Content-Adaptive Display Power Saving for Internet Video
Applications on Mobile Devices

YAO LIU, SUNY Binghamton

MENGBAI XIAQO, George Mason University
MING ZHANG, George Mason University

XIN LI, Samsung Telecommunications America
MIAN DONG, AT International, Inc.

ZHAN MA, Nanjing University

ZHENHUA LI, Tsinghua University

LEI GUO, The Ohio State University
SONGQING CHEN, George Mason University

Backlight scaling is a technique proposed to reduce the display panel power consumption by strategi-
cally dimming the backlight. However, for mobile video applications, a computationally intensive luminance
compensation step must be performed in combination with backlight scaling to maintain the perceived ap-
pearance of video frames. This step, if done by the CPU, could easily offset the power savings via backlight
dimming. Furthermore, computing the backlight scaling values requires per-frame luminance information,
which is typically too energy intensive to compute on mobile devices.

In this paper, we propose Content-Adaptive Display (CAD) for two typical Internet mobile video applica-
tions: video streaming and real-time video communication. CAD uses the mobile device’s GPU rather than
the CPU to perform luminance compensation at reduced power consumption. For video streaming where
video frames are available in advance, we compute the backlight scaling schedule using a more efficient dy-
namic programming algorithm than existing work. For real-time video communication where video frames
are generated on-the-fly, we propose a greedy algorithm to determine the backlight scaling at runtime. We
implement CAD in one video streaming application and one real-time video call application on the Android
platform and use a Monsoon power meter to measure the real power consumption. Experiment results show
that CAD can save more than 10% overall power consumption for up to 55.7% videos during video streaming
and up to 31.0% overall power consumption in real-time video calls.

CCS Concepts: *Information systems — Multimedia streaming;
General Terms: Algorithm, Experimentation, Measurement

Additional Key Words and Phrases: Internet Mobile Streaming, Real-time Video Communication, LCD, Dis-
play, Power Saving, Backlight Scaling

ACM Reference Format:

Yao Liu, Mengbai Xiao, Ming Zhang, Xin Li, Mian Dong, Zhan Ma, Zhenhua Li, Lei Guo, Songqing Chen.
Content-Adaptive Display Power Saving for Video Applications on Mobile Devices. ACM Trans. Multimedia
Comput. Commun. Appl. 9, 4, Article X (March 20XX), 20 pages.

DOI: http://dx.doi.org/10.1145/2996461

Author’s address: Y. Liu, Dept. of Computer Science, Binghamton University, State University of New York.
M. Xiao, Dept. of Computer Science, George Mason University. M. Zhang, Dept. of Computer Science, George
Mason University. X. Li, Samsung Telecommunications America. M. Dong, AT International, Inc. Z. Ma,
Nanjing University. Z. Li, Tsinghua University. L. Guo, Dept. of Computer Science and Engineering, The
Ohio State University. S. Chen, Dept. of Computer Science, George Mason University.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights for components of this work owned
by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or repub-
lish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.

© 20XX ACM. 1539-9087/20XX/03-ARTX $15.00

DOI: http:/dx.doi.org/10.1145/2996461

ACM Transactions on Multimedia Computing, Communications, and Applications, Vol. 9, No. 4, Article X, Publication date: March 20XX.

X2 Y. Liu et al.

1. INTRODUCTION

With the ever-increasing network and mobility support, video applications such as
video streaming and real-time video communication are gaining increased popularity
among mobile users. However, these video applications are limited by the battery ca-
pacity on mobile devices. According to Carroll and Heiser, the display subsystem is
responsible for about 38% to 68% of the total power consumption during video play-
back [[Carroll and Heiser 2010]. Unlike the wireless network interface cards, whose
power consumption can be reduced by putting them into low power sleep mode for as
long as possible, mobile display panels cannot be put into sleep mode and must be kept
active while the video application is running.

To save power consumed by Liquid-Crystal Displays (LCD), backlight scaling has
been proposed. This technique reduces power consumption by dimming the display
backlight. Meanwhile, the brightness perceived by the human eye is maintained by
increasing the affected image’s luminance. By simultaneously scaling the backlight
and increasing the luminance of the image, the original image can be rendered with
little distortion.

However, implementing the backlight scaling strategy with luminance compensa-
tion to save power in Internet mobile video applications is challenging. First, backlight
scaling values must be determined subject to the following constraints: (i) To main-
tain image fidelity, the backlight level cannot be lower than a point determined by the
brightness characteristics of an image. Any algorithm used to enforce this constraint
must compute the maximum pixel luminance of every frame. This computation can
be both time and energy intensive; (ii) It is infeasible to adjust the backlight level for
every frame because the display hardware takes time to perform the adjustment; and
(iii) Large inter-frame backlight variation can cause flickering effects, constraining
the range of such adjustments. Second, luminance compensation must be performed
for every pixel in every video frame. Thus, increasing the luminance for the entire
frame of a high resolution video on a high resolution display could consume tens of
millions of CPU cycles. While a powerful CPU could complete this task in real time,
the corresponding power consumption overhead could negate the power saved by dim-
ming the backlight. Therefore, previous studies often suggested these tasks should be
performed offline using extra computing resources [Cheng et al. 2007; |Pasricha et al.
2003]], making backlight scaling hardly practical.

In this paper, we propose Content-Adaptive Display (CAD) power saving mecha-
nisms for reducing display power consumption for two typical Internet mobile video
applications: video streaming and real-time video communication. Instead of using the
CPU, CAD uses the OpenGL for Embedded Systems (OpenGL ES) API to interface
with the Graphics Processing Unit (GPU) on mobile devices to adjust pixel luminance
for video applications, allowing a net power savings in combination with the backlight
scaling strategy. For applications such as video streaming, where videos are avail-
able in advance, we propose a dynamic programming approach for determining back-
light scaling assignments, which has a lower complexity than existing algorithms. The
per-frame luminance information required by the dynamic programming algorithm is
computed offline using external computing resources. For real-time video applications,
such as video call, where video frames are generated on the fly, we propose a greedy
algorithm that computes the backlight scaling level in an online manner.

We implement CAD in both a mobile video player application and a real-time video
call application on the Android platform. The video player application sets the back-
light according to the backlight scaling assignment computed externally and simulta-
neously compensates the brightness by increasing pixel luminance through GPU com-
putations during video playback. We installed the video player application on three

ACM Transactions on Multimedia Computing, Communications, and Applications, Vol. 9, No. 4, Article X, Publication date: March 20XX.

Content-Adaptive Display Power Saving for Internet Video Applications on Mobile Devices X:3

Android devices. A Monsoon power meter is used for real measurements of power con-
sumption. Results show that on a randomly selected set of 1000 YouTube videos at the
resolution of 720P, CAD can achieve more than 10% overall power savings for up to
55.7% of the videos. The real-time video call application runs on all parties in the call.
Receivers of video frames determine the backlight level using the greedy algorithm
based on the per-frame pixel luminance information calculated by the senders and
perform luminance compensation based on the selected backlight level. Experiment
results using the Monsoon power monitor show that CAD can save up to 31.0% power
consumption on average. Our evaluations of the video call quality based on frame rate,
user perceived latency, and image fidelity in Peak-Signal-to-Noise Ratio (PSNR) and
Structure SIMilarity (SSIM) show that CAD introduces negligible impact on the re-
ceived video call quality.

The remainder of the paper is organized as follows. Section |2| discusses the back-
ground. We present the backlight determination algorithms in Section [3| and the sys-
tem design of our Content-Adaptive Display power saving mechanism in Section
Section 5| describes the implementation details of our Android applications, and Sec-
tion[6l discusses our evaluation results. We discuss related work in Section[7]and make
concluding remarks in Section

2. BACKGROUND

A visible image on an LCD display is produced by both backlight and the LCD panel
which stores pixel color information. The perceptual luminance is the backlight inten-
sity compensated by the pixels. Previous studies have pointed out that the backlight of
an LCD display dominates the energy consumption of the display subsystem [Carroll
and Heiser 2010; [Simunic et al. 2001]. Therefore, power can be saved if we reduce the
backlight intensity level of the LCD display.

Backlight scaling is a technique that exploits this characteristic. Figure [1| sketches
the high-level idea. The power consumption of displaying an image can be reduced via
dimming the backlight. If nothing else is done, it will lead to image distortion, i.e., a
darker version of this image, which is normally defined as the resemblance between
the original video image and the backlight-scaled image [Cheng et al. 2007; T'sai et al.
2009]. One way to resolve the problem is by simultaneously scaling the backlight level
and increasing the luminance of every pixel [[Chang et al. 2004; |Cheng and Pedram
2004; (Choi et al. 2002; Pasricha et al. 2003]. In this way, image fidelity can be pre-
served, and increasing the pixel luminance does not increase the power consumption
of the display.

While the idea of increasing the luminance of video frames at runtime to compensate
for a dimmed backlight is intuitive, a significant challenge arises when attempting to
adjust the luminance of every pixel in every video frame in an energy efficient manner.
Many existing techniques rely on the CPU to perform per-pixel manipulation [Cheng
and Pedram 2004;|Choi et al. 2002]] but this may significantly offset the power savings
achieved via backlight dimming. To avoid the computationally intensive step on the
mobile device, Hsiu et al. and Lin et al. propose not to perform luminance compen-
sation, but instead, simply to choose a critical backlight level for each frame as the
scaling constraint [Hsiu et al. 2011 Lin et al. 2014]. This, however, can lead to a large
amount of distortion of the displayed frames. Instead of using the CPU, Ruggiero et
al. consider a special multimedia processor, the Freescale . MX31, which has an Image
Process Unit (IPU) that can be used to perform the luminance adjustment task [Rug-
giero et al. 2008]]. Rather than a client-side solution, Pasricha et al. and Cheng et al.
propose to migrate the computation to an intermediate proxy server that computes
backlight scaling values and transcodes the original video to a luminance-adjusted
version [Pasricha et al. 2003; Cheng et al. 2007].

ACM Transactions on Multimedia Computing, Communications, and Applications, Vol. 9, No. 4, Article X, Publication date: March 20XX.

X4 Y. Liu et al.

Perceived
Display

RGB Values Backlight

.
10,
+ 100% e

+ -

Fig. 1. Backlight Scaling on LCD screen

Compared to existing work, our proposed solution can save display consumption
while maintaining image fidelity without relying on either a specialized processor for
pixel luminance compensation or intermediate servers for video transcoding. Instead,
CAD uses the Graphics Processing Unit (GPU) to perform the computation.

3. BACKLIGHT DETERMINATION ALGORITHMS

In this section, we first discuss a set of constraints associated with backlight scaling.
Then we present an offline dynamic programming algorithm and an online greedy
algorithm for computing backlight scaling levels in CAD.

3.1. Display Power Saving Constraints

CAD is based on the Backlight Scaling method [Choi et al. 2002]], which saves power
consumption by dimming the backlight level. Suppose the display backlight levels lie
within the range (0, 1], where a value of 0 indicates that the backlight is off, and a
value of 1 indicates that it is set to maximum brightness. With backlight scaling, for
every frame in the video, we would like to set the display backlight level to b € (0, 1].
To avoid fidelity loss under reduced backlight levels, we adopt Luminance Compensa-
tion [Cheng et al. 2007; Tsai et al. 2009]. We increase the luminance of every pixel in
the frame by a factor of ; (i.e., increasing the Y component of the YUV representation
of every pixel). In this way, the observed pixel luminance, Y’, is adjusted to a value
that is the same as that of the original frame’s: b x Y’ = bx Y x % =Y. With joint back-
light scaling and luminance compensation, display power consumption can be reduced
without any observable fidelity loss.

For every frame in a video, the backlight scaling value must be determined according
to the following three constraints:
Distortion Constraint. The Y component of a pixel can not be scaled to higher than
its maximum value, 255. Therefore, if b is chosen to be a value such that Y x % > 255,
then the observed luminance of the adjusted pixel with the reduced backlight will
be lower than the luminance under the original brightness level, distorting the dis-

ACM Transactions on Multimedia Computing, Communications, and Applications, Vol. 9, No. 4, Article X, Publication date: March 20XX.

Content-Adaptive Display Power Saving for Internet Video Applications on Mobile Devices X:5

played image. In previous work, this distortion has been referred to as a “clipping
artifact” [Cho and Kwon 2009]. To avoid creating these “clipping artifacts”, we must
limit any backlight adjustments to b > YQT‘Q*, where Y;,,,, is the maximum pixel lumi-
nance in the frame. This distortion-based constraint gives rise to a lower bound on the
adjusted backlight level for every frame in the video.

User Experience Constraint. While setting the backlight level of every frame to its
lowest possible value subject to the distortion constraint can maximize power savings,
users could experience inter-frame brightness distortion, often perceived as flickering,
if the variation in backlight scaling levels between two consecutive frames is too big.
Therefore, we need to limit the brightness variation between two consecutive frames
to reduce this flickering effect. We denote this constraint as b; x (1 — Ap) < byq <
b x (1 + Ayp), where b, denotes the backlight level at frame ¢, and A, is the ratio of
change limit in backlight level.

Hardware Constraint. The display hardware requires a minimum amount of time to
apply any brightness adjustments. Therefore, it is impossible to adjust the backlight
level promptly for every video frame. Instead, we must specify a minimum interval (in
terms of numbers of frames), ¢,,;,,, where the backlight level must remain constant for
all frames.

3.2. Compute Backlight Scaling Offline Using Dynamic Programming

Given the constraints described above, we have designed a dynamic programming al-
gorithm to compute backlight scaling levels for maximized power savings. Given a
sequence of maximum pixel luminance values of video frames, our dynamic program-
ming algorithm computes the values of B(t,b), the minimum cumulative backlight lev-
els ending at frame ¢ with the backlight level of frame ¢ set to b. B(t, b) can be computed
by the following recurrence:

B(t,b) = szb?/z(b x (t—t)+ B(t',V)) (D

Given the hardware constraint, the backlight must be constant for an interval of at
least ¢,,;, frames. In the recurrence above, t' is the last frame of the constant back-
light interval that immediately precedes the interval frame ¢ belongs to, subject to the
constraint ¢’ < t — £,,,;,. b’ is the backlight level of frame ¢/, i.e., the backlight light
level of the previous interval, and is subject to the A; constraint discussed above. This
algorithm will minimize power consumption if a linear relationship exists between
backlight levels and display power. We confirm that such a linear relationship exists
in Section[6

We also add an additional constraint, ¢,,,., specifying the maximum length of an in-
terval. This decision is motivated by two considerations. First, setting the algorithm to
use fixed-length intervals of constant brightness produces suboptimal behavior. This is
because large changes in maximum luminance exist at many positions within a video.
These change points are unlikely to align with boundaries of any preset fixed-length
interval. As a result, a large number of fixed-length intervals would cross change-
point boundaries, leaving a portion of these intervals assigned to higher backlight lev-
els than necessary. On the other hand, if we were to consider all possible lengths of
constant-brightness intervals, the algorithm would be optimal but computation would
have a complexity of O(T? x |b|?), where T is the total number of frames in the video,

ACM Transactions on Multimedia Computing, Communications, and Applications, Vol. 9, No. 4, Article X, Publication date: March 20XX.

X:6 Y. Liu et al.

1: > On input lum, an array of length 7', indicating maximum luminance values for
each frame of a video containing a total of 7' frames, compute output, an array
containing minimum backlight brightness values subject to constraints.

2: > Compute the recurrence

3: for tin [{(,,;,,T]) do

4 fort' in [t — {4z, t — binin] do

5: for b in [max(lum[t' + 1:t])/255,1] do
6: for & in [b/(1 + Ap),b/(1 — Ap)] do
7: if b x (t —¢') + B[t',V] < BJ[t,b] then
8: Blt,bl =bx (t—t') + B[t/,V]
9: H[t, b = (', V)

10: > Backtracking phase

11: output = array(T)

12 t=T

13

: b= arg min Bl[t, V]
b/
14: while ¢ >=0do
15: (') = HIt, b
16: output[t' +1:¢]=0b
17: return output

Fig. 2. Computing the backlight scaling data with O(T x (fmaz — €min + 1) X |b|?) complexity, where |b|
indicates the number of possible values of b. In the algorithm, B[t,b] indicates the minimum cumulative
backlight levels ending at frame ¢ with the backlight level of frame ¢ set to b, T" indicates the number of
frames in the video, £,,;, is the shortest allowed constant backlight interval (in frames) and £,,42 is the
longest, lum|[t’ : t] indicates a subarray of the input lum, from video frame ¢’ to t, A}, encodes the constraint
specifying the allowable ratios of adjacent brightness intervals, and H|t,] is a history array that records
how the minimum backlight array B|t, b] was constructed.

and |b| is the number of possible values of bE] which is unsuitable for our application.
Motivated by the fact that long intervals of constant brightness can be expressed by
concatenating shorter intervals, we can choose constant brightness intervals whose
length is not fixed, but lie within a small range of values (i.e., between ¢,,,;, and ¥,,,,.).
This allows regions of constant brightness intervals to align more closely with a video’s
luminance profile, thus achieving near-optimal total brightness levels. Therefore, the
lmaz constraint can reduce the complexity of our algorithm at the cost of only a mini-
mal increase in total brightness over the course of video frame rendering.

Our algorithm thus consists of a forward step where the values of B(¢,b) are com-
puted and a backward step where the values of b;, the backlight value at video frame ¢,
are recovered. Pseudocode to compute the dynamic programming recurrence is shown
in Figure

3.3. Determine Backlight Level Online Using Greedy Algorithm

While a dynamic programming algorithm can maximize power savings while satisfy-
ing all constraints, it requires all frames of a video be available in advance. This can
work for video streaming applications. However, in real-time video applications, such
as video calls, frames are generated on the fly. Using dynamic programming to deter-
mine backlight level would require waiting for enough frames to be buffered (and thus
calculate the optimal backlight levels), inevitably increasing the user-perceived delay.

1This is similar to the algorithm proposed by Lin et al. for determining optimal backlight scaling levels with
O(N2M?(N +1n M +d?)) complexity, where N is the number of frames, M is the number of backlight levels,
and d is the minimum duration before a backlight level change [Lin et al. 2014].

ACM Transactions on Multimedia Computing, Communications, and Applications, Vol. 9, No. 4, Article X, Publication date: March 20XX.

Content-Adaptive Display Power Saving for Internet Video Applications on Mobile Devices X7

1: > Oninput (¢, Y™ V' t'), where V' is the last adjusted backlight level and ¢’ is the
corresponding frame index, we generate b, the backlight level of the ¢ frame.

2: if t = 1 then

3 b < Y;meT /255

4: t ¢t

5: bt — bl

6: return b,

7. if t — t' < i, then

8: return v/

9: by < Y;maT /255

10: if b, < b’ x (1 — Ap) then

11: b b x (1—Ayp)

12: else if b, > b’ x (1 + A;) then

13: Vb +(14+4y)

14: else

15: b+ b

16: by < U

17: '+t

18: return b;

Fig. 3. Determining backlight level using greedy algorithm.

Given the stringent timing requirement in video calls, it is not possible to satisfy all
three constraints. Therefore, we propose a greedy algorithm that attempts to relax the
distortion constraint. This algorithm determines the current backlight level only based
on the latest information from the last frame. In this way, little latency is introduced
into the system. We expect our scheme will not lead to significant distortion based on
the intuition that few scene changes are likely to exist in video call sessions.

The pseudocode of our greedy algorithm is shown in Figure [3| The backlight level
of frame ¢, b;, only depends on ¥, the backlight level of the last constant backlight
interval, ¢/, the last frame of the last constant backlight interval, and Y;"**, the maxi-
mum luminance of frame ¢. During the adjustment, b; still has to conform to the user
experience constraint and the hardware constraint. Distortion may occur if there is
significant change in Y;"**, and b; can not be adjusted to satisfy the distortion con-
straint. Assuming that there are no frequent scene changes in video calls, we expect
such distortion is rare and will be corrected gradually in next adjustment operations.

4. SYSTEM DESIGN

In this section, we present the design of two systems that leverage the offline and
online CAD for reducing the display power consumption for mobile video streaming
and mobile real-time video calls, respectively.

4.1. Mobile Video Streaming

In video streaming, all frames of the video are available beforehand. Therefore, we
could compute the backlight scaling information offline using the dynamic program-
ming algorithm and send this information to the mobile device before video streaming
starts. The mobile devices can then use such information to dynamically adjust its
LCD display backlight level during video playback.

Meanwhile, to compensate for the dimmed display and maintain image fidelity, the
mobile device increases the luminance level for every pixel in every frame that is as-
sociated with a dimmed backlight level. That is, given the backlight scaling level b

ACM Transactions on Multimedia Computing, Communications, and Applications, Vol. 9, No. 4, Article X, Publication date: March 20XX.

X:8 Y. Liu et al.

for rendering frame f, we increase the luminance of every pixel p in frame f from
Y}, its original luminance, to Y, = Y, x %, and retain the original U, and V, values.

This luminance scaling allows the video frame to be rendered on the display without
fidelity loss. Note that this luminance compensation has to be performed on all frames
that are rendered at scaled backlight level to maintain consistent contrast levels. This
computation must occur as long as the backlight intensity is not set to its default value.

This luminance compensation step requires a floating point data operation for every
pixel in every frame. Therefore, the total computation load generated by operations on
an entire frame would be infeasible for the CPU to perform given the time constraints
of live video playback. In addition, even if CPUs operating at higher frequency could ac-
complish this task in time, the extra power consumed could offset the savings achieved
by dimming the backlight. The GPU, on the other hand, is able to perform a large num-
ber of tasks in parallel, enabling it to compute adjusted luminance over many pixels
in a timely manner. Therefore, we use the OpenGL ES API to interface with mobile
device GPUs, enabling these GPUs to perform the luminance compensation task in an
online manner.

4.1.1. Deciding Whether to Use Display Adaptation. While using the GPU for luminance
compensation, we need to take into account the additional power consumed by the
GPU, i.e., we need to determine whether net power savings can be achieved by com-
paring GPU incurred power consumption overhead with display power that can be
saved via backlight scaling. Our approach toward this problem involves three steps:
(i) We build models to estimate the power consumption of different devices at different
backlight brightness settings during video playback using power measurement results.
We also estimate a fixed rate of power consumption of the GPU on these devices based
on power measurement results. (ii) We use these models, given the input of a sequence
of minimum backlight scaling values calculated using the dynamic programming al-
gorithm, to estimate the display energy consumption during video playback. (iii) We
compare these energy consumption values with baseline values to estimate the total
energy saved, then compare this saved amount to our estimate of GPU energy con-
sumption. If the value of display energy savings exceeds that of GPU energy consump-
tion, then we can be reasonably confident that backlight scaling will save power when
playing the video, and we can apply our scaling method. Although savings may not
be possible for all videos, over the course of typical mobile device usage, significant
savings could be achieved.

4.2. Mobile Real-time Video Call

For real-time video communication, since the frames are not available in advance, we
employ the online CAD mechanism and let the sender cooperate with the receivers
for backlight scaling. Specifically, we organize the backlight scaling tasks into three
modules: the Scanning module at the sender side, and the Adjustment module and
the Rendering module at the receiver side. Figure [4|illustrates the organization and
interaction of these three modules.

Sender-Side Scanning and Piggybacking: The Scanning module extracts the per-
frame pixel luminance information. In real-time video communication, frames are gen-
erated by the video capturer, e.g., a physical camera. Since it is impossible to access
the whole video content in advance, the scanning module is necessary to generate the
luminance histogram for later backlight level determination and luminance compen-
sation. Typically, video call sessions involve multiple N > 2 participants, and the ren-
dered frame is composed by all received frames (including the frame captured by the
receiver itself). While it is possible to conduct the scanning after receiving the video
content at the receiver side, in our design, the scanning module is located at the sender

ACM Transactions on Multimedia Computing, Communications, and Applications, Vol. 9, No. 4, Article X, Publication date: March 20XX.

Content-Adaptive Display Power Saving for Internet Video Applications on Mobile Devices X:9

Sender Device

Scanning
Module

YUV l

Capturer

encoder

,,,,,,,,,,,,,,,,,,,,,,,,, i,,,,,,,,,,,,,,,,,

(=2

decoder

luminance
= |Adjustment

information
Module

adjusted
backlights

Rendering

. Module
luminance—compensated
RGBA

Display

Receiver Device

Fig. 4. Architecture and major components of our online greedy display power saving system.

side. In this way, each generated frame will only need to be scanned once. (Otherwise,
every receiver needs to conduct scanning for the same frame individually.) However,
this brings another problem: how to transmit this luminance information to the re-
ceivers if scanning is done at the sender side. Building another channel is possible, but
it introduces additional overhead and extra efforts must be made to synchronize the
frames and the luminance information. Either of them may not arrive at the receiver
on time.

To address this problem, we choose to encode this information with the frame data
for more efficient luminance information transmission. The bottom corners are the
best candidates for encoding this information. This position is either covered by frames
from other participants, or negligible when the frame is resized to a smaller size. Since
the encoded luminance information may get lost in the video encoding process or dur-
ing network transmission, we propose to put this information at multiple positions
that are known in advance by all participants. The receiver extracts the information
and uses the maximum value among the candidates. It then passes the value to the
Adjustment module for determining backlight scaling level.

Greedy Backlight Adjustment: The Adjustment module is located at the receiver
side. This module determines the appropriate backlight levels from the luminance in-
formation using the greedy algorithm in Figure [3| After this, the new backlight levels
associated with each frame are sent to the Rendering module for backlight scaling
and pixel compensation.

GPU-assisted Rendering: The Rendering module for real-time video call is similar
to GPU-assisted rendering in mobile video streaming as discussed in Section ad-
justing the display backlight level according to the Adjustment module and using the
commonly available GPU on today’s mobile devices to enhance the pixel luminance.

For video calls, since the GPUs are already enabled for resizing, composing the re-
ceived frames, and performing RGB-YUV conversion, little power consumption over-
head can be expected from including an additional pixel compensation task. Therefore,
there is no need to determine whether display adaptation should be employed. Lumi-

ACM Transactions on Multimedia Computing, Communications, and Applications, Vol. 9, No. 4, Article X, Publication date: March 20XX.

X:10 Y. Liu et al.

nance compensated frames rendered with scaled backlight level allows users to see
frames with no distortion from the original version.

5. IMPLEMENTATION

We have implemented two display power saving applications on Android. These two
applications use the offline dynamic programming algorithm and the online greedy
algorithm, respectively. Next, we present the implementation details of these two An-
droid applications.

5.1. Mobile Video Streaming

5.1.1. Generating Backlight Scaling Data Offline. In mobile video streaming, since the video
data is available in advance, we compute the backlight scaling schedule externally by
a standalone application that aims to maximize power savings while satisfying the
constraints. The external application first decodes the video using the ffmpeg library
Then, it determines the minimum backlight level required by each frame using the
dynamic programming algorithm described in Figure |2l We also compute backlight
scaling information that results in greater power savings but causes a small number of
pixels to be displayed with an observed luminance lower than the original luminance.
We refer to this as “pixel distortion”. If up to d% pixel distortion per frame can be
tolerated, we can choose the (100—d) percentile luminance of every frame instead of the
maximum luminance as input to the dynamic programming algorithm. The generated
backlight scaling data is stored in a file with each value coupled with the corresponding
frame index. This data is then sent to the mobile video player application before video
playback.

5.1.2. Runtime Backlight Scaling and Luminance Compensation. We implement the concur-
rent backlight scaling and luminance compensation in an Android video player appli-
cation. To program GPU to increase pixel luminance, we use OpenGL for Embedded
Systems (OpenGL ES)E] OpenGL ES is a cross-platform 2D 3D graphics API. It is de-
signed for handheld and embedded devices such as mobile phones, PDAs, and video
game consoles. Notable platforms supporting OpenGL ES 2.0 include iPhone 3GS and
later versions, Android 2.2 and later versions, and WebGL.

In the video player application, we use the MediaPlayer provided by Android to de-
code the video stream. Instead of rendering the decoded video frames onto the de-
fault Surface, we create a GLSurfaceView, wrap it into a Surface object, and set the
MediaPlayer to use this Surface as the video data sink so as to divert the video frames
into the GLSurfaceView object.

To adjust the luminance of all pixels of the frame as a result of an adjusted bright-
ness level, we set up a customized Renderer in the GLSurfaceView that implements the
Vertex Shader and the Fragment Shader. Since pixels have been converted by the An-
droid system from YUV to RGB color space for rendering, the Fragment Shader must
convert the color space back to YUV before luminance compensation can be performed.
The Vertex Shader just sets up the vertex positions without any transformation. Next,
we scale the Y value of the pixel to Y’ and convert the YUV representation back to
RGB color space using Y’/, U and V. By scaling the backlight brightness level and the
pixel luminance simultaneously, power consumption is reduced and the image fidelity
is maintained.

2 http://www.ffmpeg.org/
3 http://www.khronos.org/opengles/

ACM Transactions on Multimedia Computing, Communications, and Applications, Vol. 9, No. 4, Article X, Publication date: March 20XX.

http://www.ffmpeg.org/
http://www.khronos.org/opengles/

Content-Adaptive Display Power Saving for Internet Video Applications on Mobile Devices X:11

5.2. Mobile Real-time Video Call

We have also implemented a real-time video call application by integrating our on-
line greedy algorithm-based CAD into the WebRTC open source projectE] We link this
component to the WebRTC Android application and use this application for evaluation.

The scanning module is implemented in C++ and is hooked after where the captured
frames are generated. In practice, the camera on Android mobile devices produces
frames in YUV format, and the scanning module directly extracts the Y component of
each pixel in the frame, which represents the luminance. Then we select the maximum
value of Y among all pixels in a frame and encode it into the Y data panel. Because
frame information may be lost due to packet loss during network transmission or due
to video compression, we encode the maximum luminance value in multiple positions
in the Y data panel. After that, the updated frames are sent to the encoder. There is
one scanning module in every video call participants.

The adjustment and the rendering modules are both implemented at the JAVA layer.
One adjustment module and one rendering module are required for each video stream,
including the stream produced by the host itself, for processing and rendering frames
of this stream. For example, if a video call involves two devices, there will be two
adjustment modules and two rendering modules on each device to process two streams.
For each stream, these two modules run on independent threads and are connected by
a YUV frame queue.

The adjustment module receives the YUV frames from the decoder and reads the
maximum frame luminance information that is encoded in each frame. Since this in-
formation is encoded in multiple places and some may be corrupted or lost, we con-
servatively select the greatest value among all the candidates. We use this maximum
luminance information to determine the future backlight level based on our greedy
algorithm when rendering this frame. After that, the frame is en-queued to be pro-
cessed by the rendering module, and a three-tuple (stream-id, frame index, adjusted
backlight level) is stored into a global hash table.

Given that a device has to render at least two streams (one from itself and the other
from the other end of the call) in a video call, CAD collects the backlight level candi-
dates by using the index of the next frame combined with its stream-id to look up the
hash table. The candidate with the greatest value is selected, and backlight scaling and
pixel compensation are performed based on the selected value. Video call frames are
rendered by invoking the rendering modules sequentially. It fetches the YUV frame
from the queue, and uses the OpenGL ES shaders to do resizing, luminance com-
pensation, and YUV to RGB conversion. Eventually the framebuffer generated by the
shaders is flushed to the screen.

6. EVALUATION

To evaluate our content-adaptive display power saving mechanisms for video applica-
tions, we have installed our video player application and video call application on An-
droid devices. To accurately measure the power consumption during video streaming
playback and video calls, we use a Monsoon power monitorﬁ] to supply power directly.
Figure [5|shows the setup of our experiments.

6.1. Mobile Video Streaming

To evaluate our offline CAD during video streaming playback, we have installed our
video player application on a Samsung Galaxy Tab 2 10.1-inch tablet, a Samsung

4 http://www.webrtc.org/
5 http:/www.msoon.com/LabEquipment/PowerMonitor/

ACM Transactions on Multimedia Computing, Communications, and Applications, Vol. 9, No. 4, Article X, Publication date: March 20XX.

http://www.webrtc.org/
http://www.msoon.com/LabEquipment/PowerMonitor/

X:12 Y. Liu et al.

Fig. 5. Power measurement setup.

Table |. Parameters for display power consumption model: p = w; xb+w2,
where b € [0.5, 1] is the normalized display backlight level, and the GPU
power consumption overhead of our application on three Android devices.

Display power model GPU power

w1 wo R? consumption
10.1-in Galaxy Tab 2 | 3512.7 | 1053.4 | 0.993 578 mW
7.0-in Galaxy Tab 2 2321.5 | 499.2 | 0.995 558 mW
Nexus 9 2897.0 | -216.4 | 0.999 867 mW

Galaxy Tab 2 7-inch tablet, and a Nexus 9 tablet. Both Samsung Galaxy Tab de-
vices have the TI OMAP4430 SoC which includes the PowerVR SGX540 GPU. pro-
grammable using OpenGL ES 2.0. The Nexus 9 tablet uses the NVIDIA Tegra K1 SoC
with a Kepler DX1 GPU. The LCD displays on these devices support 255 backlight
levels. To build the supported backlight level table, we evenly pick 255 numbers in the
range (0, 1].

For experiments and analysis, we used 1000 videos at the quality of 720P. These
videos were randomly selected from YouTube using the random prefix sampling
method proposed by Zhou et al. [Zhou et al. 2011]|.

6.1.1. Display and GPU Power Consumption Models. We build a display power consump-
tion model as a function of brightness. We play a video with the “Gallery” application
supplied by Android and measure its power consumption using the Monsoon power
monitor. To maintain reasonable user experience, we restrict the minimum normalized
backlight luminance level to 0.5. The results are shown in Figure [6} We find that the
power consumption of 10.1-inch Galaxy Tab can be best represented with the follow-
ing linear model: y = w; x b+ ws, where b € [0.5, 1] is the normalized display backlight
level, w; = 3512.7, and wy = 1053.4, with R? = 0.9928. In addition, we also measure
the GPU power consumption on the 10.1-inch tablet. We set the backlight to maxi-
mum level and compare power consumption when GPU is not used with when GPU is
used to scale pixel luminance by 1.0 (no effect). Power measurement results show that
when using GPU for luminance compensation to play videos at 30 frames per second,
the GPU consumes a constant amount of power, around 578 mW. The parameters for
the linear display power consumption models for all three devices as well as the GPU
power consumption overhead of our application are shown in Table [, We use our dis-
play and GPU power models in combination with computed backlight scaling data to
decide whether the CAD mechanism should be employed to save power.

6.1.2. Power Savings with Backlight Scaling. To calculate backlight scaling schedule, we
first determine appropriate values for parameters required in the algorithm, includ-
ing /., and A,. We set these parameters to different values and compute the corre-
sponding backlight scaling. Five users were asked to watch videos played using our
CAD mechanism and report whether they noticed flickering or distortion during play-

ACM Transactions on Multimedia Computing, Communications, and Applications, Vol. 9, No. 4, Article X, Publication date: March 20XX.

Content-Adaptive Display Power Saving for Internet Video Applications on Mobile Devices X:13

24600 23000 22800
E4400 E2s00 E2600
= 4200 = < 5400
_g 4000 .+ _g 2600 _g

£ Soon E 2400 E 2000
3 32200 2

£3400 S 51800
83200 (2000 o

O o00l O © 1600
5800 21800 21400
£2600 £ 1600 £ 1200

0.5 0.5 0.5 1

0.6 0.7 0.8 0.9
Normalized Backlight Level
(a) 10.1-inch Galaxy Tab 2 (b) 7-inch Galaxy Tab 2 (c) Nexus 9

06 07 08 09 06 07 08 09
Normalized Backlight Level Normalized Backlight Level

Fig. 6. Display power consumption model.

g g ¢ S
[~ c
8 8385 g
= . = Q
g 4 g sf £
= H > 2
2 2 254 £
Q 3N QS 3
(@] k [&] [&]
5 no adaptation — o 2 no adaptation — 5 2 no adaptation —
2 2 schedule-0% — = schedule-0% — = schedule-0% —
& schedule-2% - 8 1.5 schedule-2% - n? 15 schedule-2%
. schedule-5% — . schedule-5% —] schedule-5% —
00 Ti 00 400 600 00 Ti 00 400 600 0 100 200 300 400 500 600
ime (s) ime (s) Time (s)
(a) 10.1-inch Galaxy Tab 2 (b) 7-inch Galaxy Tab 2 (c) Nexus 9

Fig. 7. Measured results: power consumed by the entire device with backlight scaling.

back. We found that when we set A, to 0.06, users did not perceive any flickering. We
thus use 0.06 for backlight scaling data generation. Similarly, we found that setting
Lmin = b produces no observable display hiccups. We therefore enforce that the display
backlight level remains stable for at least 5 frames.

We use the Monsoon power monitor to measure real power savings. Figure |7|shows
the overall power consumption of playing one video under different settings. This video
is 9 minute 56 seconds long (596 seconds) and is encoded at 30 frames per second. In
Figure |7 “schedule-0%” represents the setting where backlight scaling data is com-
puted offline using maximum luminance data per frame, while “schedule-2%” repre-
sents the experiment setting where backlight scaling data is computed offline using
98-percentile luminance data per frame.

For the 10.1-inch Galaxy tablet, when our CAD mechanism is not used, the GPU is
put into sleep mode, the average overall power consumption is 4898 mW. When we ap-
ply backlight scaling that yields no distortion, the average overall power consumption
is 4963 mW, slightly higher than without adaptation. On the other hand, if up to 2%
pixel distortion is allowed, the average power consumption can be reduced to 3518 mW,
a 28% savings. If up to 5% pixel distortion is allowed, the average power consumption
is further reduced to 3264 mW, a 33.4% savings. For the 7-inch Galaxy tablet, when
the CAD mechanism is not used, the average overall power consumption is 3091 mW.
When we apply joint backlight scaling and luminance compensation that yields no
distortion, the average overall power consumption is 3509 mW. This is higher than
without adaptation because the GPU power consumption is greater than the amount
of power that can be saved at the display. On the other hand, if up to 2% distortion is
allowed, the average power consumption can be reduced to 2658 mW, a 14% savings.
If up to 5% distortion is allowed, the average power consumption is further reduced to
2583 mW, a 16.4% savings. For Nexus 9, when the CAD mechanism is not used, the

ACM Transactions on Multimedia Computing, Communications, and Applications, Vol. 9, No. 4, Article X, Publication date: March 20XX.

x
=

Y. Liu et al.

______ 1 1
_5 0.8 _5 0.8 _5 0.8 ~
° ° 51 .
© © ©
w 0.6 w 0.6 C 0.6
o o o
= = =
S04 T 04 T 04
=] =] >
g schedule-0% — g A schedule-0% — g s schedule-0% —
O 0.2 schedule-2% --- O 0.2 Ny schedule-2% --- O 0.2 K4 schedule-2% ---
schedule-5% — A schedule-5% — L schedule-5% —
R schedule-10% - - - schedule-10% - -- schedule-10% - --
0 & 0 = 0=
-500 0 500 1000 1500 -500 0 500 1000 1500 -500 0 500 1000 1500
Power Savinas (mW) Power Savinas (mW) Power Savinas (mW)
(a) 10.1-inch Galaxy Tab 2 (b) 7-inch Galaxy Tab 2 (c) Nexus 9

Fig. 8. Estimated amount of power savings (accounting for GPU power consumption) for 1000 720P videos
downloaded from YouTube. Power savings is computed under different settings of pixel distortions.

average overall power consumption is 3201 mW. When no distortion is allowed, the
average overall power consumption is 3750 mW, higher than without adaptation. On
the other hand, if up to 2% distortion is allowed, the average power consumption can
be reduced to 2663 mW, a 16.8% savings. If up to 5% distortion is allowed, the average
power consumption is further reduced to 2603 mW, a 18.7% savings.

To examine our CAD mechanism on a larger pool of videos, we run the dynamic
programming algorithm on all 1000 720P videos randomly selected from YouTube. For
each video, we decode the video and extract the maximum, 98-percentile, 95-percentile,
and 90-percentile pixel luminance for every frame. We use this data as input to our dy-
namic programming algorithm, which computes the backlight scaling level assignment
for each frame that will yield no distortion, up to 2%, 5%, and 10% pixel distortion per
frame respectively. Given the backlight scaling level assignment data, we further use
the power consumption models to examine if and how much net power savings can be
achieved (i.e., display power savings being greater than GPU power consumption).

Figure [8 shows the results. For the 10.1-inch Galaxy tablet, results show that if no
distortion is allowed, 38 out of 1000 videos can save power with the CAD mechanism.
If more distortion can be tolerated, more power can be saved: 57.8% videos can save
power with negligible (up to 2%) pixel distortion, 77.7% videos can save power with up
to 5% pixel distortion. If up to 10% pixel distortion is allowed, 88.6% videos can save
power, and 55.7% videos can save more than 490 mW (10% on the 10.1-inch Galaxy)
on average. For the 7-inch Galaxy tablet, Figure [§(b) shows that if no distortion is
allowed, only 10 out of 1000 videos can save power. However, if more distortion can
be tolerated, 31.7%, 54.0%, and 73.9% videos save power with up to 2%, 5%, and 10%
pixel distortion, respectively. In addition, 34.7% videos can save more than 309 mW
(10% on the 7-inch Galaxy) on average with up to 10% pixel distortion. For Nexus 9, if
no distortion is allowed, only 6 out of 1000 videos can save power. When more distortion
can be tolerated, 20.1%, 35.7%, and 57.0% videos can save power with up to 2%, 5%,
and 10% pixel distortion, respectively. Under up to 10% pixel distortion, 27.6% videos
can save more than 320 mW (10% on Nexus 9) on average.

For backlight scaling schedules that may produce pixel distortion, we calculate their
peak signal-to-noise ratio (PSNR) and structural similarity (SSIM) between the ren-
dered video and the non-backlight-scaled video. We find that the PSNR values are
always greater than 29 dB, 24 dB, and 20 dB, when up to 2%, 5%, or 10% pixels
are rendered with lower observed luminance than their original luminance, indicat-
ing good rendered frame quality. Our results also show that even with up to 2%, 5%,
and 10% pixel distortion, the SSIM values are always greater than 0.99, while existing
schemes [[Hsiu et al. 2011;|Lin et al. 2014] that choose not to perform the computation-
ally intensive luminance compensation step can only yield SSIM values around 0.9.

ACM Transactions on Multimedia Computing, Communications, and Applications, Vol. 9, No. 4, Article X, Publication date: March 20XX.

Content-Adaptive Display Power Saving for Internet Video Applications on Mobile Devices X:15

8000
7000 [Jaa~
§6000 -
£
5 50001
=
& 4000}
original —
greedy-bright ---
3000} greedy-dusky - I
greedy-dark —
2000

0 20 40 _ 60 80 100 120
Time (s)

Fig. 9. Power consumption of the Samsung tablet during real-time video communication under different
scenes.

6.2. Mobile Real-time Video Call

To evaluate the performance of our online CAD power saving for real-time video calls,
we installed our real-time video call application on two Android devices: a Nexus 4
smartphone and a Samsung Galaxy Tab 2 10.1-inch tablet. In our experiments, we
set up video calls between the two devices in the same local area network (LAN) in
order to minimize the impact of the network. Parameters for the greedy algorithm are
set according to experiments in Section We measure real power consumption
during video calls and examine if video call quality has been affected by our online
CAD scheme.

6.2.1. Power Savings in Real-time Video Call. We measure the power consumption under
scenes with different levels of brightness: bright, dusky, and dark. Under the bright
scene, the maximum pixel luminance of frames captured by the camera is close to 255,
which leaves our online CAD scheme very little space for backlight scaling. Under the
dusky and dark scenes, the maximum luminance value is smaller, approximately 190
and 107, respectively. This allows more power to be saved by backlight scaling while
maintaining user perceived brightness via luminance compensation.

We compare the power consumption of our online CAD scheme under different
scenes with the power consumption of the original WebRTC application. Figure [9]
shows the results measured from the 10.1-inch Galaxy tablet. Under bright scene, the
original WebRTC applications consumes 6935 mW power on average, while the power
consumption of our application with online CAD is 7160 mW, slightly higher than the
original application. This is expected because extra modules are used by our appli-
cation, consuming extra power, while the backlight is never dimmed throughout the
video call. Under dusky and dark scenes, since the original WebRTC application does
not take brightness into consideration, its power consumption is almost the same as
bright scene, 6935 mW. However, our application with online CAD mechanism grad-
ually dim the backlight according to the greedy algorithm, reducing the power con-
sumption shown as the beginning descendent gradient. As a result, the average power
consumption is only 6235 mW and 4783 mW, respectively, saving 10.1% and 31.0%
power compared to the original WebRTC application.

6.2.2. Video Quality. We next examine the quality of video calls made under our online
CAD scheme. We focus on four metrics: frames per second (FPS), peak signal to noise

ACM Transactions on Multimedia Computing, Communications, and Applications, Vol. 9, No. 4, Article X, Publication date: March 20XX.

X:16 Y. Liu et al.

Table Il. FPS of video stream originating from Nexus 4 smartphone to
Samsung tablet.

Input Sent Output

E [6 E [6 E [6

Bright scenario
Original App || 23.78 | 1.66 || 19.09 | 2.81 || 13.91 | 4.41
Online CAD 23.99 | 1.18 18.79 | 3.06 13.60 | 3.17
Dark scenario
Original App 8.02 | 1.37 8.00 | 0.42 4.85 | 0.72
Online CAD 7.85 0.48 8.00 0.18 4.96 0.53

ratio (PSNR), structural similarity (SSIM), and user-perceived video call latency. We
compare our scheme with the original WebRTC app.

Frame Rate. The original WebRTC application collects statistics about the number of
frames that are captured by the camera, the number of frames encoded at the sender,
and the number of frames decoded and rendered at the receiver every second. We rely
on these statistics to examine if the frame rate is affected.

We find that at the sender side, the number of frames that are encoded varies signif-
icantly if there are moving objects. The frame rate is highest when the frame content
is static. We therefore focus on static scenes in our frame rate experiments. This al-
lows us to evaluate our scheme during video call with high frame rate. We expect if our
scheme will not impact the video call with high frame rate, it will not impact the calls
with lower frame rate either. Each experiment video call lasted 5 minutes. The reso-
lution of captured video is set to 640x480. During the experiments, we measured the
frame rates under scenes with different brightness. Note that the original WebRTC
application limit the frame generation rate to 30 frame per second, and at most 15
frames are rendered per second. Since we implemented our application based on the
original WebRTC, our application is also subject to these limitations.

Table[[T|shows the frame rate of the video stream originated from the Nexus 4 smart-
phone to the Galaxy tablet in different stages. The Input column indicates the rate of
frames captured by the camera. The Sent column indicates the frame rate of the video
stream encoded by the sender. This stream is sent over the network and decoded at
the receiver side. The final rendered frame rate is shown in the Ou#put column. In this
table, F stands for the expectation of the result and ¢ is the corresponding standard
deviation. The table shows that the frame rate is always lower in the dark scenario
even in the original WebRTC application. We find this frame rate degradation is due
to the specific implementation of the original WebRTC application. Comparing the two
extreme scenarios, i.e., bright and dark, yielding the highest frame rate and the lowest
frame rate, we find there is no degradation of video quality in terms of frame rate.
Image Fidelity. Image fidelity loss could occur in the online CAD mechanism for two
reasons: (i) the maximum pixel luminance of frames increases abruptly, causing the
Distortion Constraint to be violated; and (ii) the luminance information piggybacked in
the delivered frames is lost due to video compression or network transmission. To mea-
sure video quality, we calculate the PSNR and SSIM between the receiver-observed
video stream and the original stream captured at the sender. To align the frames, we
insert a black frame into the streaming every 10 frames as the anchor. Then we record
all the frames on both sides. We only compare the frames between two anchor frames
[iIiItlhere are exactly 10 frames recorded on both sides. The results are shown in Table

We first run the original WebRTC application under scenes with different bright-
ness. For example, under the dusky scene, due to video compression, the PSNR and
SSIM between the rendered frame and the original captured frame are 41.79 dB and
0.98, respectively. We use these values as a baseline and see if the greedy algorithm

ACM Transactions on Multimedia Computing, Communications, and Applications, Vol. 9, No. 4, Article X, Publication date: March 20XX.

Content-Adaptive Display Power Saving for Internet Video Applications on Mobile Devices X7

Table lll. PSNR (dB) and SSIM between the rendered
video stream and the original captured frame.

Original WebRTC App Online CAD
E]) E |1 ¢

Bright Scene

PSNR || 41.89 4.85 41.79 | 4.85

SSIM 0.98 0.01 0.98 | 0.01
Dusky Scene

PSNR 41.79 4.85 41.79 | 4.85

SSIM 0.98 0.01 0.98 | 0.01
Dark Scene

PSNR || 44.86 6.88 41.63 | 9.78

SSIM 0.97 0.01 0.97 | 0.01

used in online CAD causes more fidelity loss. The results show that the PSNR and
SSIM of online CAD under the same dusky scene has the same value of 41.79 dB and
0.98, indicating video quality is not affected. Under the bright scene and the dark
scene, the SSIM values are also the same. The PSNR values are slightly decreased
when using online CAD. However, the PSNR values are still above 40 dB, indicating
there is very little distortion.

User-perceived Video Latency. We also measure the user-perceived video call delay.
To minimize the impact of wide area network dynamics, we conduct the experiments
in the same LAN. To measure the end-to-end delay, we place the camera on the mobile
device in front of a stop watch and compare the timestamps rendered on two devices
using the method proposed by Yu et al. [Yu et al. 2014]. In the original WebRTC appli-
cation, we find the average latency is 261 ms during the video call. When the online
CAD scheme is applied, the average latency is increased to 302 ms, indicating approx-
imately 40 ms delay is introduced due to the additional processing.

7. RELATED WORK

Two types of displays are primarily used on mobile devices: Liquid Crystal Display
(LCD) and Organic Light-Emitting Diode (OLED) display. The sources of power con-
sumption in these two types of displays differ significantly. While the majority of LCD
power is consumed by its backlight regardless of the displayed content, OLED displays
do not have backlights, and emit light directly from pixels. OLED power consumption
is directly related to the color of the pixels displayed. Given these different characteris-
tics, different mechanisms have been proposed for saving power depending on display
type.

For OLED displays, existing work mainly focuses on changing the color of dis-
played content to save display power consumption. For example, Dong and Zhong
proposed Chameleon, a mobile web browser for OLED displays [Dong and Zhong
2012]]. Chameleon can reduce display power consumption by adapting a webpage’s
color scheme to a more power-efficient one on OLED displays. Tan et al. proposed
FOCUS that can save power by darkening portions of the display that are outside of
users’ current region of interest [Tan et al. 2013]]. For video streaming, Chen et al. pro-
posed DaTuM to apply dynamic tone mapping functions to color compositions on OLED
screens [Chen et al. 2015]]. These color-changing schemes, however, could significantly
change the visual content, which could further lead to inferior user experiences.

For LCD displays, existing work focuses on how to effectively use backlight scaling
to save power without compromising the user experience. For example, Hsiu et al. and
Lin et al. applied backlight scaling without the energy-intensive luminance compen-
sation step [Hsiu et al. 2011; Lin et al. 2014]]. Videos were analyzed beforehand, and
every frame was assigned a “critical” backlight level to maintain a minimum accept-

ACM Transactions on Multimedia Computing, Communications, and Applications, Vol. 9, No. 4, Article X, Publication date: March 20XX.

X:18 Y. Liu et al.

able level of video quality. Anand et al. focused on saving LCD power consumption
during mobile game play [Anand et al. 2011]l. They proposed to apply backlight scaling
while increasing image luminance using the Gamma function during the final render-
ing phase in 3D games. Yan et al. conducted a user study to investigate how reduced
backlights affect users’ subjective viewing experience [Yan et al. 2015]]. However, the
authors did not consider luminance compensation in their study.

Our CAD approach differs from the methods described above in that it uses the GPU
to perform luminance compensation. This use of GPU computation yields larger net
power savings and better video quality compared to backlight scaling-only approaches.
This article builds on our preliminary conference versions [Liu et al. 2015; Xiao et al.
2015|] in two ways. First, it presents a unified approach toward luminance compen-
sation under different video display contexts. Second, compared to our preliminary
version, we have evaluated our proposed CAD scheme on a more diverse set of mobile
devices, across a larger set of videos. Our new results show that CAD can effectively
save display power consumption on a variety of mobile devices that are equipped with
different GPUs. In addition, our experiments on a newly selected set of 1000 randomly
selected YouTube videos at the high resolution of 720P demonstrate with higher confi-
dence that CAD can be adopted to save power on mobile devices.

8. CONCLUSION

In this work, we have designed and implemented Content-Adaptive Display (CAD)
power saving mechanisms for reducing display power consumption of Internet video
applications on mobile devices. CAD improves on previous backlight scaling schemes
by using the GPU instead of the CPU for online luminance adjustment. In video
streaming, we have designed an offline dynamic programming algorithm to pre-
compute the backlight scaling schedule externally. During video playback, we perform
backlight scaling and luminance compensation only when net power savings can be
achieved. In real-time video communication, we have proposed an online greedy al-
gorithm to run at the video stream receiver to compute its backlight on the fly and
perform luminance compensation accordingly. In addition, the luminance information
of every frame is computed at the sender side, avoiding repeated computation at mul-
tiple receivers. Experiment results show that CAD can effectively save more than 10%
overall power consumption in video streaming for more than 55.7% of test videos ran-
domly selected from YouTube and up to 31.0% overall power consumption in real-time
video communication while maintaining good streaming quality.

Future Work. In the future, we plan to recruit a large sample of mobile users and
conduct a more comprehensive study to uncover the relationship between users’ mean
opinion scores (MOS) and backlight scaling parameter settings in our algorithms. Sub-
jective user studies can complement our current objective metric-based video quality
assessment by establishing stronger connections between these existing measures and
user-centric data.

9. ACKNOWLEDGEMENT

We appreciate constructive comments from anonymous reviewers. The work is par-
tially supported by the High-Tech Research and Development Program of China (“863
- China Cloud” Major Program) under grant 2015AA01A201, by the National Natu-
ral Science Foundation of China (NSFC) under grants 61432002 (State Key Program),
61632020 (State Key Program) and 61471217, by the CCF-Tencent Open Fund un-
der grants IAGR20150101 and IAGR20160101, and by the NSF under grant CNS-
1524462. Preliminary versions of this manuscript are published in the proceedings of
NOSSDAYV 2015 and ISLPED 2015 [Liu et al. 2015; Xiao et al. 2015].

ACM Transactions on Multimedia Computing, Communications, and Applications, Vol. 9, No. 4, Article X, Publication date: March 20XX.

Content-Adaptive Display Power Saving for Internet Video Applications on Mobile Devices X:19

REFERENCES

Bhojan Anand, Karthik Thirugnanam, Jeena Sebastian, Pravein G Kannan, Akhihebbal L Ananda,
Mun Choon Chan, and Rajesh Krishna Balan. 2011. Adaptive Display Power Management for Mo-
bile Games. In Proceedings of the 9th International Conference on Mobile Systems, Applications, and
Services. 57-70. DOI : http://dx.doi.org/10.1145/1999995.2000002

Aaron Carroll and Gernot Heiser. 2010. An Analysis of Power Consumption in a Smartphone. In Proceedings
of the 2010 USENIX Conference on USENIX Annual Technical Conference (USENIX ATC’10). USENIX
Association, 271-284.

Naehyuck Chang, Inseok Choi, and Hojun Shim. 2004. DLS: Backlight Luminance Scaling of Liquid Crystal
Display. IEEE Transactions on Very Large Scale Integration (VLSI) Systems 12, 8 (Aug 2004), 837-846.
DOI: http:/dx.doi.org/10.1109/TVLSI.2004.831472

Xiang Chen, Yiran Chen, and Chun Jason Xue. 2015. DaTuM: Dynamic Tone Mapping Technique for OLED
Display Power Saving Based on Video Classification. In 2015 52nd ACM /| EDAC /IEEE Design Automa-
tion Conference (DAC). 1-6. DOI: http:/dx.doi.org/10.1145/2744769.2744814

Liang Cheng, Shivajit Mohapatra, Magda El Zarki, Nikil Dutt, and Nalini Venkatasubramanian. 2007.
Quality-based Backlight Optimization for Video Playback on Handheld Devices. Advances in MultiMe-
dia 2007, 1 (Jan 2007). DOI ;| http://dx.doi.org/10.1155/2007/83715

Wei-Chung Cheng and Massoud Pedram. 2004. Power Minimization in a Backlit TFT-LCD Display by Con-
current Brightness and Contrast Scaling. IEEE Transactions on Consumer Electronics 50, 1 (Feb 2004),
25-32. DOI: http://dx.doi.org/10.1109/TCE.2004.1277837

Hyunsuk Cho and Oh-Kyong Kwon. 2009. A Backlight Dimming Algorithm for Low Power and High Image
Quality LCD Applications. IEEE Transactions on Consumer Electronics 55, 2 (May 2009), 839-844.
DOI: http:/dx.doi.org/10.1109/TCE.2009.5174463

Inseok Choi, Hojun Shim, and Naehyuck Chang. 2002. Low-power Color TFT LCD Display for Hand-held
Embedded Systems. In Proceedings of the 2002 International Symposium on Low Power Electronics and
Design. 112—117. DOI :| http://dx.doi.org/10.1109/LPE.2002.146722

Mian Dong and Lin Zhong. 2012. Chameleon: a Color-adaptive Web Browser for Mo-
bile OLED Displays. IEEE Transactions on Mobile Computing 11, 5 (2012), 724-738.
DOI: http:/dx.doi.org/10.1109/TMC.2012.40

Pi-Cheng Hsiu, Chun-Han Lin, and Cheng-Kang Hsieh. 2011. Dynamic Backlight Scaling Optimization for
Mobile Streaming Applications. In Proceedings of the 17th IEEE |ACM International Symposium on
Low Power Electronics and Design. 309-314. DOI ;| http://dx.doi.org/10.1109/ISLPED.2011.5993655

Chun-Han Lin, Pi-Cheng Hsiu, and Cheng-Kang Hsieh. 2014. Dynamic Backlight Scaling Optimization: A
Cloud-based Energy-saving Service for Mobile Streaming Applications. IEEE Trans. Comput. 63, 2 (Feb
2014), 335 — 348. DOI ;| http://dx.doi.org/10.1109/TC.2012.210

Yao Liu, Mengbai Xiao, Ming Zhang, Xin Li, Mian Dong, Zhan Ma, Zhenhua Li, and Songqing Chen.
2015. Content-adaptive Display Power Saving in Internet Mobile Streaming. In Proceedings of the
25th ACM Workshop on Network and Operating Systems Support for Digital Audio and Video. 1-6.
DOI: http:/dx.doi.org/10.1145/2736084.2736087

Sudeep Pasricha, Shivajit Mohapatra, Manev Luthra, Nikil D Dutt, and Nalini Venkatasubramanian. 2003.
Reducing Backlight Power Consumption for Streaming Video Applications on Mobile Handheld Devices.
In ESTImedia. 11-117.

Martino Ruggiero, Andrea Bartolini, and Luca Benini. 2008. DBS4Video: Dynamic Luminance Back-
light Scaling Based on Multi-histogram Frame Characterization for Video Streaming Applica-
tion. In Proceedings of the 8th ACM International Conference on Embedded Software. 109-118.
DOI: http:/dx.doi.org/10.1145/1450058.1450074

Tajana Simunic, Luca Benini, Peter Glynn, and Giovanni De Micheli. 2001. Event-driven Power Manage-
ment. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 20, 7 (2001),
840-857. DOI : http://dx.doi.org/10.1109/43.931003

Kiat Wee Tan, Tadashi Okoshi, Archan Misra, and Rajesh Krishna Balan. 2013. FOCUS: a
Usable & Effective Approach to OLED Display Power Management. In Proceedings of the
2013 ACM International Joint Conference on Pervasive and Ubiquitous Computing. 573-582.
DOI: http:/dx.doi.org/10.1145/2493432.2493445

Pei-Shan Tsai, Chia-Kai Liang, Tai-Hsiang Huang, and H.H. Chen. 2009. Image Enhancement for
Backlight-Scaled TFT-LCD Displays. IEEE Transactions on Circuits and Systems for Video Technology
19, 4 (2009), 574-583. DOI :| http://dx.doi.org/10.1109/TCSVT.2009.2014022

Mengbai Xiao, Yao Liu, Lei Guo, and Songqing Chen. 2015. Reducing Display Power Consumption for Real-
time Video Calls on Mobile Devices. In Proceedings of the 2015 International Symposium on Low Power
Electronics and Design. 285-290. DOI :| http://dx.doi.org/10.1109/ISLPED.2015.7273528

ACM Transactions on Multimedia Computing, Communications, and Applications, Vol. 9, No. 4, Article X, Publication date: March 20XX.

http://dx.doi.org/10.1145/1999995.2000002
http://dx.doi.org/10.1109/TVLSI.2004.831472
http://dx.doi.org/10.1145/2744769.2744814
http://dx.doi.org/10.1155/2007/83715
http://dx.doi.org/10.1109/TCE.2004.1277837
http://dx.doi.org/10.1109/TCE.2009.5174463
http://dx.doi.org/10.1109/LPE.2002.146722
http://dx.doi.org/10.1109/TMC.2012.40
http://dx.doi.org/10.1109/ISLPED.2011.5993655
http://dx.doi.org/10.1109/TC.2012.210
http://dx.doi.org/10.1145/2736084.2736087
http://dx.doi.org/10.1145/1450058.1450074
http://dx.doi.org/10.1109/43.931003
http://dx.doi.org/10.1145/2493432.2493445
http://dx.doi.org/10.1109/TCSVT.2009.2014022
http://dx.doi.org/10.1109/ISLPED.2015.7273528

X:20 Y. Liu et al.

Zhisheng Yan, Qian Liu, Tong Zhang, and Chang Wen Chen. 2015. Exploring QoE for Power Efficiency:
A Field Study on Mobile Videos with LCD Displays. In Proceedings of the 23rd ACM International
Conference on Multimedia. 431-440. DOI ;| http://dx.doi.org/10.1145/2733373.2806269

Chenguang Yu, Yang Xu, Bo Liu, and Yong Liu. 2014. “Can You SEE Me Now?” A Measurement Study of Mo-
bile Video Calls. In Proceedings of the 33rd IEEE Internation Conference on Computer Communications
(INFOCOM 2014). 1456-1464. D01 : http://dx.doi.org/10.1109/INFOCOM.2014.6848080

Jia Zhou, Yanhua Li, Vijay Kumar Adhikari, and Zhi-Li Zhang. 2011. Counting YouTube Videos via Random
Prefix Sampling. In Proceedings of the 2011 ACM Conference on Internet Measurement (IMC ’11). 371—
380. DOI:| http://dx.doi.org/10.1145/2068816.2068851

ACM Transactions on Multimedia Computing, Communications, and Applications, Vol. 9, No. 4, Article X, Publication date: March 20XX.

http://dx.doi.org/10.1145/2733373.2806269
http://dx.doi.org/10.1109/INFOCOM.2014.6848080
http://dx.doi.org/10.1145/2068816.2068851

	Introduction
	Background
	Backlight Determination Algorithms
	Display Power Saving Constraints
	Compute Backlight Scaling Offline Using Dynamic Programming
	Determine Backlight Level Online Using Greedy Algorithm

	System Design
	Mobile Video Streaming
	Deciding Whether to Use Display Adaptation

	Mobile Real-time Video Call

	Implementation
	Mobile Video Streaming
	Generating Backlight Scaling Data Offline
	Runtime Backlight Scaling and Luminance Compensation

	Mobile Real-time Video Call

	Evaluation
	Mobile Video Streaming
	Display and GPU Power Consumption Models
	Power Savings with Backlight Scaling

	Mobile Real-time Video Call
	Power Savings in Real-time Video Call
	Video Quality

	Related Work
	Conclusion
	Acknowledgement

