
A Measurement Study of Resource Utilization in Internet
Mobile Streaming

Yao Liu1 Fei Li1 Lei Guo2 Songqing Chen1

1Department of Computer Science 2Microsoft Corporation
George Mason University Mountain View, CA, USA

{yliud, lifei, sqchen}@cs.gmu.edu leguo@microsoft.com

ABSTRACT

The pervasive usage of mobile devices and wireless network-
ing support have enabled more and more Internet stream-
ing services to all kinds of heterogeneous mobile devices.
However, Internet mobile streaming services are challenged
by the inherently limited on-device resources, device hetero-
geneity, and the bulk amount of streaming data.

In this paper, focusing on resource utilization and stream-
ing quality on mobile devices, we investigate 10 deployed In-
ternet mobile streaming services that employ client-server,
client-proxy-server, and P2P architectures from a client’s
perspective. We find that (1) existing Internet mobile
streaming services mainly use the client-server architecture
and commonly adopt burst traffic delivery that can save
battery power consumption on mobile devices; (2) to deal
with device heterogeneity, some streaming services have al-
ready utilized intermediate nodes (often the user’s home
computer) for online transcoding with a client-proxy-server
architecture, but currently they lack power-friendly design
for mobile devices; (3) a mobile device in P2P streaming
consumes significantly more battery power mainly due to
the inevitable P2P control traffic and uploading traffic to
other peers. These findings provide us new insights to fur-
ther optimize Internet mobile streaming in the future.

Categories and Subject Descriptors

C.2.4 [Distributed Systems]: Distributed applications

General Terms

Experimentation, Algorithms

Keywords

Mobile Streaming, Battery, Power, Resource Utilization,
QoS

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
NOSSDAV’11, June 1–3, 2011, Vancouver, British Columbia, Canada.
Copyright 2011 ACM 978-1-4503-0752-9/11/06 ...$10.00.

1. INTRODUCTION
Recent years have witnessed the rapid development and

wide deployment of the 802.11 and the third generation wire-
less networks. For example, Jupiter Research estimated 65%
of households in the United States have home-deployedWiFi
access points (APs) [1]. Meanwhile, the smartphone market
is also growing very fast. By September 2010, over 58.7 mil-
lion people in the US owned smartphones [2]. With the most
recent technology advancements, people today are more in-
clined to use their mobile devices to access the Internet.

In tandem with pervasive mobile Internet accesses, the
Internet media streaming services are widely accessed with
the rich and fast growing Internet bandwidth and stream-
ing media content. For example, according to Comscore,
146.3 million viewers watched more than 2 billion videos on
Youtube in October 2010 [3]. Many P2P/overlay based sys-
tems, such as PPLive [4] and PPStream [5], have enabled
easy and highly scalable live streaming in practice and have
attracted millions of users daily [6].

Naturally, under these two trends, there is a quickly in-
creasing demand for Internet streaming to mobile devices
(Internet mobile streaming hereafter). For this purpose,
both iOS and Android have native support for YouTube.
Targeting this market, more and more content providers now
allow their customers to access multimedia content on their
mobile devices via wireless connections. Most recently, Net-
flix [7] started to provide streaming services to subscribed
iPad, iPhone, and iPod Touch users. However, delivering
high quality Internet streaming to mobile devices faces sev-
eral challenges due to inherent constraints of mobile devices.

First, compared to the traditional desktop computers, mo-
bile devices commonly have limited resources, such as slower
CPU speed, smaller memory and storage sizes, and limited
battery power. Among these resources, the battery power
poses a fundamental constraint. For Internet streaming, it
often involves bulk and continuous data transmissions with
stringent timing requirements. As a result, it demands con-
tinuous operations of the mobile device, including the wire-
less network interface card (WNIC) to receive the data, the
CPU to decode the received data, and the screen to display
the media content.

Second, mobile devices are very heterogeneous, differing
from each other and from traditional desktop computers
on not only the uploading/downloading bandwidth capac-
ities, but also the screen sizes, the color depths, etc., which
we refer to as multi-dimensional heterogeneity. Thus, most
of the current popular Internet streaming content must be
customized to the appropriate image resolution, size, frame

rate, and bit rate for each mobile device. Such customiza-
tions could be done in advance or at runtime. For example,
for pre-recorded video clips, it is possible to pre-code vari-
ous versions of the same content. On the other side, if the
customization is done at runtime, it demands a great deal
of CPU cycles at either the server or the client side.

Despite these technical difficulties, Internet mobile
streaming services are booming. For example, CTV [8],
CCTV [9], WTV [10], ImgoTV [11], and NHKworld [12] all
allow iOS users to access their live TV programming content
via 3G or WiFi network. SPBtv [13] supports more diverse
platforms including iOS, Android, and WebOS. It also pro-
vides a great variety of live TV channels from different coun-
tries. Orb [14] and AirVideo [15] allow users to access media
content stored on their home computers. Justin.tv [16] even
enables users to watch live streaming content broadcasted
by other users. While these services become more and more
popular on the Internet and potentially contribute a signifi-
cant portion of Internet traffic, it remains unclear how they
have addressed the aforementioned problems and how effec-
tive their schemes are in practice.

In this paper, we investigate these Internet mobile stream-
ing services from an end user’s perspective. In particular,
we focus on the resource consumption on mobile devices and
the streaming quality received at the client side. For this
purpose, we conduct Internet measurements on 10 differ-
ent Internet mobile streaming services using client-server,
client-proxy-server, and P2P architectures. Our measure-
ment and analysis show that (1) existing Internet mobile
streaming services mainly use the client-server architecture
and commonly adopt burst traffic delivery techniques that
can save the power consumption on mobile devices; (2) to
deal with device heterogeneity, some streaming services have
already utilized intermediate nodes (often the user’s home
computer) for online transcoding with a client-proxy-server
architecture. While the intermediate proxies provide great
convenience for heterogeneous mobile devices, currently they
lack power-friendly design for mobile devices; (3) a mobile
device in P2P streaming consumes significantly more bat-
tery power mainly due to the inevitable P2P control traffic
and uploading traffic to other peers, although the P2P ar-
chitecture is most scalable. Based on these findings, we can
further optimize existing Internet mobile streaming systems.

2. INTERNET MOBILE STREAMING AND

MEASUREMENT METHODOLOGY
In this section, we briefly illustrate the three typical archi-

tectures of existing Internet mobile streaming applications,
and then describe our measurement methodology.

2.1 Internet Mobile Streaming
Today Internet mobile streaming applications mainly use

three different architectures: client-server (C/S), client-
proxy-server (C/P/S), and peer-to-peer (P2P).

2.1.1 Client-Server (C/S) Architecture

C/S is the most traditional and popular architecture.
Typically, within this architecture, a mobile device requests
streaming data from a dedicated server using standard
HTTP protocols. HTTP live streaming was made available
on iOS 3.0 in July 2009 [17].

In C/S based streaming applications, we evaluate CTV,
CCTV, W.TV, Imgo.TV, Justin.tv, SPBtv, and NHKworld.

In these applications, the media content is encoded as
MPEG-4 audio and video, and transported via TCP using
MPEG-2 Transport Stream (MPEG2-TS). A .ts file typi-
cally contains 10 second media content. For streaming ac-
cess, the client queries the server for streaming content about
every 10 seconds and the server replies with links to several
.ts files, each of which contains media content for the next
a few (typically 10) seconds in MPEG2-TS format. These
files are reassembled after being downloaded and fed into
the Media Player for playback.

2.1.2 Client-Proxy-Server (C/P/S) Architecture

Recently, placeshifting streaming services are getting pop-
ular. A placeshifting streaming system generally employs a
C/P/S architecture, where an intermediary unit, referred to
as a transcoding proxy, is needed for content customization.
In addition, the placeshifting service provider may also set
up a relay proxy to relay the content between the placeshift-
ing server and the mobile device.

In our study, we examine Orb and AirVideo, both of which
use personal computers as the placeshifting server and the
transcoding proxy. In Orb, a user can set up the placeshift-
ing server at home and register its available multimedia con-
tent with the Orb relay proxy. To access streaming services,
the placeshifting server with a built-in transcoding proxy
would transcode the video content based on its uploading
bandwidth, the downloading bandwidth of the mobile de-
vice, and the supported codec on the mobile device. Unlike
Orb that has been initially released in 2005, AirVideo does
not have good support for remote accesses.

2.1.3 Peer-to-Peer (P2P) Architecture

Lots of Internet streaming systems today have adopted
P2P techniques. While different protocols have been exten-
sively studied, in practice, most systems use a pull based
mesh structure, in which peers need to frequently exchange
control messages [6], such as buffermaps, in order to deter-
mine the data chunks to exchange with each other.

In this study, we investigate TVUPlayer [18], which uses
a peer-to-peer architecture to distribute live streaming con-
tent. To the best of our knowledge, TVUPlayer is the only
P2P based live streaming application available on iOS at
the time of this measurement. Instead of using TCP, it uses
UDP for streaming delivery.

2.2 Methodology
In the experiments, we use the second generation iPod

Touch (iTouch) running firmware version 3.1.2 to receive
streaming services. The device is jailbroken to install essen-
tial tools for logging performance statistics. The iTouch is
instructed to access 10 Internet mobile streaming services.

In the measurement, we record all incoming/outgoing
data to/from our testing device at the data link layer by
setting up Wireshark to listen on the same channel as the
iTouch in promiscuous mode. For performance analysis, we
also have logged both statistics of battery power consump-
tion and CPU usage. We take a snapshot of battery state
directly from battery every 30 seconds and we log kernel
I/O statistics and CPU usage every 15 seconds. In order to
minimize disturbance during the measurement, we mute the
speaker on the device. We also set the screen backlight to
35 (max 127) and disable auto-adjustment.

As we do not have access to the server logs, we run our
devices to access these streaming services repetitively. The
reported results in this paper are based on experiments con-
ducted from 03/20/2010 – 05/10/2010. Since we run exper-
iments without plugging the device to a power source, for
a single run, the longest session lasts for the lifetime of a
fully charged battery. As we mainly focus on the relation-
ship between resource consumption and perceived quality at
the client side, we conduct all C/S and C/P/S based mea-
surements at non-peak time, mostly from midnight to 6 AM
in the morning unless noted otherwise. For P2P, we have
conducted experiments at both peak time (8:00 PM in the
evening) and non-peak time (midnight to 6 AM in the morn-
ing). All experiments are conducted with a dedicated AP
running 802.11g deployed in a lab on a university campus
in order to minimize traffic contention. We disable all other
connections (e.g., bluetooth) on the iTouch.

For accessing each of these streaming services, two types
of tests have been conducted. The first is Stress Test to ex-
amine how long video streaming can last. Basically, we start
the streaming with a fully charged battery and keep the ap-
plication running until the device battery is exhausted. The
second is 1-Hour Test for more detailed analysis as presented
below, where we log all statistics for one hour immediately
after the application is started.

3. MEASUREMENT RESULTS
In this section, we present our measurement results of

Stress Tests. Among the 10 services we have investigated,
we present the representative ones for brevity, namely SPBtv
(a client-server (C/S) architecture), Orb (a client-proxy-
server (C/P/S) architecture), and TVUPlayer (a P2P ar-
chitecture). Some results of other services are collectively
presented or presented for comparisons.

3.1 Overview
Figure 1(a) shows the CPU usage and battery consump-

tion while the iTouch runs SPBtv to watch a video channel
with a fully charged battery. In this figure, the left-y axis
shows the CPU usage breakdown of user, system, and idle.
The right-y axis shows the remaining battery (in terms of
percentage) along the playback. The streaming rate of this
video channel is 464 Kbps. All data are received from a
dedicated server in Oregon, USA. As is shown in this figure,
starting from a fully charged battery, the streaming lasted
for about 6.4 hours. Note that Apple announced that the
battery on 2nd generation iPod Touch can last 6 hours for
video watching [19]. Our test here confirms this. On the
other hand, we also notice that the CPU is mostly (about
80%) idle in this session.

Figure 1(b) shows the result of iTouch running Orb to
watch episodes stored on a personal computer at home.
With a fully charged battery, it can watch the program of
297 Kbps for a total of 4.3 hours. Compared to C/S based
SPBtv, the watched video has a lower quality (297 Kbps vs.
464 Kbps), meaning 36% lower streaming rate. But a fully
charged battery only works for about 67% of time duration
in the C/S based SPBtv. It is also surprising that the user
level CPU usage is as high as 50%. Given that the CPU also
consumes a lot of battery power, this may explain the ear-
lier exhaustion of battery power in C/P/S based Orb with
a lower streaming rate. We will further analyze this later.

Figure 1(c) shows the result of using TVUPlayer, which
uses P2P architecture for streaming delivery. The streaming
only lasts for about 3 hours watching a 281 Kbps channel.
We also notice that the CPU usage at user level is even
higher than in the C/P/S based Orb, fluctuating between
60% and 80%.

The results above shows a mobile device in C/S based
SPBtv and C/P/S based Orb consume much less energy
compared to in P2P based TVUPlayer, even without con-
sidering the streaming rate difference. We next examine the
potential reasons, focusing on two major power consumption
sources: CPU and the network interface card.

3.2 CPU Usage Study
Since iOS 3.2.1 does not support multi-tasking, the CPU

cycles in a streaming session could mainly be used for two
purposes: decoding the received data and transcoding for
the mobile device. Decoding is to decode the received data
in the proper format for the MediaPlayer. The CPU cycles
used for decoding depend on the video format, supported
codec, the bit rate, the frame rate, the resolution, etc.

Transcoding is different and often consumes much more
CPU cycles. In mobile streaming, mobile devices have differ-
ent screen size, color depth, resolution rate, etc. from desk-
top computers, so not all streaming content can be directly
played on mobile devices. An intuitive solution to address
this heterogeneity issue is to provide different versions of the
same video content for different platform/devices. Youtube
uses this approach. Another more flexible solution is called
online transcoding, which conducts content adaptation at
runtime based on the device type, downloading bandwidth
etc. This process, although very desirable, consumes a lot
of CPU cycles at runtime.

We first investigate in SPBtv how the CPU cycles on our
iTouch were spent. Via reverse-engineering, we find that
CPU cycles are mainly spent on decoding the video content.
For SPBtv, the video is encoded in H.264 standard, which
can be decoded by hardware. H.264 has the native support
on iTouch and iPhone as we discussed in section 2. This is
confirmed by Figure 1(a) as about 80% CPU cycles are idle.

On the other hand, using a software decoder could con-
sume more CPU cycles. Figure 1(b) shows that about 40%
more CPU cycles are spent in Orb on decoding the media
data for playback. The video content of Orb is encoded
into flv format. Decoding flv on iTouch simply relies on
the software embedded in the MediaPlayer on iTouch. Note
that here the extra CPU cycles are not used for transcod-
ing on iTouch, since transcoding is done by the transcoding
proxy, co-located with the placeshifting server. The data
received by iTouch has been transcoded.

Compared to SPBtv, Figure 1(c) shows that TVUPlayer
consumes even more CPU cycles. To investigate how TVU-
Player use these CPU cycles, first, we set to examine video
codec of TVUPlayer streaming content. Given that on the
same P2P overlay, peers on Mac OS and iOS receive the
same streaming data, we start a TVUPlayer client on Mac
OS. As the playback starts, we examine all active local TCP
connections and locate the port that the MediaPlayer down-
loads streaming data from. We then start a HTTP connec-
tion that downloads data from that port to a file. A closer
examination of this file shows that it is encoded with Ad-
vanced Systems Format (ASF). However, neither Mac OS
nor iOS supports such a video format. Therefore, it is clear

0 100 200 300 400
0

20

40

60

80

100

C
P

U
 u

til
iz

at
io

n
(%

)

Time (minute)

0 100 200 300 400
0

20

40

60

80

100

B
at

te
ry

 M
et

er

User
Sys
Idle

Battery

(a) SPBtv – 464 Kbps

0 50 100 150 200 250 300
0

20

40

60

80

100

C
P

U
 u

til
iz

at
io

n
(%

)

Time (minute)

0 50 100 150 200 250 300
0

20

40

60

80

100

B
at

te
ry

 M
et

er

User
Sys
Idle

Battery

(b) Orb – 297 Kbps

0 50 100 150 200
0

20

40

60

80

100

C
P

U
 u

til
iz

at
io

n
(%

)

Time (minute)

0 50 100 150 200
0

20

40

60

80

100

B
at

te
ry

 M
et

er

User
Sys
Idle

Battery

(c) TVUPlayer – 281 Kbps

Figure 1: Stress Test: CPU and Battery Usage

0 100 200 300 400
0

2

4

6

8

10

12
x 10

6

Time (minute)

R
ec

ei
ve

d
D

at
a

(k
b)

464 Kbps
Downloading Rate

(a) SPBtv

0 100 200 300
0

1

2

3

4

5
x 10

6

Time (minute)

R
ec

ei
ve

d
D

at
a

(k
b)

297 Kbps
Downloading Rate

(b) Orb

0 50 100 150 200
0

1

2

3

4
x 10

6

Time (minute)

R
ec

ei
ve

d
D

at
a

(k
b)

281 Kbps
Downloading Rate

(c) TVUPlayer

Figure 2: Stress Test: Data Receiving vs. Playback

that TVUPlayer performs online transcoding from ASF to
the supported codec at the client side.

The results in this section show that the hardware- and
software-based decoding and transcoding can lead to signif-
icant difference in the CPU usage, and thus incur different
amount of battery power consumption.

3.3 Battery Power Consumption By Trans-
mission

Aside from the battery power consumed by the CPU, it
is believed that the wireless network interface card (WNIC)
is one of the largest drains of the battery power on mobile
devices and the power saving mode (PSM) is commonly used
in practice. In this subsection, we further study how the
battery power is consumed by the WNIC on the iTouch in
these streaming sessions.

Since we log packets at the data-link layer, we are able to
extract frame control information from IEEE 802.11 header.
One of the flags in the frame control field is Pwr Mgt. It in-
dicates the Power Management mode that the device will
switch to after this frame is transmitted. Basically, the mo-
bile device would either sleep or stay active.

First, we plot the total duration of the mobile device in the
power saving mode based on its power management activity.
For each application, we present the median of the runs we
had conducted (we ran 1-Hour Test for each application be-
tween 5 to 12 times). Figure 3 shows the percentage of time
of the WNIC in the power saving mode. As shown in this
figure, the WNIC in C/S based streaming commonly has the
longest sleeping time: it spends about 80% of total stream-
ing time in the power saving mode. In C/P/S based Orb, the
WNIC also spends about 70% of time in the power saving
mode, while in AirVideo, it can sleep more with the more ef-
ficient packetization scheme (details are omitted due to page
limit). However, in P2P based TVUPlayer, the WNIC op-
erates in the power saving mode for as little as 38% of the
session time.

CTV CCTV WTV ImgoTV Justin.tv SPBtv NHKworld Orb AirVideo TVUPlayer
0

20

40

60

80

100

S
le

e
p

 T
im

e
 (

%
)

Figure 3: Sleep Time (%) of the WNIC

While the above results show that the power saving mode
does take effect on iTouch in all the three Internet mobile
streaming delivery architectures, the results also indicate the
sleep time of the WNIC varies, which may be affected by
the number of packets transmitted, packet size, inter packet
delay, etc. Next, we investigate from these aspects in order
to understand the underlying reasons.

3.3.1 Bursty traffic delivery saves battery power
consumption

In the 802.11 power saving mode, the WNIC on a mobile
device would wake up periodically and listen for Traffic In-
dication Map (TIM). If it does not have data buffered at
the Access Point (AP), it will go to sleep. Otherwise, it will
retrieve buffered data. In the PSM adaptive mode, if no
data has arrived during last beacon interval (typically 100
ms), the WNIC can operate in the power saving mode until
the next scheduled beacon interval. Thus we first study inter
packet delay, and analyze its impact on energy consumption.

Figure 4 shows the corresponding inter packet delay dis-
tribution of the Stress Test we have studied. While In-

ter Packet considers all incoming/outgoing traffic to/from
the mobile device, Inter Streaming Packet considers only
ingress streaming data packets. In this figure, for SPBtv,
we observe that both the Inter Packet delay and the In-
ter Streaming Packet delay show a clear bimodal pattern:
about 5% packets arrive (both ingress and egress) over 20
ms after the previous packet, most of them are even over

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

10
5

0

0.2

0.4

0.6

0.8

1

x

Inter Packet
Inter Streaming Packet

(a) SPBtv

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

10
5

0

0.2

0.4

0.6

0.8

1

x

Inter Packet
Inter Streaming Packet

(b) Orb

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

10
5

0

0.2

0.4

0.6

0.8

1

x

Inter Packet
Inter Streaming Packet

(c) TVUPlayer

Figure 4: Stress Test: Inter Packet Delay (ms) (CDF)

1200 1220 1240 1260
0

0.5

1

1.5

2

2.5

3

Time (second)

T
ot

al
 T

ra
ffi

c
(M

B
)

(a) SPBtv

1200 1220 1240 1260
0

0.5

1

1.5

2

2.5

Time (second)

T
ot

al
 T

ra
ffi

c
(M

B
)

(b) Orb

1200 1220 1240 1260
0

1

2

3

4

5

6

Time (second)

T
ot

al
 T

ra
ffi

c
(M

B
)

(c) TVUPlayer

Figure 5: Stress Test: Traffic Pattern

100 ms, leaving great opportunity for WNIC to sleep for
power saving. On the other hand, the majority (over 85%)
of packets arrive within very short time interval (less than
5 ms), resulting in bursty traffic as shown in Figure 5(a).
Note Figure 5 shows the traffic pattern in 60 seconds only
for clear visual effect. The traffic pattern in other time du-
rations is similar. This indicates that the SPBtv server has
considered the power saving on mobile devices by adopting
the traffic shaping and delivery techniques.

On the other side, in C/P/S based Orb, the bimodal dis-
tribution of the inter packet delay is less pronounced. Com-
pared to SPBtv, Figure 5(b) shows the traffic in Orb is al-
most at the constant streaming rate delivered by the proxy.
This implies two things: 1) the sender in Orb does not use
any traffic shaping technique; 2) the battery power saving
simply relies on if the inter packet delay is larger than 100 ms
or not. As shown in Figure 4(b), there are still 30% packets
falling into this range, leading to battery power saving.

Similarly, Figure 4(c) shows that under P2P, only about
2% of packets have an inter packet delay larger than 100 ms,
resulting in even less battery power saving during streaming.
Figure 5(c) confirms that in P2P streaming, the streaming
rate is almost constant and the streaming traffic is not de-
livered in bursts.

3.3.2 Inefficient packetization increases battery
power consumption

Both SPBtv and Orb use TCP to transmit streaming data.
However, their traffic patterns are significantly different due
to the adoption of traffic shaping techniques in SPBtv. In
this subsection, we further examine if other factors have con-
tributed to the less power saving in Orb.

Figures 6(a) and 6(b) show the packet size distribution
for SPBtv and Orb. As shown in the figures, nearly 20%
packets in SPBtv are TCP ACKs. They are constantly 52
bytes, and contain no payload. The rest (about 80%) pack-
ets are streaming packets, whose size is the same as maxi-

mum transmission unit (MTU) in Ethernet (1500 bytes). In
Orb, however, only about 50% packets are streaming packets
with a size of 1500 bytes. Besides the 35% control packets
(TCP ACKs), the rest 15% packets are streaming packets
with smaller sizes: varying from about 100 bytes to 1500
bytes. This increases the number of packets transmitted as
such small packets could have been combined to large pack-
ets. Potentially, this further reduces the inter packet delay,
dis-allowing the WNIC from switching to the power saving
mode. Given high speed connection at both the first-mile
and the last-mile, this is less likely due to the congestion.
Rather, it means the deficiency in Orb design without con-
sidering the power consumption on the mobile device.

3.3.3 P2P control and uploading traffic leads to ex-
cessive battery power consumption

For P2P based TVUPlayer, Figure 6(c) shows that only
less than 30% packets are streaming packets with a size of
1300 bytes, with about 70% of packets having a size less
than 100 bytes. Note that most P2P streaming systems to-
day use UDP to transmit packets. Thus, these small pack-
ets can only be the control traffic of P2P protocol, such as
buffermap information exchanged with other peers. Since
P2P streaming systems require peers to exchange control
messages with neighbors frequently, this is not a surprising
result. However, these control packets significantly change
the traffic pattern, resulting in less opportunities for the
WNIC switching into the power saving mode.

In P2P streaming, besides the impact of the control traf-
fic, the amount of uploading traffic is also important since
a peer is required to upload streaming data to other peers
during streaming. This can further aggravate the power con-
sumption on a mobile device. For example, Figure 7 shows
the uploading traffic in the Stress Test of TVUPlayer. In
this figure, we can see that the uploading rate could reach
as high as 1000 Kbps, 3 times more than the downloading
rate of streaming data (281 Kbps) in the first half an hour.

100 300 500 700 900 1100 1300 1500
0

0.2

0.4

0.6

0.8

1

IP Packet Size (bytes)

(a) SPBtv

100 300 500 700 900 1100 1300 1500
0

0.2

0.4

0.6

0.8

1

IP Packet Size (bytes)

(b) Orb

100 300 500 700 900 1100 1300 1500
0

0.2

0.4

0.6

0.8

1

IP Packet Size (bytes)

(c) TVUPlayer

Figure 6: Stress Test: Packet Size (CDF)

0 50 100 150 200
0

0.5

1

1.5

U
p
lo

a
d
 T

h
ro

u
g
h
p
u
t
(M

 b
p
s)

Time (minute)

Figure 7: Stress Test:
Upload Traffic in TVU-
Player

Our measurement results show that some C/S and C/P/S
based Internet mobile streaming services have adopted tech-
niques to deal with battery power constraints and device
heterogeneity. However, the existing P2P streaming service
lacks power-efficient design and device heterogeneity han-
dling capabilities, and deserves further optimization.

4. OTHER RELATED WORK
For media applications over wireless connections, Chandra

studied typical Internet streaming services in 2002 and con-
cluded that 802.11 PSM does not save energy if the stream-
ing is over 56 Kbps [20]. Accordingly, history-based predic-
tion [20] and linear prediction [21] schemes were proposed
to schedule the WNIC into sleep or active modes. PSM-
throttling leverages traffic shaping from the client side in or-
der to allow the WNIC to sleep for longer time [22]. Target-
ing Internet P2P streaming, Tan et al. designed SCAP [23]
in order to reduce the power consumption on wireless de-
vices by caching the uploading traffic at the AP. Xiao et al.
studied the power consumption of mobile Youtube [24].

5. CONCLUSION
Despite the fundamental constraints of limited available

resources, device heterogeneity, and bulk data transmissions,
Internet mobile streaming is becoming more and more popu-
lar. In this paper, we examine the resource utilization with a
focus on battery power consumption on mobile devices in re-
ceiving such streaming services from a client’s perspective.
Our measurement and analysis show that mobile devices
have different power efficiency in receiving Internet stream-
ing services under existing architectures. Our study provides
some new insights into effective power saving on mobile de-
vices in Internet streaming and calls for future systems that
can minimize battery power consumption while be scalable
and efficient in heterogeneity handling.

6. ACKNOWLEDGEMENT
We appreciate constructive comments from anonymous

referees. The work is partially supported by NSF under
grants CNS-0746649 and CCF- 0915681, and AFOSR under
grant FA9550-09-1-0071.

7. REFERENCES
[1] V.Bychkovsky, B.Hull, A.K. Miu, H.Balakrishnan, and

S.Madden, “A Measurement Study of Vehicular
Internet Access Using In Situ Wi-Fi Networks,” in
Proc. ACM MOBICOM, 2006.

[2] “Sep. 2010 U.S. Mobile Subscriber Market Share,”
http://www.comscore.com/Press_Events/Press_

Releases/2010/11/comScore_Reports_September_

2010_U.S._Mobile_Subscriber_Market_Share.

[3] “Top U.S. Online Video Content Properties by Unique
Viewers,” http://www.comscore.com/Press_Events/
Press_Releases/2010/11/comScore_Releases_

October_2010_U.S._Online_Video_Rankings.

[4] “PPlive,” http://www.pplive.com.

[5] “PPStream,” http://www.ppstream.com/.

[6] X. Hei, C. Liang, J. Liang, Y. Liu, and K. Ross,
“Insights into PPLive: A measurement study of a
large-scale P2P IPTV system,” in Proc. of IPTV

Workshop, May 2006.

[7] “Netflix,” http://itunes.apple.com/app/id363590051.

[8] “CTV,” http://itunes.apple.com/app/id340381556.

[9] “CCTV,” http://itunes.apple.com/app/id331259725.

[10] “W.TV,” http://itunes.apple.com/app/id318676629.

[11] “ImgoTV,” http://itunes.apple.com/app/id349448995.

[12] “NHKworld,”
http://itunes.apple.com/app/id350732480.

[13] “SPBtv,” http://itunes.apple.com/app/id356830174.

[14] “OrbLive,” http://itunes.apple.com/app/id290195003.

[15] “Air Video,”
http://itunes.apple.com/app/id306550020.

[16] “Justin.tv,” http://itunes.apple.com/app/id358612216.

[17] “HTTP Live Streaming Draft,” http://tools.ietf.
org/html/draft-pantos-http-live-streaming.

[18] “TVUPlayer,”
http://itunes.apple.com/app/id323640984.

[19] “iPod touch (2nd generation) - Technical
Specifications,” http://support.apple.com/kb/SP496.

[20] S. Chandra, “Wireless network interface energy
consumption implications of popular streaming
formats,” in Proc. of MMCN, 2002.

[21] Y. Wei, S. M. Bhandarkar, and S. Chandra, “A
client-side statistical prediction scheme for energy
aware multimedia data streaming,” IEEE Transactions

on Multimedia, vol. 8, no. 4, 2006.

[22] E. Tan, L. Guo, S. Chen, and X. Zhang,
“Psm-throttling: Minimizing energy consumption for
bulk data communications in wlans,” in Proc. of IEEE

ICNP, October 2007.

[23] E. Tan, L. Guo, S. Chen, and X. Zhang, “Scap: Smart
caching in wireless access points to improve p2p
streaming,” in Proc. of IEEE ICDCS, June 2007.

[24] Y. Xiao, R. Kalyanaraman, and A. Yla-Jaaski,
“Energy consumption of mobile youtube: Quantitative
measurement and analysis,” in Proc. of NGMAST,
September 2008.

