining three basic projections: equirectangular,
cubic, and barrel, with three offset options: no offset, offset, and offset on the horizontal plane
only. We compared views rendered from various projection schemes against views rendered from
a high-quality reference image to generate visual quality measures (PSNR and SSIM). Results
show that most types of offset projections produce rendered views with better quality than their
non-offset equivalents when view orientations are within 40 or 50 degrees of the offset orientation.
Encoding 360-degree videos using oriented projections brings a new challenge to adaptive

streaming: the streaming client not only needs to perform bitrate adaptation, but also needs to
select the streaming segment whose offset orientation best matches the user’s view orientation.
We refer to this new adaptation as “view orientation adaptation”.

To this end, we attempt to gauge the performance of the Oculus streaming client’s adaptation
algorithm. We perform two types of experiments. First, we measure streaming performance during
human viewing of the Oculus video stream. Next, we perform a more-controlled set of experiments
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using a mechanical testbed where a VR device is mounted on a rotating platform. We rotate the
device at different rates while streaming the 360-degree video to understand how Oculus selects
(and discards) segments during streaming. We found that the number of abrupt head movements
has a significant impact on the number of downloaded-but-not-played (i.e., wasted) segments. Our
findings lead to the conclusion that Oculus’ segment selection strategy can cause over 57% extra
segments to be downloaded compared to an ideal downloading strategy, wasting 20% of the total
downloading bandwidth.
This article extends our preliminary conference publication in proceedings of ACM MMSys

2017 [29]. In this manuscript, we conduct a more thorough study of offset projections. We conducted
experiments on a new set of 3,000 randomly selected views produced by these offset projections.
We also increased our experimental coverage over the conference paper by i) evaluating the
effectiveness of different offset values, and ii) applying offsets to not only the cubic projection,
but also to the equirectangular and barrel projections. We also considered multiple offset types –
applying the offset both according to the standard procedure and on the horizontal plane only. Our
measurements are accompanied by descriptions of these six combinations of offset projections and
procedures for generating projected frames.
The remainder of this paper is organized as follows: Section 2 discusses the background and

related work. We describe the details of the offset projections Section 3 and Oculus’ use of offset
cubic projection in Section 4. We then investigate the visual quality produced by offset projections
in Section 5. Section 6 focuses on Oculus’ streaming adaptation of offset cubic projections over
both bitrate and offset cube orientation. Finally, we make concluding remarks in Section 7.

2 BACKGROUND AND RELATED WORK

2.1 Spherical Projections

360-degree video applications have historically resorted to first mapping spherical pixels to a
rectangular surface, then encoding these rectangular images as they would standard planar videos.

These mappings from the sphere to rectangular images have developed from simpler mappings
that are easy to encode and render to more complicated mappings that more efficiently represent
the sphere at a given viewing angle.

The earliest attempt at encoding the sphere was the equirectangular projection [5, 25]. This
projection is similar to projections used to display maps of the world. To construct the equirect-
angular projection, angles on the sphere given by yaw and pitch values1 (in degrees) are dis-
cretized and mapped to pixels on a rectangular image with x = (yaw + 180)/360 × width and
y = (90 − pitch)/180 × height. Here we consider the size of the equirectangular image to be
width × height, the center of the equirectangular image is at < yaw = 0, pitch = 0 >, and the pitch
angle increases in the upward direction.
Many 360-degree video streaming services today encode videos using the equirectangular pro-

jection including YouTube and Jaunt VR. Figure 1(a) shows a frame that uses the equirectangular
projection. A significant disadvantage of the equirectangular projection is that it encodes the poles
of the sphere with many more pixels than the equator, potentially wasting storage space.
To address the inefficiency in the equirectangular projection, Facebook proposed the barrel

projection [4]. The barrel projection encodes the top and bottom quarter of the equirectangular
projection as two circles, using a much smaller number of pixels for these top and bottom caps. The
barrel caps are created by generating views orientated at the poles on the sphere with 90-degree

1The equirectangular projection is typically parameterized in terms of longitude and latitude. For consistency, we use yaw

and pitch here. These are equivalent to longitude and latitude as long as the rotation in the yaw direction is performed

before the rotation in the pitch direction and we consider latitudes in the southern hemisphere as negative.
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(a) The standard equirectangular projection

(b) The offset equirectangular projection.

(c) The offset equirectangular projection with horizon-

tal offset only.

Fig. 1. A 360-degree image encoded in various
equirectangular projections.

(a) The standard barrel projection

(b) The offset barrel projection.

(c) The offset barrel projection with horizontal offset only.

Fig. 2. A 360-degree image encoded in various barrel pro-
jections.

by 90-degree field of view (FOV) then setting all pixels outside of a circular radius to black. The
middle portion of the equirectangular image is then stretched to occupy the left 80% of the barrel
layout. Figure 2(a) shows an example frame that is projected using the barrel projection.

Another type of projection is the cubic projection [3, 25]. In this projection, a cube is constructed
around the sphere. Rays are projected outward from the center of the sphere, and each ray intersects
with both a location on the spherical surface and a location on a cube face. Pixels on the spherical
surface are mapped to corresponding pixels on the cube through the mapping produced by these
projected rays. For example, a pixel at < yaw = 0, pitch = 0 > is pointed to the center of the
cube’s front face. For encoding, cube faces are arranged on a planar image and compressed using
standard video compression techniques. The standard cubic projection is more space efficient
than the equirectangular image – Facebook claims that the cubic representation saves about 25%
of the video size compared to the original equirectangular representation [8, 14]. Based on our
measurement findings, Facebook uses the standard cubic projection to encode 360-degree videos
for streaming on web browsers and mobile devices. Figure 3(b) shows the same video frame as
Figure 1(a) but encoded using the standard cubic projection for serving 360-degree videos in web
browsers. Figure 3(a) shows Facebook’s arrangement of the six faces of the cube onto a rectangular
surface for video compression.
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(a) Arrangement of the six cube faces. (b) The standard cubic projection.

(c) The offset cubic projection. (d) The offset cubic projection with hori-

zontal offset only.

Fig. 3. A 360-degree image encoded in various cubic projections.

2.2 View Inefficiency in 360-degree Video Streaming

A potential inefficiency of the spherical projections described above is that during 360-degree video
playback, the FOV rendered and presented to end users is much smaller than the encoded 360-degree
image. Streaming the entire 360-degree view typically leads to large numbers of unrendered pixels,
wasting the associated transmitted data. For example, to render a view oriented at < pitch = 0 >
with 100-degree vertical and horizontal FOV, only less than 15% pixels on an equirectangular-
projected frame are needed. As a result, over 85% pixels are not viewed and wasted.
Minimizing the amount of bandwidth used for unviewed pixels is especially important for

streaming to devices that can render views at high resolution but have limited network bandwidth.
If we can transmit higher resolution data for the viewed portion of the video and lower resolutions
for the unviewed portion, the view efficiency can potentially be improved.

To address the view efficiency problem, many groups have proposed strategies to increase pixel
densities within the viewport and reduce or eliminate pixels in unviewed areas of the sphere.
While these strategies differ, their high-level ideas are similar: encode discretized areas on the

sphere in different qualities. In this way, the streaming client can download portions of the sphere
that overlap the user’s viewport in high quality and the rest in lower quality to save wasted
bandwidth.

For example, Ochi et al. developed a tile-based omnidirectional video live streaming system [21].
In this system, an equirectangular frame is divided into seven vertically overlapping tiles, and
these tiles are encoded at high bitrate. In addition, the entire omnidirectional video is also encoded
at low bitrate. During live streaming, the client requests two video streams: a low bitrate stream
that encodes the full omnidirectional view and a high bitrate stream that encodes the area the
user is currently watching. Corbillon et al. proposed to prepare pre-defined sets of tiles [16]. Each
of these sets is characterized by the quality emphasis center (QEC): tiles around the QEC are
encoded with higher quality while tiles far away from the QEC are encoded with lower quality.
To allow the streaming server to select the best versions of a 360-degree video (e.g., tile quality)
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to encode, Corbillon et al. proposed an optimization problem that leverages historical user view
distribution [15]. For tiles to be independently decoded, they need to be encoded independent of each
other. As a result, tiles may suffer from less efficient video compression. In an attempt to address this
problem, Zare et al. [28] proposed to use motion-constrained tile set (MCTS), allowing tiles to be
encoded using macroblocks in other tiles within the same MCTS. To realize the bandwidth savings
of tile-based approaches, it is important that accurate predictions can be made regarding users’
future view directions. Qian et al. proposed to leverage head movement prediction and download
only the portion of video in the predicted viewport [24]. While this strategy can minimize wasted
data transmission, it may severely affect the user experience as viewers of the video may see blank
screen portions if head movement prediction is wrong. Petrangeli et al. proposed a streaming
adaptation scheme, selecting quality levels of tiles based on if a tile is within the predicted future
viewport or not [23].

Facebook recently proposed a pyramid projection for streaming 360-degree videos to virtual
reality devices [8]. Here, a pyramid is constructed around the sphere, with the bottom of the
pyramid facing in the viewing direction. Pixels on the spherical surface are then projected onto
pyramid faces in a similar manner to the standard cubic projection. The pyramid projection is
intended to devote more of the projection’s surface in the direction of viewer attention than in
other directions.

According to our measurements of Oculus 360-degree videos, however, this pyramidal projection
is not currently in use. We also cannot find any other publicly-available information of how Oculus
encodes 360-degree views using the pyramidal projection. We suspect Oculus no longer uses the
pyramidal projection because it devotes most pixels to the pyramid bottom in the viewing direction
while severely under-encoding areas of the sphere in non-viewing directions. This under-encoding
could cause users who turn their heads to experience suboptimal viewing quality.
Instead, through reverse engineering, we discovered that Facebook is using a new encoding

scheme for encoding Oculus 360-degree videos. In this scheme, spherical pixels are first distorted
before they are projected onto rectangular planes. As a result of this distortion, more pixels in the
rectangular plane are devoted to pixels in a certain direction of the sphere than others. Next, we
describe details of various offset projections, including how distortions are applied.

3 OFFSET PROJECTIONS

Offset projections operate by first distorting the spherical surface, then mapping the distorted
sphere into 2D rectangular planes using the cubic, equirectangular, or barrel projections.
Every offset projection has an orientation. We refer to this orientation as θoffset. The projection

distorts spherical angles so that angles near θoffset are mapped to wider angles on distorted spherical
surface.

To convert from a standard spherical angle to an angle with the offset distortion, we can take a
unit vector, a, pointing to a pixel at a standard spherical angle and add a vector, b, in the direction
opposite to θoffset. The resulting vector, c = a + b, points to the pixel in distorted spherical surface.

3.1 The offset cubic projection

We start our discussion with the offset cubic projection as it is used by Oculus 360-degree video
streaming. The offset cubic projection is similar to the standard cubic projection, mapping the
pixels from a spherical surface to six cube faces. Unlike the standard cubic projection, the spherical
surface is first distorted before projected to six faces. This distortion produces cube faces where
more pixels are provisioned for angles nearer to θoffset and fewer pixels are given to angles farther
from θoffset.
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(a) The standard cubic projection.
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(b) The offset cubic projection.

Fig. 4. In the offset cubic projection, vector a is a unit vector pointing to a pixel in the standard sphere. Vector
b points in the opposite direction of the offset cube’s orientation. Vector c is a +b. The intersection of vector c
and the surface of the cube is the projection destination of the pixel at vector a. The red portion of the circle
indicates the portion of the sphere mapped to the offset cube’s front face. The green portion of the circle
indicates the portion of the sphere mapped to the offset cube’s back face.

Figure 4 depicts the offset cubic projection’s transformation of spherical angles in two dimensions.
For a unit vector a pointing to a pixel in the non-distorted sphere, an offset in the opposite direction
of the offset cube’s orientation, represented as vector b, is applied, resulting in a new vector c . This
construction causes the offset cube’s front face (the face oriented towards θoffset) to encompass a
smaller area on the sphere compare to the offset cube’s back face (the face oriented opposite to
θoffset). We can use the following equation to calculate the horizontal and vertical extent encoded
in the front face:

90° − 2 × β = 90° − 2 × arcsin
‖b‖ × sin 135°

‖a‖
= 90° − 2 × arcsin(‖b‖ × sin 135°)

where β is the angle between vector a and vector c , the angle between vector −b and vector −c is
135°, and ‖a‖ = 1.

We can also calculate the horizontal and vertical extent encoded in the back face as follows:

90° + 2 × α = 90° + 2 × arcsin
‖b‖ × sin 45°

‖d ‖
= 90° + 2 × arcsin(‖b‖ × sin 45°)

where α is the angle between vector d and vector e , and ‖d ‖ = 1.
For example, in Oculus’ implementation of the offset cubic projection, the magnitude of vector b

is 0.7. This parameter causes the cube’s front face to encompass 30.66 degrees. The cube’s back face
encompasses 149.33 degrees. Both measures occur in both the horizontal and vertical dimensions.
Because these angular dimensions are represented by cube faces with the same number of pixels,
areas on the sphere covered by the front face are encoded in much higher quality than areas covered
by the back face.

Figure 3(c) shows the resulting image if we project the same image in Figure 1(a) and Figure 3(b)
using the offset cubic projection with θoffset set to a unit vector in the direction < yaw = 0,pitch =
0 > and ‖b‖ = 0.7.

3.2 The offset equirectangular projection

The offset equirectangular projection can be created by projecting the distorted spherical
surface onto an equirectangular image. Computing the distortion uses the same procedure as used
for the offset cubic projection: we start with a pixel at a standard spherical angle represented by
vector a, then add a vector, b, in the direction of −θoffset, resulting in a new vector c = a + b.
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Unlike the offset cubic projection, the pixel’s destination position in the offset equirectangular
image is obtained by calculating the yaw and pitch angles of vector c . Suppose vector c = (cx , cy , cz ),
we can then calculate the yaw and pitch values of c as follows:

cyaw = arctan
cx

cz
, cpitch = arcsin

cy

‖c ‖
(1)

The corresponding pixel is thus mapped to the equirectangular image with position x = (cyaw +
180)/360 ×width and y = (90 − cpitch)/180 × height. For example, Figure 1(b) shows the resulting
image if we project the same image in Figure 1(a) using the offset equirectangular projection with
θoffset set to a unit vector in the direction < yaw = 0,pitch = 0 > and ‖b‖ = 0.7.

3.3 The offset barrel projection

To create the offset barrel projection, we repeat the procedure for the offset equirectangular
projection. For every pixel on the standard sphere, we use a vector a to represent its spherical angle.
We then create a new vector c = a+b for every vector a and extracting the yaw and pitch values for
vector c using Equation 1. Pixels whose cpitch angles are between −45 and 45° are mapped to pixels
on a rectangular image with x = (cyaw + 180)/360 × width and y = (90 − 2 × cpitch)/180 × height.
Other pixels are mapped to two circles placed next to the rectangle in the barrel layout.
Figure 2(b) shows the barrel projection of the equirectangular frame in Figure 1(a). Figure 2(a)

shows the offset barrel projection of the same frame with θoffset set to a unit vector in the direction
< yaw = 0,pitch = 0 > and ‖b‖ = 0.7.

3.4 Offset applied to the horizontal plane only

To describe the horizontal offset projection, we begin with an orientation θoffset at < yaw =

0,pitch = 0 >. The horizontal offset requires an additional vector to define what we call the
horizontal plane. We denote the horizontal plane normal by the vector ϕ. For an orientation at
< yaw = 0,pitch = 0 >, we select the XZ plane as the horizontal plane with the horizontal plane
normal, ϕ = ®y.
Given a point on the surface of a sphere represented by vector a, we decompose a into a

component av in the direction of the plane normal, and a component ah perpendicular to av . We
construct a vector c by first letting ch =

ah
‖ah ‖
+ b, where b is a vector in the direction opposite to

θoffset, then c =
ch
‖ch ‖

× ‖ah ‖ + av . This construction allows the offset transformation to occur only

on the horizontal plane without affecting vertical components. The orientation of vector c is the
orientation of a pixel corresponding to the pixel at the original vector a on the distorted sphere.

Note that ϕ can be set to any orientation perpendicular to θoffset. In practice, ϕ is set by rotating
®y by the yaw and pitch of θoffset.
The resulting sphere with horizontal offset can then be projected into equirectangular, barrel,

and cubic projections. Figures 1(c), 2(c), and 3(d) show the resulting images when offset with the
same magnitude, i.e., ‖b‖ = 0.7 is only applied to horizontal plane.

4 OFFSET CUBIC PROJECTION IN OCULUS

As more pixels on the projected rectangular plane are devoted to spherical pixels near the offset
direction, θoffset, we can expect that high visual qualities are produced when the user’s view
orientation matches θoffset. But if a user’s view is in the opposite direction of θoffset, then the visual
quality of rendered views can be much worse than views rendered by standard cubes.
In practice, when watching 360-degree videos, users can view in different orientations, and a

user’s view can change over time. To account for this variance in user’s view orientations, Oculus
encodes 360-degree videos using 22 offset orientations. In Oculus 360-degree videos, offset cube
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Pitch Yaw

90 0

45 15, 105, 195, 285

0 0, 30, 60, 90, 120, 150, 180, 210, 240, 270, 300, 330

-45 15, 105, 195, 285

-90 0

Table 1. Yaw and pitch values of cen-
ter of the front faces in 22 offset cubes.
For every row in the table, an Oculus
offset cube encoding exists for the sin-
gle pitch value combined with each
value in the yaw column.

Quality Frame Resolution Bitrate (bps) Range

272w 1088 × 816 1,789,736 to 2,648,917

400w 1600 × 1200 6,290,250 to 9,613,871

528w 2112 × 1584 9,556,146 to 15,291,141

656w 2624 × 1968 13,512,541 to 22,261,091

Table 2. Resolution and bitrate of 4 qual-
ity levels of a sample video [10]. Note that
this sample video is stereoscopic. There-
fore, two images are encoded in each frame
for the le� and right eyes, respectively. A
frame encodes 12 cube faces in total.

orientations are specified by yaw and pitch angles of the center of the cube’s front face. Table 1
lists the yaw and pitch values of these 22 orientations. Note that since each offset cubic projection’s
front face can cover only a roughly 30 by 30 degree field of view, the combination of 22 front faces
cannot cover the full spherical surface at front-face quality levels.
To accommodate clients with heterogeneous downlink bandwidth, Oculus also encodes 360-

degree videos into four quality levels with different frame resolution and range of bitrates. Table 2
shows the bitrate ranges from all four quality levels of one sample video we found on Oculus [10].
These quality levels are labeled by the resolution of cube faces. For example, the quality level of
400w indicates the resolution of each cube face is 400 × 400. If a 360-degree video is monoscopic,
each frame encodes six cube faces. A monoscopic 360-degree video frame encoded into a 400w
offset cube therefore has a resolution of 1200×800. If a 360-degree video is stereoscopic, two images
are encoded in each frame. These two images are used to render views for the left eye and right
eye, respectively. As a result, each frame encodes 12 cube faces in total.

Overall, Oculus encodes each 360-degree video into 88 versions, storing all combinations of the
22 different offset cube orientations and four quality levels.

A disadvantage of the offset cube is that more storage is required on the server side to account for
possible viewport orientations. The total storage size of all 88 versions of our 4 minutes 43 seconds
sample video is 31 GB (33,350,813,552 bytes). A further disadvantage lies in the complication of the
segment selection algorithm over the standard cubic projection. To effectively stream offset-cube-
projected videos, segments must be selected across two dimensions, orientation and quality, rather
than only over the quality dimension.

5 VISUAL QUALITY

In this section, we investigate the visual quality of views rendered from offset projections. To do so,
we compare views generated from the offset projection representations against views generated
from high quality equirectangular video frames.
These reference images consist of 12 frames in 8K resolution and include scenes with different

characteristics, including an indoor scene, an outdoor city scene, an outdoor natural scene, and a
scene from VR gaming. The high quality frames are extracted from five 360-degree videos2 from
YouTube and are encoded using the equirectangular projection at 8K resolution.We extracted frames
from these high-quality videos into .bmp format to minimize noise due to image compression.

2 https://www.youtube.com/watch?v=DSvoUiYRrOc, https://www.youtube.com/watch?v=If5TkBmxsW0,

https://www.youtube.com/watch?v=cwQGQWrOg_Y, https://www.youtube.com/watch?v=70g9qBJWSP4,

https://www.youtube.com/watch?v=RNdHaeBhT9Q
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5.1 Offset cube vs. equirectangular

To describe our method of offset cube view quality comparison, we first define a set of notation used
to describe different offset cube representations and the views rendered from these representations.
As in the previous section, we use the angle θoffset to describe the offset cube’s orientation, where
θoffset is the coordinate of the center of the offset cube’s front face and the direction of greatest pixel
density. We then use q to represent the quality level of the offset cube. Views in any orientation on
the sphere can be rendered from any offset cube. We represent the view orientation by the variable,
θview.

In our comparison against reference images, we compute the visual quality between the displayed
frames generated in the orientation θview from the offset cube (θoffset,q) against reference images
generated in the θview orientations from an original, high-quality equirectangular image.

We have created a tool that can generate offset cubes at a desired (θoffset,q) given an equirectan-
gular image. The tool can also render a view at θview and a desired resolution given either an offset
cube or an equirectangular representation of the 360-degree spherical surface.3

For each of the high quality equirectangular frames, we generated 88 offset cubic projections in
the same 22 orientations and four quality levels as used in Oculus. For each of the 88 offset cubes,
we render views at a given orientation, with a 96-degree horizontal and vertical fields of view, at
a resolution of 1000 × 1000. These values roughly corresponds to the viewport configuration in
GearVR. We calculate the peak signal-to-noise ratio (PSNR) and global structural similarity index
(SSIM)4 [26] between views rendered from an offset cubic projection source and views rendered
from the original 8K equirectangular image. Because human eyes are most sensitive to luminance,
we calculate PSNR and SSIM based on the Y-component of the YUV representation of views. For
each offset cube quality and orientation, we consider a total of 3, 000 view orientations. These view
orientations are randomly selected from a list of the yaw and pitch angles of 655, 362 points on the
sphere [13].

For each of these rendered views, we compute the angle between θoffset and θview. The maximum
angle on the sphere is 180 degrees. We group PSNR and SSIM results into 5-degree angular distance
buckets. This bucketing step removes noise that occurs at smaller bucketing levels if some of these
smaller buckets receive only a small number of quality samples. We then take the average of the
PSNR and SSIM values for every combination of quality level and angular distance between θoffset
and θview.

For comparison, we downsize the original 8K equirectangular image to 2K×1K resolution using
OpenCV resize [11] with INTER_AREA interpolation method. We then calculate the PSNR and SSIM
between views rendered by the 2K×1K version and views rendered by the original 8K version. We
calculate PSNRs and SSIMs of the 2K×1K version for all 12 representative frames and all 3, 000 view
orientations. We then use the average of these values as a baseline for visual quality. The 2K×1K
equirectangular representation has a similar number of pixels as the highest quality offset cube
representation, so the PSNRs and SSIMs across this lower quality equirectangular image and offset
cube form a reasonable basis for understanding the capabilities of the offset cube encoding.

Figure 5 shows a plot of angle between θoffset and θview against PSNR and SSIM. Offset cubes in
this figure are created with the offset magnitude set to 0.7, which is the value used by Oculus for
encoding 360-degree videos. As expected, both PSNR and SSIM decrease as the angle increases.
That is, image quality gets worse the farther we get from the center of the offset cube. For example,

3 https://github.com/bingsyslab/360projection
4We calculate the global SSIM index in this paper. Other varieties of SSIM can be used to compare visual quality. There

varieties include the mean SSIM index (MSSIM) and multi-scale SSIM index (MS-SSIM). We plan to investigate whether

these other metrics reveal differences in visual quality that were not detected by the current measurement methods.
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Fig. 5. PSNR and SSIM between views rendered by offset cubes of different quality and views rendered from
the original 8K equirectangular frame. The x-axis in the graph shows the angle between the view orientation
and the offset cube’s orientation. Offset cubes in this figure are created with the offset magnitude ‖b‖ = 0.7.
The dark, flat line indicates a baseline comparison between views generated from the original 8K frame and
views generated from a subsampled version of the original frame subsampled to 2K×1K.

at the highest quality level, 656w, the PSNR decreases from 34.8 dB when the angle between θoffset
and θview is 0 degrees to 30.4 dB when the angle is 180 degrees (i.e., the maximum). The SSIM value
for 656w also decreases from 0.9935 to 0.9814 as the angle increases. Views rendered by offset cubes
of higher quality level give better visual quality as well. On average, the PSNR values of the 656w
quality level are 1.36 dB better compared to the 528w quality level and 2.71 dB better compared to
the 400w quality, and 5.34 dB than the lowest, 272w quality level.

Figure 5 also shows that when the angle is smaller than 50 degrees, the 2K× 1K equirectangular
quality is below the 400w quality, measured in terms of both PSNR and SSIM. Given that the 2K×1K
equirectangular representation is encoded using 2,000,000 pixels and the 400w offset cube image
is encoded using only 960,000 pixels (with a resolution of 1200 × 800), we can conclude that it is
possible to obtain better or similar visual quality with the offset cubic projection using less than
half the pixels of the equirectangular representation. This comparable quality is only possible, of
course, if the streaming algorithm used in conjunction with the offset cube projection is capable of
consistently delivering segments with θoffset within 50 degrees of θview.

5.2 Offset with different magnitudes

We next investigate how offset with different magnitudes affects the visual quality of rendered
views. We consider a total of 9 offset magnitudes from 0.1, 0.2, to 0.9. For each offset magnitude
setting, we create 88 offset cubes with four different quality levels and 22 offset orientations. For
reference, we also consider the case where no offset is applied. That is, the offset magnitude is
0. In this case, we simply created 22 cubes whose front faces are oriented towards 22 different
orientations.

We repeat our visual quality comparison procedure in the previous section, comparing the visual
quality of views rendered by these offset cubes with views rendered by the 8K equirectangular
image. The results are shown in Figure 6.

When θview is aligned with θoffset (shown in Figure 6(a)), views rendered by offset cubes with the
offset magnitude between 0.2 and 0.7 have roughly the same high visual quality compared to other
magnitudes. When ‖b‖ = 0.4, offset cubes at the 656w quality yield the best visual quality with
PSNR = 35.78 dB and SSIM=0.9947.
Although the difference is small, our results shows that Oculus’s choice of setting ‖b‖ = 0.7 is

not necessarily the best even when the view perfectly matches the offset cube’s orientation.
When θview deviates from θoffset, the benefit of the offset projection starts to diminish. When their

angle is between 40°and 45°, offset cubes with the offset magnitude between 0.1 and 0.8 all generate
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roughly the same visual quality. For larger angles, e.g., 90° and 180°, offset cubes with smaller offset
magnitudes produce better rendered view visual qualities than cubes with large magnitude offsets.
This quality reduction is expected, as large offset magnitudes cause much more spherical area to be
encoded in the cube’s back face.
Although we have shown that the choice of ‖b‖ = 0.4 outperforms the ‖b‖ = 0.7 offset for full

rendered views near the offset orientation, Oculus’s use of the ‖b‖ = 0.7 offset may be motivated
by other concerns. For example, past studies [18, 22] have shown that the human visual system is
more sensitive to image quality toward the center of the visual field. At view orientations close to
the offset orientation, the 0.7 offset likely delivers higher qualities toward the center of the view
at the expense of lower qualities at the edges compared to the 0.4 offset. Care must still be taken
when attempting to deliver views with higher quality at a central portion of the image. Effectively
delivering these views would likely require smaller tolerances for deviation between the view
orientation and the offset orientation. That is, although ‖b‖ = 0.7 might outperform ‖b‖ = 0.4 in
this adjusted measure of quality when offset orientations are very close to the view orientation,
the quality of the ‖b‖ = 0.7 offset would decrease more quickly as offset orientations move farther
from the view orientation.

5.3 Offset vs. horizontal offset only vs. no offset

In this section, we investigate how offset strategies affect visual quality. We compare each offset
scheme against its non-offset equivalent with the same resolution. Here we expect offset strategies
to have better visual quality than their non-offset equivalents when θoffset is close to θview, and as
the angle between θoffset and θview increases, we expect the visual quality to decrease, eventually
worse than their non-offset equivalents.

To compare the visual quality of viewed rendered from the offset equirectangular and non-
offset equirectangular projections, we generated oriented equirectangular projections at each of
the offset equirectangular orientations. By “oriented equirectangular” projection, we mean an
equirectangular projected image whose central yaw and pitch values are zeroed at the offset
equirectangular projection’s orientation. The oriented equirectangular projection is thus equivalent
to an offset equirectangular projection with the offset = 0. At each of the 22 offset orientations
listed in Table 1, we then compared PSNR and SSIM of views generated at the same 3, 000 view
orientations described in Section 5.1.
Figure 7(a) shows that at angles less than 50 degrees from its orientation, at a resolution of

2000 × 1000, the offset equirectangular projection achieves better visual quality than the standard
equirectangular projection at the same resolution. However, if the offset is only applied to the
horizontal plane, the visual quality of rendered views is only as good as oriented equirectangular
without any offset even when the angle is within 50 degrees.

Note that the 2K×1K equirectangular image in Figure 5 differs from the oriented equirectangular
projections used for Figure 7(a) in two ways: First, the previous equirectangular image has only a
single orientation, and second, the equirectangular image was scaled by an averaging interpolation,
whereas these oriented equirectangular images were regenerated at lower resolutions by projecting
back to the spherical surface and retrieving the pixel from the higher quality equirectangular image.
These differences in generating lower resolution equirectangular projections have a 2 dB effect
on visual quality. This difference in visual quality indicates that the choice of scaling method is
important when deciding how to transform 360-degree projected images and videos.
Figure 7(b) shows the result of barrel projection under different offset settings. In this figure,

“oriented barrel” is similar to “oriented equirectangular” but with the top and bottom quarter
encoded as two small circles. At the resolution of 2250× 900, the barrel projection contains roughly
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(b) ∠(θview, θoffset) is between 40° and 45°
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(d) ∠(θview, θoffset) is between 175° and 180°

Fig. 6. PSNR and SSIM between views rendered by the offset cubic projectionwith different offsetmagnitudes
and views rendered from the original 8K frame.
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(b) Visual quality of views rendered by the barrel projection with different offset settings
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(c) Visual quality of views rendered by the cubic projection with different offset settings

Fig. 7. PSNR and SSIM between views rendered by projections with different offset se�ings and views
rendered from the original 8K frame. Offset projections in this figure are created with the offset magnitude
set to 0.7. That is, ‖b‖ = 0.7.

the same number of pixels as the 2K × 1K equirectangular projection. However, the visual quality
of views produced by the barrel projection is much worse. For example, when no offset is applied,
barrel projection is more than 3 dB worse compared to the equirectangular projection. When θview
within 40 degrees of θoffset, horizontal-only offset barrel can render views with better visual quality
compared to non-offset barrel. The final portion of our comparison of the barrel-projection shows
that views rendered from standard offset barrel have worse quality than non-offset barrel.
The poor performance of the barrel projection is likely caused by using too few pixels in the

circular image portion of the projection to encode the upper and lower portions of the sphere. As
the central, equirectangular portion of the barrel projection covers only a 90-degree pitch, to render
a 96-degree by 96-degree view, spherical pixels encoded in these circular images must be used,
and thus the lower quality compared to the standard and horizontal-only offset equirectangular
projections.
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The poor visual quality problem becomes even worse for offset barrel projections: due to the
offset applied to spherical pixels, the central, equirectangular portion covers only 30-degree pitch
(when the magnitude of offset vector is 0.7). As a result, much of the pixels required for rendering a
view is encoded in the circular portion in the barrel image.

Finally, Figure 7(c) shows the PSNR and SSIM results of views rendered by cubic projections with
different offset settings. Similar to the equirectangular results, we find that when θoffset is within 40
degrees of θview, offset cube can render views with better visual quality compared to non-offset
cube. Horizontal-only offset cube, however, performs worse than offset cube and can even produce
lower visual qualities than the non-offset cube when θoffset is within 40 degrees of θview.

5.4 Summary of visual quality evaluation

We performed three types of comparisons covering offset projection quality: i) we evaluated the
visual quality of rendered views from offset projections as a function of rendered view orientation
compared to offset orientation. ii) we evaluated the effect of the offset parameter, ‖b‖ and iii)
we evaluated applying offsets to different types of projections. Each of these evaluations yielded
notable findings.
First, our comparisons between rendered view orientation and offset orientation reveals the

efficiency of the offset cube projection. Compared to a downsampled equirectangular, the offset
cube with ‖b‖ = 0.7, produces similar or better visual quality using less than 50% of the pixels
when the rendered view orientation is within 50 degrees of the offset orientation.

When evaluating the visual quality of different settings of offset magnitudes, we discovered that
a value of ‖b‖ = 0.4 produces the best visual quality of all offset values for a 96-degree rendered
view when views are within 45 degrees of the offset orientation. As view orientations move farther
away from the offset orientation, smaller offsets (closer to the standard cube) produce better visual
qualities.

Finally, when evaluating the effectiveness of applying an offset to different types of projections
we discovered that for rendered views within 40 or 50 degrees of the offset orientation, the offset
equirectangular and cubic projections perform better than their non-offset equivalents. However,
the barrel projection’s quality decreases when a standard offset is applied. This decrease in quality is
caused by portions of the high quality central view being rendered in the lower-quality “barrel-cap”
portions of the projection. This poor performance can be corrected by applying only a horizontal
offset. With the horizontal offset, no stretching occuring in the vertical direction, so the high-quality
portions of the view do not migrate to the caps.

6 STREAMING ADAPTATION OF OFFSET CUBIC PROJECTION IN OCULUS

Offset projections complicate adaptive 360-degree video streaming because they require a combina-
tion of bitrate adaptation – matching selected segments’ bitrate with streaming client’s available
bandwidth, and view orientation adaptation – matching the selected offset cube’s orientation, θoffset
with user’s view orientation, θview.

In this section, we investigate Oculus’ use of adaptive streaming with the offset cubic projection.
Specifically, we attempt to understand what the effect of the extra orientation dimension in the
offset cubic encoding has on dynamic streaming efficiency.

6.1 Adaptive Streaming in Oculus

Many video streaming services today implement HTTP adaptive streaming. With adaptive stream-
ing, videos are divided into segments, typically a few seconds long. Each segment is then encoded
multiple times at a selection of quality levels with progressively higher bitrate. These varying
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1 <ns0:MPD xmlns:ns0="urn:mpeg:dash:schema:mpd:2011" maxSegmentDuration="PT0H0M4.992S"

mediaPresentationDuration="PT0H4M43.115S" minBufferTime="PT1.500S" profiles="urn:mpeg:dash:

profile:isoff-on-demand:2011,http://dashif.org/guidelines/dash264" type="static">

2 <ns0:Period duration="PT0H4M43.115S">

3 <ns0:AdaptationSet FBProjection="offset_cubemap" lang="und" maxFrameRate="30" maxHeight="1968"

maxWidth="2624" par="4:3" segmentAlignment="true" subsegmentAlignment="true"

subsegmentStartsWithSAP="1">

4 <ns0:Representation FBExpand_coef="1.025" FBIs_stereoscopic="true" FBOffcenter_x="0"

FBOffcenter_y="0" FBOffcenter_z="-0.7" FBPitch="0" FBQualityClass="uhd" FBQualityLabel="2160

p" FBRoll="0" FBYaw="30" bandwidth="20592721" codecs="avc1.640033" frameRate="30" height="

1968" id="dash_sve360_qf_656w_crf_18_high_5.1_p13_30yaw_0pitch_frag_1_videod" mimeType="

video/mp4" sar="1:1" startWithSAP="1" width="2624">

5 <ns0:BaseURL>https://video.xx.fbcdn.net/...</ns0:BaseURL>

6 <ns0:SegmentBase FBFirstSegmentRange="4338-10514" indexRange="922-4337" indexRangeExact="true">

7 <ns0:Initialization range="0-921" />

8 </ns0:SegmentBase>

9 </ns0:Representation>

10 ...

11 </ns0:AdaptationSet>

12 </ns0:Period>

13 </ns0:MPD>

Fig. 8. MPD document of an Oculus 360-degree video on Facebook.

bitrate segments allow streaming clients to adapt to network bandwidth changes by selecting the
video quality level that produces the best user experience. Many adaptive streaming protocols are
available today. Among them, MPEG Dynamic Adaptive Streaming over HTTP (MPEG-DASH) [19]
is a widely used standard, adopted by popular services like YouTube. In MPEG-DASH, each quality
level is referred to as a Representation. Information about each Representation such as its URL,
bitrate, resolution is described in a media presentation description (MPD) document in XML format.
Oculus extends the time-centric adaptation to allow streaming algorithms to not only select

differing bitrates over time, as in standard DASH, but also to select higher or lower bitrates for
different areas of the 360 degree view. Figure 8 shows a snippet of anMPD document we downloaded
from Facebook. This MPD document of an Oculus 360 degree video contains one Period, which
further contains two Adaptation Sets, one for video, the other for audio. The audio Adaptation
Set contains only one Representation. The video Adaptation Set, on the other hand, contains
88 Representations. There is one Representation for each of the 22 offset cube orientations at
four separate quality levels. In the example MPD document shown in Figure 8, Representation
attributes FBYaw and FBPitch repesent θoffset, orientation of the offset cube. FBOffcenter_z is
used for deriving vector b in Figure 4. For example, we can construct a cube around a unit sphere
so that the center of the cube’s front face is oriented at < yaw = 0, pitch = 0 > and located at
(0, 0, 1) in the cartesian coordinate system. In this case, vector b is FBOffcenter_z×(0, 0, 1) = (0, 0,
FBOffcenter_z).
During 360 video streaming, the Oculus player has two decisions to make: (i) which of the 22

differently-oriented offset cubes will perform best for the user’s view, and (ii) which quality level
among 272w, 400w, 528w, and 656w will produce the best performance for the network conditions.

Each Representation in the video Adaptation Set in the MPD document can be downloaded as a
single .mp4 file, containing all segments. These .mp4 files are encoded using H.264 AVC. The bitrate
(i.e., bandwidth) of each Representation is calculated by dividing the .mp4 file size by the total
length (in seconds) of the video. Since each quality level has 22 different Representations encoded
using different offset cube orientations, the bitrates of these Representations are also different. For
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Fig. 9. Our VR testbed consists of a GearVR, an S7,
a Pan/Tilt mount, a 3D-printed holder for the mount,
a Raspberry Pi to accurately control the mount’s mo-
tion, and a tripod for stabilizing the test instruments.

example, Table 2 shows that the bitrates of our test video in the highest quality level (i.e., 656w)
vary between 13 Mbps and 22 Mbps.

We have downloaded all 88 .mp4 files in the video Adaptation Set of our testing video. After
inspecting these files, we discovered that the Segment Index (sidx) is located at the beginning
of each of these .mp4 files. This encoding differs from the approach used by many other DASH
implementations where the segment index is provided to the client as a separate file. To request a
segment for a specific Representation, the streaming player can analyze the sidx box to determine
the byte range of the segment within the .mp4 file and request this byte range through an HTTP
range request. We inspected the sidx box of these files and found that the Oculus segment duration
is shorter than durations typically used in standard video streaming. Each segment contains 27 or
31 frames, which can play for roughly 1 second in a 30 frame-per-second video. The benefit of short
segment duration is straightforward: the video player can switch to a different Representation
more rapidly.

6.2 Experiment Setup

To test the performance of immersive 360-degree video streaming, we use the Samsung GearVR
and the Samsung Galaxy S7 (S7 for short). We use the native Samsung ROM and Android 6.0.1. The
Oculus application comes pre-installed on S7 and supports immersive video streaming. In a typical
personal virtual reality setup, the S7 is placed inside the GearVR and acts as the display hardware,
while the GearVR provides head mounted goggles and additional sensor input.
VR testbed. When conducting measurements, it is nearly impossible for a human user precisely
repeat the same sequence of head movements. To address this problem, we designed a mechanical
testbed that can be used move a VR repeatedly through a sequence of motions, allowing repeatable
experiments. Figure 9 shows the setup of this testbed.
In this testbed, we emulate user’s head motion during video playback using a customized,

controllable Pan/Tilt mount [7]. This mount combines two separate Hitec HS-422 servo motors
that can simulate yaw and pitch motions, respectively. With torque power of 57 oz-in, these motors
are capable of holding the test VR device. When operated with no load, at maximum speed, these
motors can rotate 60 degrees in 0.16 seconds. We use a Raspberry Pi 2 Model B+ combined with an
Adafruit 16-channel PWM servo board to precisely control these two servo motors.

We attach the VR device to the Pan/Tilt mount. To secure the mount onto a stable base, we
3D-printed a holder for our mount and installed it on a standard tripod. This testbed is compatible
with many portable VR devices. We can repeat the current set of experiments, or conduct future,
multi-device experiments with controllable, emulated head motion.
Network measurement. The S7 connects to the Internet through a wireless 802.11n router using
the OpenWRT open source system. The Oculus application transmits all traffic through HTTPS. The
HTTPS protocol complicates our test setup, making it impossible to inspect requests and responses
through simple packet capture. To decrypt and inspect the HTTPS requests and responses, we set
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Fig. 10. Segment Downloading Duration Distribu-
tion.

up a man-in-the-middle (MITM) proxy called Charles proxy [2] on another laptop machine that is
connected to the same wireless router. This proxy allows us to log all HTTPS requests sent by and
responses received at the Oculus application on S7.
During our measurement, we noticed that even after playback ends, the Oculus application

may still keep some video content in its cache. This caching could affect results because the
Occulus application could display these segments without our test setup detecting that they were
downloaded. To overcome this problem, we powered off the S7 and restarted it between consecutive
experiments. We confirmed through repeated testing that this strategy allows new playback start
with an empty cache.
Testing video.We focus on one testing video: “Kids” [10]. This video was shot with Nokia OZO [9].
In total, this video is 4 minutes 43.115 seconds long and has 282 segments.

6.3 Oculus Streaming

Metadata downloading. To initialize the video decoder, the Oculus player first downloads the
videometadata, including the initialization segment and the sidx segment. The initialization segment
is placed in the beginning of the .mp4 file and is required by DASH to initialize the video decoder.
The sidx segment is placed after the initialization segment but before the first video segment. The
byte range of these two segments in the .mp4 files are available in the MPD document. For our test
video, the metadata for 88 Representations is either 4,331 bytes or 4,337 bytes.

Instead of downloading the metadata of each Representation on demand (i.e., when the player
decides to switch to the desired Representation), the Oculus player downloads the metadata for all
88 Representations before the video playback and before downloading any video segment. Based
on our experiments, on average, it takes 1.345 seconds for the Oculus player to download the
metadata of all 88 Representations via 88 HTTPS requests through multiple TCP connections.
Because metadata download is a required initialization step for the streaming client, the video
startup delay must be at least 1.345 seconds. Much of this startup delay is spent on TCP connection
setup. To reduce video startup delay, Oculus could bundle all 88 metadata requests together into a
single HTTPS request.
Video segment downloading. Oculus reuses a single TCP connection to download all segments
during video streaming. This connection is one of the TCP connections that was set up during the
metadata downloading step. HTTPS requests for segments with different quality levels, offset cube
orientations, and segment indices are sent through this single TCP connection.
Since each segment contains roughly one second of streaming content, segment downloading

duration must be smaller than one second for smooth playback. Figure 10 shows the distribution of
segment downloading duration from eight experiments. In these eight experiments, no bandwidth
throttling is enabled. These measurements indicated that segments in the lowest quality level, 272w,
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took the least time to download: 92.7% of 272w segments downloaded in our experiments were
downloaded within one second. This ratio was reduced to 78.9% for 400w segments, 69.9% for 528w
segments, and 67.8% for 656w segments.
Playback buffer filling. We connected the S7 to a wireless router and powered-off the router
after playing the video for one minute. After the network connection was cut, we found that the
video playback could continue for another five seconds. We therefore estimate that the playback
buffer contains roughly five seconds of video content.

6.4 Streaming Adaptation and Wasted Segments

An offset cube can produce the best visual quality when its orientation is exactly the same as
the user’s head orientation. When the user’s head moves, pre-downloaded video segments in the
playback buffer may no longer produce the best visual quality. In this case, the Oculus player may
request new segments of new Representations at orientations that better match the user’s current
head orientation to replace existing segments of non-ideal Representations in the playback buffer.

These replaced segments are never shown to the user. We therefore consider the bandwidth used
to download these segments as having been wasted. In this section, we report our analysis on how
segment re-downloading occur and results of experiments measuring wasted segments under three
settings: (1) fixed quality level with motion emulated by our testbed, (2) fixed orientation where
quality levels are adapted by the Oculus player in response to varying network conditions, and (3)
real user experiments.

6.4.1 Segment re-downloading. Ideally, to render the best visual quality, the Oculus player should
re-download the next segment in a new Representation encoded with a differently oriented offset
cube immediately after an orientation change is detected. However, considering that the playback
deadline of the immediate subsequent segment is less than one second away, the pending segment
may not arrive in time. Instead, the Oculus player (re-)downloads segments further ahead in the
future in the selected new Representation. For example, suppose the Oculus player is playing
segment 10, containing video data from 10 to 11 seconds, in the best Representation, X, when
head movement occurs. The playback buffer contains 5 pre-downloaded segments 11 to 15, in
Representation X. Instead of immediately downloading a new Representation Y for the next segment
11, the Oculus player starts to download segment 13 in Representation Y. According to our extensive
analysis, depending on the network bandwidth and playback buffer state, it takes 2 to 4 seconds for
the Oculus player to start playback segments in a new Representation after head movements.

6.4.2 Emulated tests: view orientation adaptation only, no quality level adaptation. In these tests
we evaluate the quantity of wasted segments due to view orientation adaptation. To do so, we make
sure the Oculus player will always select only segments at the 272w quality level by throttling the
downlink bandwidth of the S7 to 4.5 Mbps. This 4.5 Mbps cap is greater than the maximum bitrate
of the lowest quality level, 272w, but much smaller than the minimum bitrate of the second-lowest
quality level, 400w. This bandwidth restriction thus forces the Oculus player to select the lowest
quality level and eliminates the degree of freedom for quality level adaptation, isolating Oculus’
view orientation adaptation.

We use our VR testbed for these tests so that we can accurately control the motion and conduct
multiple trials of the same movement pattern. We simplify the test further by eliminating a degree
of freedom in the pitch dimension. To do so, we fix one servo motor in our testbed so that the pitch
value of GearVR is always zero. We then use the other motor to rotate in the yaw dimension.

We setup the motor to rotate periodically, every 2, 5, or 10 seconds. During each period, we rotate
the motor 5, 10, 30, or 90 degrees. When loaded with GearVR and S7, it takes the motor about 50 ms
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Fig. 11. Number of wasted segments under differ-
ent emulated test se�ings. For all emulated tests
reported in this figure, the motor rotates a total of
180 degrees in yaw motion. “5 degrees” in the legend
means the motor rotated 5 degrees a time, 36 times
in total. The total number of segments in our test
video is 282.

to rotate 5 degrees and 800 ms to rotate 90 degrees. In all tests, the motor starts from the left most
yaw orientation (from the motor’s perspective) < yaw = 0, pitch = 0 > and rotates to the rightmost
position < yaw = 180, pitch = 0 >, a total of 180 degrees. For example, if the motor rotates 30
degrees every 5 seconds, it would take 6 rotations, a total of 30 seconds to finish 180 degree rotation.
If the motor rotates 5 degrees every 5 seconds, it would take 36 rotations, to finish the rotation in
180 seconds. When the motor rotates 5 degrees every 10 seconds, it would take 360 seconds to finish
the rotation. This 360 second duration is longer than our 283-second test video. To adjust for this
discrepancy, we use the number of wasted segments in the 283-second-long test to estimate how
many segments would have been wasted if the motor rotated for 360 seconds. Once rotation finishes,
Oculus continues the rest of video playback with fixed orientation at < yaw = 180, pitch = 0 >.
For each test setup, we conduct 3 trials and report the average.

The results are shown in Figure 11. The number of wasted segments is positively correlated with
the number of rotations, while rotation interval does not have a significant impact on the number
of wasted segments. When the motor rotates in 5 degree increments for a total of 36 times, 46
(extrapolated from 16.3% of the total 282 segments) downloaded segments are wasted on average.
The number of wasted segments is reduced to 37 (13.1% of the total 282 segments) when the motor
rotates 18 times in 10 degree increments, 22 (7.8% of the total 282 segments) wasted segments when
the motor rotates 30 degrees a time for a total of 6 times, and 6 (2.1% of the total 282 segments)
wasted segments when the motor rotates 90 degrees a time for a total of 2 times.

6.4.3 Fixed orientation tests: quality level adaptation only, no view orientation adaptation. In
fixed orientation tests, we fix the GearVR’s orientation to < yaw = 0, pitch = 0 > so that it will
download offset cubes in only one single orientation. We also disable bandwidth throttling so that
adaptation occurs over quality levels only. Before each test, we use “speedtest.net” [12] to estimate
the downlink bandwidth of the S7 and to ensure that the network bandwidth is greater than 20
Mbps. We conducted 3 fixed orientation tests. The results are shown in Figure 12 and Figure 13. In
these tests, Oculus downloaded a total of 353 segments on average. The tests show that 71 (25.2% of
the total 282 segments) downloaded segments were wasted. On average, 11% of bytes downloaded
during these tests are wasted.
Figure 14 shows the percentage of segments in each quality level that were downloaded. The

majority of segments were downloaded in low quality levels: 42.7% in 272w and 36.9% in 400w.

6.4.4 Real user tests: both view orientation adaptation and quality level adaptation. We also asked
5 volunteers to watch our test video in GearVR. When downlink bandwidth throttling is enabled,
Oculus downloaded 133 (47.2% of the total 282 segments) wasted segments on average (shown
in Figure 12). Note that our test video contains 282 segments. This means 32% of all downloaded
segments during video playback are wasted due to view orientation adaptation. Figure 13 shows
that these wasted segments constitute close to 20% downloaded bytes.
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We then disabled downlink bandwidth throttling to study the impact of both view orientation
and quality level adaptation. As in previous tests, we use speedtest.net to ensure that the S7’s
downlink bandwidth is greater than 20 Mbps before each test starts. The results are shown in Figure
12 and Figure 13. On average, 162 (57.4% of the total 282 segments) downloaded segments were
wasted, more than 36% of all downloaded segments during video playback. As a result, on average,
20% of bytes downloaded during these tests are wasted.

In these real user tests without bandwidth throttling, more segments in lower quality levels are
downloaded compared to the fixed orientation test configurations. Figure 15 shows the results.
While only 42.7% segments were downloaded at the lowest quality level of 272w in fixed orientation
tests, 60.5% of the segments were downloaded in the lowest quality level during real user tests.
We suspect that the pattern of users’ head movements caused more downloaded segments to be
wasted. When switching to a new orientation, Oculus prefers to download segments in low quality
to avoid missing the timely playback deadline.

6.5 Discussion

Streaming adaptation for offset projections can be generalized as a multi-dimensional adaptation
problem. In the past, researchers have proposed solutions for the multi-dimensional adaptation
problem in different contexts, such as multi-camera 3D tele-immersive systems [20, 27] and image-
based rendering [17].

When designing an effective adaptation algorithm for a 360-degree video streaming system that
uses offset projections, many variables must be taken into consideration when selecting the best
offset segment from an offset projection to download.
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First, we must consider how well it is possible to predict a user’s view orientation. Under perfect
prediction, it is clear that offset projections will outperform standard projections. In addition, since
perfect predictions cannot improve as the view deadline approaches, it never makes sense to re-
download different versions of segments in the buffer. Under imperfect prediction, re-downloading
strategies may make sense, but we must be able to improve predictions, and possibly understand
how much these predictions improve, as the view deadline approaches.
Next, we must consider bandwidth variation. For example, with constant bandwidth rates, we

would be able to maintain a buffer of a single segment and, assuming better predictions closer
to the view deadline, we could download the offset segment whose orientation best matches
the predicted user view immediately before it was displayed to the user. With high bandwidth
variability, different concerns come into play. Here, re-downloading segments may make sense if
segment orientations near the front of the buffer are likely to be bad. In this case, re-downloading a
previously-downloaded segment may reduce the effective available bandwidth used to downloaded
future segments.

Finally, different offset projections experience different changes in visual quality as the difference
between segment orientation and view orientation increases. Offset projections where this quality
drop is large will require correspondingly accurate user view predictions. For known view prediction
accuracies, it may be possible to select a corresponding offset size to optimize view quality.

7 CONCLUSION

In this paper, we investigated the performance of a collection of offset spherical projections for en-
coding 360-degree videos. A key finding from our analysis of offset projections lies in understanding
how these methods devote more information to a direction on the 360-degree view. This directional
concentration is accomplished through a simple, yet novel method of distorting spherical angles.
This direction-specific distortion allows the offset projection to transmit information about a user’s
view more efficiently than non-offset projections when a streaming device understands which
portion of the image is being viewed.
We quantified the effectiveness of these offset projections compared to their non-offset equiv-

alents by generating a large sample of rendered views from the offset projections in different
orientations. As expected, we found that the farther away the view is from the offset projection’s
orientation, the lower the quality of the view. In general, offset projections can produce better
visual quality than their non-offset equivalents as long as the user’s view orientation is within 40
or 50 degrees of the offset orientation. The only exception is the offset barrel projection, where the
offset barrel projection consistently performs worse than the standard barrel projection. Instead,
better visual quality can be achieved by applying the offset on the horizontal plane only.

Streaming 360-degree videos encoded in offset projections require a combination of bitrate and
view orientation adaptations. We evaluated these adaptations in the context of Oculus streaming
client for the offset cubic projection. To do so, we both emulated user head movement using a
mechanical test harness and conducted tests where human users controlled the device. We found
that the Oculus player (re-)downloads a segment with a new offset cube orientation whenever an
abrupt orientation change occurs. As a result, over 57% extra segments are downloaded compared
to an ideal downloading strategy, wasting about 20% of the total downloading bandwidth.
As 360-degree video streaming increases in popularity and begins to consume a greater share

of Internet bandwidth, work to develop better encodings will become increasingly important.
Our analysis of offset projection has demonstrated that significant improvements over the status
quo are possible, but also that there is still room for improvement, especially in achieving better
performance in segment selection during 360-degree video adaptive streaming.
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