An Empirical Evaluation of Battery Power Consumption for
Streaming Data Transmission to Mobile Devices’

Yao Liu* Lei Guo?

George Mason University

Fei Lit
'Department of Computer Science

Songqging Chen*
2Microsoft Corporation
Mountain View, CA, USA

{yliud, lifei, sqgchen}@cs.gmu.edu leguo@microsoft.com

ABSTRACT

Internet streaming applications are becoming increasingly popular
on mobile devices. However, receiving streaming services on mo-
bile devices is often constrained by their limited battery power sup-
ply. Various techniques have been proposed to save battery power
consumption on mobile devices, mainly focusing on how much
data to transmit and how to transmit.

In this paper, we conduct an experiment-based study with 11 In-
ternet streaming applications using different streaming protocols.
Our goal is to empirically investigate the battery power consump-
tion on the wireless network interface for receiving streaming data
via different approaches. Through measurement and analysis, we
find that (1) the Chunk-based streaming is widely used in practice
and it is most power-efficient because the traffic shaping technique
is adopted to utilize PSM on mobile devices to save battery power
consumption; however, it may cause quality degradation from time
to time; (2) reducing streaming data transmission (by switching to
a lower streaming quality) can marginally help save battery power
consumption in RTSP, Pseudo streaming, and Chunk-based stream-
ing applications; but it is effective for P2P streaming applications;
(3) P2P streaming to mobile devices is not power-efficient because
of the additional transmission of control traffic and uploading traf-
fic; and reducing upload alone does not help for battery power sav-
ing. Our investigation provides new insights and some guidelines
for the current Internet mobile streaming services and calls for fur-
ther research on more power-efficient and scalable Internet mobile
streaming protocols.

Categories and Subject Descriptors
C.2.4 [Distributed Systems]: Distributed applications

General Terms

Measurement, Experimentation

Keywords

Internet Mobile Streaming, Battery Power Consumption, Power
Saving, Data Transmission

*Area chair: Wei-Tsang Ooi

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

MM’11, November 28—-December 1, 2011, Scottsdale, Arizona, USA.
Copyright 2011 ACM 978-1-4503-0616-4/11/11 ...$10.00.

1. INTRODUCTION

Internet streaming to mobile devices is gaining increasingly pop-
ularity in practice. For example, CTV [1], CCTV [2], WTV [3],
ImgoTV [4], and NHKworld [5] all allow iOS users to access their
live TV programming content via 3G or WiFi network. SPBtv [6]
supports more diverse platforms including iOS, Android, Windows
Mobile, and Blackberry. It also provides a great variety of live
TV channels from different countries. Orb [7] and AirVideo [8]
allow users to access media content stored on their home comput-
ers. Justin.tv [9] even enables users to watch live streaming content
broadcasted by other users. Many cellular network providers in
the US today also provide streaming services to their subscribers,
including Verizon’s VCast [10] and AT&T’s Mobile TV [11].

Different from their counterpart of streaming to desktop com-
puters, Internet streaming to mobile devices is even more challeng-
ing because of the variety of the mobile platforms and operating
systems, less reliable wireless connections, slower CPU, limited
battery supply, etc. Among these factors, the limited battery sup-
ply is a critical constraint because most of the time mobile devices
are battery-powered. Since the network transmission could con-
sume a significant portion of the battery power, power saving on
the wireless network interface card (WNIC) has been a major di-
rection of many research efforts. The battery consumption of the
WNIC mainly depends on the following two aspects: (1) how much
data is transmitted during the streaming session? (2) how is such
data transmitted?

The first aspect is very intuitive. Under the same circumstances
of all other factors, transmitting more data would make the WNIC
work longer and thus consume more battery power. In practice, a
user can choose a low quality version of the same video clip and
expects less battery power consumption. This is easy to do because
the current practice from the industry often provides multiple ver-
sions of the same video clip with different quality (encoding rate)
for users to choose from.

While choosing a low quality version is simple for end-users and
only requires server support in advance, how to transmit data in
order to reduce battery power consumption is much more compli-
cated. Since today most of the commodity network interface card
is supported with the IEEE 802.11 power saving mode (PSM) by
defaul, it is straightforward that the PSM should be utilized to min-
imize the battery power consumption during streaming services.
However, the standard PSM has limited effectiveness for stream-
ing applications since streaming applications often involve bulk
data transmission in a continuous fashion, which would not provide
many opportunities for the WNIC to switch into PSM. Thus, plenty
of research has been conducted in order to make the WNIC to sleep
as much as possible for streaming to mobile devices and a variety
of power saving schemes have been proposed. For example, PSM-

throttling [12] proposes a client-centric scheme to enable buffering
at the server so that streaming data could be sent in burst in or-
der to maximize the sleep time of the WNIC. Proxy buffering [13]
suggests to buffer packets at a local intermediate proxy and send
them in client-specific intervals. The key idea of these schemes
is to shape the traffic so that they can be sent in burst without
degrading the streaming quality. They mainly target client/server
based streaming services. With the popularity of P2P based Inter-
net streaming, SCAP [14] has also been designed to leverage the
temporal locality of uploading and downloading data at the access
point so that less data would be required to upload from a mobile
client.

In this study, we aim to evaluate the battery power consump-
tion for Internet streaming data transmission to mobile devices in
the current practice. For this purpose, we conduct Internet exper-
iments with 11 existing Internet streaming services. These exper-
iments examine the impact of how streaming data is transmitted
and how much data is transmitted during these streaming sessions.
Our results indicate that (1) the Chunk-based streaming is widely
used in practice and it is most power-efficient because the traffic
shaping technique is adopted to utilize the PSM on mobile devices
to save battery power consumption; however, it may cause quality
degradation from time to time; (2) reducing streaming data trans-
mission (by switching to a lower streaming quality) can marginally
help save battery power consumption in RTSP, Pseudo streaming,
and Chunk-based streaming applications; but it is effective for P2P
streaming applications; (3) P2P streaming to mobile devices is not
power-efficient because of the additional transmission of control
traffic and uploading traffic; and reducing upload alone does not
help for battery power saving.

Our measurement results indicate that there is no panacea for
power saving in receiving Internet streaming on mobile devices
and further research is desired to improve the power efficiency in
receiving Internet streaming applications. A particular challenge
comes from P2P based Internet streaming, in which neither traf-
fic shaping helps, nor P2P specific schemes can provide sufficient
battery power saving benefit.

In summary, we have made the following contributions:

e Through measurement and analysis, we have provided an up-
date of the battery power efficiency on mobile devices in re-
ceiving Internet streaming services.

e We have qualitatively and quantitatively investigated the four
approaches for streaming to mobile devices, compared their
power consumption characteristics, and analyzed the under-
lying reasons.

e Our results provide new insights for future research on power
saving schemes for Internet mobile streaming and call for
a power-efficient, high quality, and scalable protocol for
streaming to mobile devices.

The reminder of the paper is organized as follows. We briefly de-
scribe the background and our measurement methodology in Sec-
tion 2 and Section 3. We study the impact of how data is transmitted
on battery power efficiency in Section 4, and we investigate the im-
pact of reduced transmission in Section 5. Some related work is
described in Section 6 and we make concluding remarks in Section
7.

2. BACKGROUND

In this section, we briefly illustrate the streaming protocols that
are currently being used by existing Internet mobile streaming ap-
plications.

2.1 RTSP Streaming

Real-time streaming protocol (RTSP) [15] is a standard Internet
streaming protocol for the communication between a media player
and a media server. RTSP is a stateful protocol that establishes
a media session between the client and the server, and allows the
client to execute VCR-like commands, such as play and pause. The
client maintains a small buffer to absorb network jitter and ensure
smooth playback. With RTSP, the streaming server delivers stream-
ing data at the rate equivalent to the object encoding rate.

In practice, today YouTube [16] and Vuclip [17] use RTSP to
deliver streaming content to mobile devices such as Blackberry,
Nokia, and SonyEricssion mobile phones.

2.2 Pseudo Streaming

While RTSP is a standard streaming protocol, Internet streaming
services today also widely use HTTP for streaming content deliv-
ery, which we call Pseudo streaming or progressive downloading.
With Pseudo streaming, a client downloads the media file from a
HTTP server. The playback can start before the entire file is down-
loaded. Pseudo streaming is used in many popular Internet stream-
ing services today, including YouTube and Vuclip. For example, a
mobile version of YouTube allows iOS and Android users to use
Pseudo streaming to watch videos in their native browsers [16].

Fast Start [18] is often used in pseudo streaming. Fast Start al-
lows the server to deliver the data at a higher speed than the encod-
ing rate at the beginning of the session and then uses a low speed
to deliver the rest of the file. This is to reduce the startup delay per-
ceived by the users as well as smoothing some network jitter during
the playback.

2.3 Chunk-Based Streaming

Chunk-based streaming also uses HTTP to deliver streaming
content. However, unlike Pseudo streaming that downloads a single
streaming file, the media content is segmented into many chunks
in Chunk-based streaming, and a client periodically queries the
streaming server for new file chunks.

Many streaming services today are Chunk-based, including Ap-
ple HTTP Live Streaming [19], Flash HTTP Streaming [20], and
Microsoft Smooth Streaming [21]. In this study, we focus on
Chunk-based streaming implemented by Apple Inc, which was
made available on iOS 3.0 in July 2009. CTV [1], CCTV [2],
W.TV [3], ImgoTV [4], Justin.tv [9], NHKworld [5], SPBtv [6],
and AirVideo [8] all use Chunk-based streaming. Among them,
AirVideo is different from other seven applications in that it al-
lows a user to set up streaming server at a desktop computer, which
transcodes the video content and delivers to the mobile device.

Typically, in Chunk-based streaming, the media content is en-
coded as MPEG-4 audio and video, and transported via TCP using
MPEG-2 Transport Stream (MPEG2-TS). They are assembled into
.t s files using File Segmenter at the server side. A .ts file typ-
ically contains 10 second media content. For streaming access, a
client queries the server for index files (.m3u8), which provides
information about availability and location of .ts files. Then the
client requests the listed media (. t s) files in order. The client usu-
ally queries the server for streaming content aboutevery 10 seconds
and the server replies with links to several . t s files, each of which
contains media content for the next a few (typically 10) seconds.
These files are reassembled after being downloaded and fed into
the Media Player for playback.

2.4 Peer-to-Peer (P2P) Streaming

Peer-to-Peer (P2P) has demonstrated in practice to be scalable
for file sharing and Internet streaming. Lots of Internet streaming

Table 1: Measured Applications

Service Protocol Transport Format
YouTube RTSP UDP 3GP/MP4
Vuclip RTSP UDP 3GP
YouTube Pseudo Streaming TCP MP4
Vuclip Pseudo Streaming TCP 3GP
AirVideo Chunk-Based TCP MPEG-TS
CTV Chunk-Based TCP MPEG-TS
CCTV Chunk-Based TCP MPEG-TS
W.TV Chunk-Based TCP MPEG-TS
ImgoTV Chunk-Based TCP MPEG-TS
Justin.tv Chunk-Based TCP MPEG-TS
SPBtv Chunk-Based TCP MPEG-TS
NHKworld Chunk-Based TCP MPEG-TS
TVUPlayer P2P Streaming UDP ASF

systems have adopted P2P techniques. For example, both PPLive
and PPStream are large scale P2P assisted multi-channel Internet
streaming systems. Within a P2P system, a peer downloads the
streaming content for the playback from other users and uploads
the downloaded content to other peers simultaneously. While dif-
ferent protocols have been extensively studied, in practice, most of
deployed Internet P2P streaming systems today are mesh-based and
they often use a pull approach for data acquisition. That is, peers
in these systems need to request data chunks from a dynamically
changing set of neighbors. To pull/request data from neighbors,
a peer first needs to exchange data chunk availability information
(e.g., buffermap) with neighbors. After knowing which data chunks
available at which neighbors, the peer then sends Streaming Data
Chunk Requests to request missing chunks from different neigh-
bors. Typically, the unit of a data chunk is small (e.g., 1280 bytes)
compared to the video file size. Thus such data chunk requests are
fine-grained, and are highly frequent. Such buffermap messages
and fine-grained data chunk requests are referred to as control mes-
sages [22].

TVUPlayer [23] uses a Peer-to-Peer protocol to distribute live
streaming content. It is available on different platforms, targeting
both desktop/laptop users (Windows, Mac OS) and mobile device
users (10S). Instead of TCP, it uses UDP for streaming delivery.

3. METHODOLOGY

To investigate the energy performance of WNIC under the four
streaming protocols as we have discussed in Section 2, we conduct
experiments with the streaming services shown in Table 1. In our
experiments, we use a 2nd generation iPod Touch (iTouch) running
10S 3.1.2 to receive streaming services. Among these services,
YouTube and Vuclip provide streaming services using both RTSP
and Pseudo streaming. TVUPlayer is the only P2P streaming ap-
plication available on iTouch at the time of this measurement. The
rest 8 applications use Chunk-based streaming through HTTP on
iTouch.

For streaming services from YouTube, Vuclip, and AirVideo,
we first access video clips from both YouTube and Vuclip via the
mobile browser on iTouch. Then we download the video clips
to a desktop running a local AirVideo server, and access it using
the AirVideo App on iTouch. For CTV, CCTV, W.TV, ImgoTV,
Justin.tv, SPBtv, NHKWorld, and TVUPlayer, we watch a stream-
ing channel from each service.

In the experiments, for streaming services delivered via Pseudo-
streaming, Chunk-based streaming, and P2P streaming protocols,

we use iTouch to receive these streaming services. Since RTSP is
not implemented on iOS, we were not able to access YouTube or
Vuclip via RTSP directly on our iTouch. Instead, we use a netbook
running Windows 7 with Maximum WiFi Power Saving en-
abled. The netbook declares itself as a mobile device, and receives
streaming data via RTSP from YouTube and Vuclip servers.

In order to record all the incoming and outgoing packets, we set
up Wireshark to listen on the same channel as the iTouch/netbook
in a promiscuous mode and capture all packets received/delivered
by our testing device.

In this study, we focus on the battery power consumed by the
streaming data transmission. In receiving streaming services on a
mobile device, there are three major power drainage sources: the
WNIC for streaming data transmission, the CPU for data decod-
ing, and the display for data rendering. Among them, the battery
power consumed by the WNIC is significant. For example, it has
been reported that the WNIC accounts for about 40% total energy
consumed in video streaming [24]. We also have confirmed this
on iTouch. Basically, we have compared the battery lifetime when
playing the locally stored video clip on the iTouch (the WNIC is
turned off) and when playing the same video clip streamed from a
local server. In a typical test, the battery can last for 8 hours and
20 minutes without network transmission, but it can only last for 5
hours 40 minutes with streaming from AirVideo. This means that
the WNIC consumes about 32% battery power in the streaming ses-
sion. Note that in the above experiment, the WNIC spends 73.5%
of the session time in the PSM when receiving streaming data from
the local server. If the WNIC spends less time in the PSM, it would
consume more battery power.

To estimate the power consumed by the WNIC for streaming
data transmission, we rely on the Pwr Mgt flag in the frame con-
trol information from IEEE 802.11 headers to determine the Power
Management mode that the WiFi interface will switch to after the
transmission of the current frame. Basically, we count the total
time the WNIC spends in the sleep mode. So instead of giving
the absolute value of energy consumed, we report and compare the
percentage of time that the WNIC spends in the sleep mode. Please
note that the sleep time of the WNIC is not necessarily propor-
tional to the power consumption of WNIC. For example, as shown
in [25], 30%, 50%, and 70% WNIC sleep time would translate to
0.67 (1/1.5), 0.57 (1/1.75), and 0.5 (1/2) WNIC battery power con-
sumption (compared to when the WNIC is always on). Neverthe-
less, the sleep time is still a good indicator of the WNIC power
consumption without using any external instrument.

As we focus on the battery power consumption at the WNIC for
data transmission in the streaming sessions under the four different
delivery protocols, we will investigate battery power efficiency un-
der these four different approaches, centering around the two fun-
damental aspects, namely (1) how data is transmitted and (2) how
much data is transmitted, in the following two sections.

4. IMPACT OF HOW TO TRANSMIT

As we discussed before, how the streaming data is transmitted di-
rectly affects how long the WNIC can stay in PSM. In this section,
we thus first examine how data is transmitted under these different
protocols, and the consequence of such transmission on the battery
power consumption on mobile devices.

4.1 Chunk-based Streaming is Most Power-
Efficient with Traffic Shaping

Figure 1 shows the throughput of traffic delivered to/from our

testing device when YouTube is accessed via RTSP and Pseudo

streaming protocols, and AirVideo is used with Chunk-based

1000

Kbps)

= 600

Throughpu

(a) RTSP

2 4
Time (minute)

a2
o O
S o
S o

Throughput (Kbps)
8
8

2000

0

2 4
Time (minute)

(b) Pseudo Streaming

Figure 1: Throughput (Kbps) in Delivering High Quality Video

Throughput (Kbps)

12000
10000
8000
6000
4000

2000

2 4
Time (minute)

(c) Chunk-based Streaming

1200

o
=3
=]

@
o
S

600

400y

Throughput (Kbps)

200

2 4
Time (minute)

(d) P2P Streaming

50

\

Total Traffic (VB)
o
Total Traffic (VB)
S 8
\

N
o

o
o

Total Traffic (VB)

50

IS
o

4]
o

S
Total Traffic (VB)

=)
-
3}

o
()
o

2 4
Time (minute)

(b) Pseudo Streaming

2 4
Time (minute)

(a) RTSP

(]
=)

2 4
Time (minute)

(d) P2P Streaming

2 4
Time (minute)

(c) Chunk-based Streaming

Figure 2: Traffic Pattern in Delivering High Quality Video

streaming, as well as TVUPlayer is used with P2P streaming in
one of their experiments. All these sessions last for 6 minutes. Fig-
ure 2 shows the corresponding traffic pattern during the 6-minute
playback.

For RTSP as shown in Figure 1(a), the throughput varies between
200 Kbps and 400 Kbps, which is close to the delivered video’s
encoding rate of 246 Kbps. As a result, the accumulated traffic
pattern shown in Figure 2(a) is close to a straight line.

Compared to RTSP that delivers YouTube video according to the
video encoding rate, Figure 1(b) shows that when Pseudo streaming
is used, the data is delivered at a much higher speed on average
although the throughput decreases to the level close to the object
encoding rate (654 Kbps) later. As shown in the figure, the average
throughput at the beginning 30 seconds reaches 3 Mbps, which is
5 times of the object encoding rate. This would lead more data to
be delivered ahead of the playback need. Correspondingly, Figure
2(b) confirms this result. Such a delivery method is called Fast Start
as we have discussed in Section 2. The benefit of such delivering is
to provide sufficient data to the player at the client slide to reduce
the startup delay as well as smoothing out some network jitter.

For Chunk-based streaming, Figure 1(c) and Figure 2(c) show
very different patterns from RTSP and Pseudo streaming when the
same video clip (886 Kbps) is delivered via AirVideo. As we can
observe from Figure 1(c), in AirVideo, the throughput has peaks
peridocially, and the peak throughput could reach 11 Mbps (about
12 times of the object encoding rate). As a result, the traffic pattern
is very bursty with a regular pattern as shown in Figure 2(c).

Figure 1(d) shows the throughput of P2P based TVUPlayer is
about 450 Kbps on average while the object encoding rate is 281
Kbps. The throughput also varies from time to time, but there is
no clear pattern as shown in Figures 1(b) or 1(c). Such a traf-
fic pattern is due to additional traffic involved in P2P streaming
applications since in P2P streaming, a peer needs to dynamically
communicate with multiple neighbors to exchange buffermap in-
formation, request streaming data, and upload to neighbors as we
have discussed in Section 2.4. Such control traffic and uploading
traffic are highly dynamic, depending on the number of neighbors
the client is communicating with at each moment.

To verify the impact of control traffic and uploading traffic in
P2P streaming, we further plot packet size distribution (CDF) and
upload throughput during this 6-minute session. Figure 3(a) shows
that the packet sizes have a bi-modal pattern. Further packet in-
spection shows that all small packets are control packets with a
size of 300 bytes or less, while all the larger packets are data pack-
ets containing file chunks. As shown in the figure, control pack-
ets account for more than 75% of total packets transferred. Such
a large number of control packets significantly reduce the inter-
packet delay and thus the idle time of the WNIC, resulting in more
battery power consumption. Figure 3(b) shows the inter packet de-
lay distribution. Inter Streaming Packet delay considers
only ingress streaming data packets. Inter Control Packet
delay considers both incoming and outgoing control packets, and
Inter Packet delay takes all packets transmitted into account.
While over 5% successive streaming packets of TVUPlayer arrive
with a delay larger than 100 ms (meaning opportunities to sleep),
about 65% control packets are sent/received within 10 ms from the
preceding one. This causes the overall Inter Packet delay to signif-
icantly deviate from Inter Streaming Packet delay patterns. Apart
from the extremely frequent control packets, Figure 3(c) shows that
the uploading throughput also reaches as high as 300 Kbps. As a
result, while the encoding rate of the video is 281 Kbps, the total
throughput varies between 300 Kbps and 800 Kbps as shown in
Figure 1(d). On the other hand, even with the control traffic and
uploading traffic, Figure 2(d) shows that its traffic pattern is close
to a straight line, similar to that of RTSP.

These results show that the streaming data are delivered differ-
ently under these four protocols. This results in significantly dif-
ferent battery power consumption on our mobile device: the WNIC
sleeps the most in Chunk-based streaming (86.7%) and sleeps the
least in RTSP streaming (23.1%) and P2P streaming (30.6%). In
Pseudo streaming, the WNIC also sleeps for more than half of the
session time (71.4%). Note that the video bit rates in RTSP and P2P
streaming are 246 Kbps and 281 Kbps, much lower than these for
Chunk-based and Pseudo streaming with the bit rates of 886 Kbps
and 654 Kbps.

-
-

IP Packet Size (bytes) Inter

(a) Packet Size (CDF)

Packet Delay (ms)

(b) Inter Packet Delay (CDF)

2 4
Time (minute)

(c) Upload Throughput (Kbps)

Figure 3: Detailed Results of TVUPlayer (P2P streaming)

Table 2: Average WNIC Sleep Time (%) from Multiple Runs

RTSP
23.2

Chunk-based
86.4

pP2p
29.7

Pseudo
72.2

While we only show detailed traffic patterns from one typical
run (median of multiple runs), Table 2 shows the average WNIC
sleep time over multiple experiments (5 runs) for different proto-
cols. These results are consistent with the findings on the single
runs we have presented.

Considering these results with the traffic throughput and traffic
patterns we have observed in Figure 1 and Figure 2, we find that

e In Chunk-based streaming such as AirVideo, traffic shaping
techniques are being used to deliver the data to mobile de-
vices in burst, which leaves the WNIC on the mobile device
into sleep mode for most of the time.

In Pseudo streaming, the Fast Start technique can help trans-
mit a large amount of data to the user at the beginning, which
provides more opportunities for the WNIC to sleep when re-
ceiving the rest of data.

In RTSP streaming, since the server delivers data according
to the object encoding rate, it results in the least amount of
sleep time of the WNIC.

In P2P streaming, because a user has to frequently ex-
change control information and upload data to other peers,
the WNIC cannot sleep for long time as in the Pseudo stream-
ing or Chunk-based streaming.

4.2 Traffic Shaping is Widely Used, but it may
Cause Quality Degradation

To investigate whether traffic shaping has been used in other
services, we have conducted experiments with all other services.
The results show that traffic shaping is being used in all these
Chunk-based streaming applications: CTV, CCTV, W.TV, ImgoTV,
Justin.tv, NHKworld, and SPBtv. Figure 4 shows the traffic pattern
of 1 minute snapshot during a 6-minute streaming session. As in-
dicated by these figures, traffic shaping is used in all of these ap-
plications for bursty data delivery. However, the burst length varies
from application to application.

Correspondingly, Table 3 shows the sleep time of the WNIC in
these sessions. As shown in this figure, the sleep time of the WNIC
varies between 77% and 87% in all of these sessions, confirming
the effectiveness of the traffic shaping on the battery power saving.

Although traffic shaping is very effective in Chunk-based
streaming for saving battery power consumption on mobile devices,
it has to be used carefully. Otherwise, it could affect the streaming

I
)

@

S s —8-500
S 0.8 Sos8 <
k3] © =

8 < S 400,
L 0.6 - 0.6 e

2 2 §’300
S04 T 0.4 g

= é’ = 200
E S —Inter Packet e
= 0.2| o 0.2 . <

(S == Inter Streaming Packet| © 100
Inter Control Packet £

0 N N - R 0

100 300 500 700 900 1100 1300 1500 10" 10" 10 10 10_ 10" 10" 10 10 (0] 6

g ° J g2
S 25 / = ",.-
% 2 Y V4 % 1.5 s
=15 _/ =y L
< < o
° 1 ~ S !
= / =05
o.s/ _
00 20 40 60 00“' 20 40
Time (second) Time (second)
(a) CTV (b) CCTV
5 2.5
- g J
% R) j % s /
p P Eo j
s = J
=] o
[l "r,_,--"/ “os /
GO 20 4 60 00 20 40
Time (second) Time (second)
(c) W.TV (d) ImgoTV
2.5 2.5
g 2 / g 2 } ,j
g 1.5] j g 1.5] J] -
£ J £ |
g - g
Fos5 J Fos R /
[0} j [0} /

0

20 40
Time (second)

60

(e) Justin.tv

o

20 40
Time (second)

(f) NHKworld

60

Figure 4: Traffic Shaping is Used in All Chunk-based Streaming

Applications
Table 3: WNIC Sleep Time (%)
AirVideo CTV CCTV WTV
86.7 78.1 85.8 86.0
ImgoTV | Justin.tv | SPBtv | NHKworld
77.5 82.9 86.9 84.8

quality perceived by end users. Figure 5 shows such a case in our
experiments. The data receiving speed shown in Figure 5(a) fluc-
tuates from time to time, and sometimes cannot catch up with the
playback (for example, between 100 seconds to 200 seconds), re-
sulting in playback freezing. This is not due to the bandwidth short-
age because the thoughput shown in Figure 5(b) can reach higher
than the video encoding rate (340 Kbps) even when the playback
freezing happens. Therefore, how to choose the right burst length
to use in the traffic shaping is important and deserves careful study.
We leave it for our future study.

15x 10" 1400 3.5 15
—340 Kbps
= - - Downloading Rate m 1200 oy e a /
2 1 &§1000 S 2.5 =
< 10 o = o o 1
] = 800 £ 2 £
=) 2 S 8
B 5, 600 =15 =
3 5 3 g gos
g £ 400 S K
o =
200 0.5 /
% 6 % 1300 1220 1240 1260 %00 1220 1240 1260

2 4
Time (minute)

(b) Throughput

2 4
Time (minute)

(a) Data Receiving vs. Playback

Figure 5: CCTYV at 340 Kbps

Table 4: WNIC Sleep Time (%) Comparison in High and Low
Quality Streaming

HighQ Sleep LowQ Sleep
(Kbps) | Time (%) || (Kbps) | Time (%)

RTSP 246 23.1 81 33.0
Pesudo 654 71.4 247 80.3
Chunk 886 86.7 200 95.6
p2p 281 30.6 156 74.4

4.3 Summary

Through experiments and analysis on how data is transmitted un-
der different protocols, our study shows traffic shaping is very help-
ful in Chunk-based streaming. However, due to protocol nature of
constant bit rate sending, RTSP streaming can hardly apply traffic
shaping to reduce battery power consumption on mobile devices.

Pseudo streaming could improve its power efficiency in two
ways. One is to use Fast Start to deliver the entire file. The risk,
however, is that a user may terminate the playback after viewing the
clip for a few seconds. Another concern is the server capacity as the
server may wish to reserve some bandwidth to serve other incom-
ing requests. Besides fast streaming, the other option is to adopt
traffic shaping technique, which practically turns into Chunk-based
streaming.

On the other hand, P2P streaming is affected by both control
traffic and uploading traffic. Whether such traffic can be reduced
for power saving remains unclear and we will investigate in the next
section.

S. IMPACT OF HOW MUCH TO TRANS-
MIT

As we have studied, how streaming is transmitted could signifi-
cantly affect the power efficiency on mobile devices when receiving
streaming with different approaches. Next we investigate whether
reduced traffic amount would significantly reduce battery power
consumption on mobile devices. Intuitively, a user may opt to a
lower streaming quality with the expectation of less battery power
consumption.

5.1 Reducing Streaming Quality Helps Little
for All But P2P

To study the impact of reduced traffic amount, we instruct our
device to access these streaming services again, but to video clips
with lower quality in terms of the object encoding rate. Figure 6
and Figure 7 show the corresponding throughput and traffic pat-
terns in these tests. Table 4 shows the corresponding power saving
effectiveness.

Time (second)

(a) SPBtv - 464 Kbps

Time (second)

(b) SPBtv - 174 Kbps

Figure 8: SPBtv: Traffic Pattern

Table 5: SPBtv — Impact of Reduced Streaming Data Trans-
mission in Chunk-based Streaming

Quality | Encoding Rate | Total # of | Sleep Time
(Kbps) Packets (%)

High 464 184689 86.9

Low 174 106756 90.2

For RTSP based streaming, as the streaming rate is reduced from
246 Kbps to 81 Kbps, Figure 6(a) shows the throughput of data
transmission is also reduced from 200-400 Kbps to 50-150 Kbps,
without taking full advantage of available bandwidth. The sleep
time increases to 33%, and it is mostly because the downloading
finishes 1 minute earlier than the viewing session as shown in Fig-
ure 2(a).

For Pseudo streaming, the YouTube server still sends streaming
data at a very high rate at the beginning (about first 12 MB) as
shown in Figures 1(b) and 2(b). However, because of reduced file
size due to reduced video encoding rate (from 654 Kbps to 247
Kbps), only about 2 MB more content for the rest of playback is
remaining to be downloaded. Thus, in this test, instead of switching
to sleep mode opportunistically between successive transmissions
as that in the High Quality streaming test, the WNIC can exploit
larger intervals between bursts to sleep. As a result, the WNIC
spends 9% more time in sleep mode.

For Chunk-based streaming using AirVideo, similar to its pre-
vious experiment with the High Quality video clip, a video chunk
is delivered every 10 seconds, and packets are delivered in burst.
Because of the reduced chunk size, the time spent on downloading
each chunk is also reduced, and the WNIC can sleep longer after
downloading each chunk. This is reflected with about 9% increase
of the WNIC sleep time in Table 4.

However, surprisingly, in P2P streaming, although Figure 6(d)
and Figure 7(d) do not show much difference from Figure 1(d) and
Figure 2(d) except the decrease of the average throughput and the
accumulated traffic amount, the increase of the power saving is sig-
nificant: the sleep time of WNIC increases from 30% to 74%.

Overall, the sleep time increase of the WNIC due to the reduced
streaming data amount is marginal or moderate (between 5% and
10%) for RTSP, Pseudo streaming, and Chunk-based streaming.
But it is very effective for P2P based streaming.

While it is relatively intuitive for such a result in RTSP and
Pseudo streaming due to their protocol nature of constant stream-
ing (data sending) rate or Fast Start at the beginning, we further
investigate why the impact of the reduced traffic amount is trivial
in Chunk-based streaming and is significant in P2P streaming.

To verify the trivial power saving benefitin Chunk-based stream-
ing by reducing streaming data transmission, we further conduct
experiments with all other Chunk-based streaming services. Figure
8 shows the typical results with SPBtv. SPBtv allows users to ex-

IS
o
=3

8000

W
o
=)

6000

4000

Throughput (Kbps)
§
Throughput (Kbps)

5]
S

2000

0 L

o

o
[}

0

Throughput (Kbps)

]
o
=3

@
=3
S

N
o
o

n
=]
o

=}

2 4
Time (minute)

w

(a) RTSP

2 4
Time (minute)

(b) Pseudo Streaming

2 4
Time (minute)

2 4
Time (minute)

(c) Chunk-based Streaming (d) P2P Streaming

Figure 6: Throughput (Kbps) in Delivering Lower Quality Video

15

=)
.

10

8|

=)

©

h n ¢
o N w o

Total Traffic (MB)
[$)]

Total Traffic (MB)

©
o o

o

Total Traffic (MB)

)

Total Traffic (MB)
»

n

[0}

o

6 0 2 4
Time (minute)

(b) Progressive Download

2 4
Time (minute)

(a) RTSP

o
=)

2 4
Time (minute)

(d) P2P Streaming

2 4
Time (minute)

(c) Chunk-based Streaming

Figure 7: Traffic Pattern in Delivering Lower Quality Video

plicitly choose between High Quality and Low Quality. Through
reverse-engineering, we find that: (1) for High Quality, the video
bitrate is 400 Kbps and audio bitrate is 64 Kbps; (2) for Low Qual-
ity, the video bitrate is 110 Kbps and audio bitrate is also 64 Kbps.
As we have described in Section 2, in HTTP streaming, a client
would first query the server for index files (playlists). To support
multiple quality levels of the same content, such index files can se-
lect appropriate files to request based on bandwidth conditions or
the quality the client desires. Figure 8 compares the two stream-
ing tests viewing High Quality (464 Kbps) and Low Quality (174
Kbps) live streaming content, respectively. Figure 8(b) indicates
that when Low Quality video is accessed, the server also reduces
its delivery rate. Given the access is done in non-peak hours and
two tests were conducted consecutively, it is less likely due to the
network congestion or the client side bandwidth limit. Our conjec-
ture is that the server tends to reserve/allocate more resources to
serve other/incoming High Quality streaming requests. Neverthe-
less, the server still uses traffic shaping when delivering the lower
quality content. On the other hand, receiving lower quality stream-
ing only makes the WNIC sleep about 3% more as shown in Ta-
ble 5, thus confirming very limited effectiveness of reducing the
streaming quality on battery power saving.

While the trivial power saving impact in Chunk-based stream-
ing is mainly because of a reduced delivering rate from the server
after the user switches to a lower quality video, P2P streaming is
more complicated since it involves both control traffic and upload-
ing traffic.

To study how this power saving happens in the lower quality
P2P streaming, we further conduct experiments with TVUPlayer.
Figure 9 shows more detailed results of TVUPlayer when it is used
to access the Low Quality channel of 156 Kbps for one hour, while
Figure 10 shows the results of watching a High Quality channel of
281 Kbps for one hour. Both of these two channels are unpopular.
Figures 9(d) and 10(d) show the bandwidth spent on uploading to
neighboring peers. For most of the time, there is little uploading
to other peers in both sessions. Both sessions have similar traffic
patterns and inter packet delays as shown in Figures 9(b) (c) and
10(b) ().

Table 6: TVUPlayer — Impact of Reduced Streaming Data
Transmission in P2P Streaming

Quality | Encoding Rate | Total # of | Sleep Time
(Kbps) Packets (%)

High 281 502987 40.6

Low 156 220524 71.6

However, Figure 10(a) shows a different result from that in Fig-
ure 9(a). With a lower streaming quality, the percentage of control
packets (these with small sizes of 300 bytes or less) is reduced by
more than 15%. This is because control traffic also depends on the
number of neighbors the client is communicating with during the
streaming session even if both experiments are done with unpopu-
lar channels.

Table 6 lists the total number of data packets transmitted in these
two sessions. With a reduced streaming quality session, the total
number of packets is reduced by more than 50%, among which
control packets are reduced even more as shown in Figure 10(a).
Thus, when playing the video of 156 Kbps, the WNIC was able
to sleep as much as 71.6% of the session time, while it can only
sleep about 40.6% when watching the video of 281 Kbps. Clearly,
the reduced total number of packets, including the control packets,
in the lower quality streaming, leads to a longer sleep time of the
WNIC.

5.2 Reducing Uploading Traffic in P2P

Streaming Sometimes Helps

We have shown in the previous experiments that by switching
into a lower quality video version, the mobile device in P2P stream-
ing could save more battery power because of reduced data pack-
ets and control packets. For P2P streaming, data transmission also
includes uploading to other peers. A peer in P2P systems has to
upload to other peers for system scalability. But uploading to other
peers is a heavy burden to mobile devices. We are wondering if we
can reduce the uploading traffic amount to gain some power sav-

Total Traffic (MB)

- 7
1.2) o €100
1 o =
r,r" a 80
0.8] - S
0.6 ' g %
,..r"'H £ a0
0.4 - o g
02 S 20
P 2 g
1%00 1220 1240 1260 0 20 40 60
Time (second) Time (minute)
(¢) Traffic Pattern (d) Upload Throughput

Figure 9: TVUPIlayer - P2P Streaming for One Hour (156 Kbps) - Unpopular Channel

Sos Sos
- 0.6 L 0.6
2 2
S04 To4
S S
§ g 0.2 —Inter Packet
502 [Shs £| - - Inter Streaming Packet
o Inter Control Packet
0100 300 500 700 900 1100 1300 1500 10° 107 107" 10° 10" 10° 10° 10" 10°
IP Packet Size (bytes) Inter Packet Delay (ms)
(a) Packet Size (CDF) (b) Inter Packet Delay (CDF)
1 1 —
Sos Sos
g 8
- 0.6 L 0.6
2 2
S04 To4
S S
§ g 0.2 —Inter Packet
502 [6he - - Inter Streaming Packet
o |-~ Inter Control Packet
0100 300 500 700 900 1100 1300 1500 10° 107 107" 10° 10" 10 10° 10" 10°
IP Packet Size (bytes) Inter Packet Delay (ms)
(a) Packet Size (CDF) (b) Inter Packet Delay (CDF)

Total Traffic (MB;

3 __200
&
25
< 150
2 2
=
1.5 S 100
1<
=
1 =
T 50
0.5 S
o
o
1%00 1220 1240 1260 00 20 40 60
Time (second) Time (minute)
(c) Traffic Pattern (d) Upload Throughput

Figure 10: TVUPlayer - P2P Streaming for One Hour (281 Kbps) - Unpopular Channel

ing without switching to a lower quality video, as it is often not
desirable by end-users.

5.2.1 Upload Throttling Can Help

Due to the concern of free-riders, P2P streaming systems today
do not implement tit-for-tat as BitTorrent does [26]. As a result,
most P2P applications would saturate the available uploading band-
width when the channel has a large population. This is also true
in TVUPlayer. Therefore, we want to study whether throttling up-
loading traffic in the P2P mobile streaming would reduce the power
consumption.

Upload throttling is to throttle the uploading traffic to other
peers. Since uploading to others is essential in P2P streaming sys-
tems and is the key to its scalability, throttling upload may help
preserve battery power, but may be harmful to the entire P2P sys-
tem. Because TVUPlayer does not allow us to set an uploading
cap, we conduct the following experiments to test its effectiveness.

We instruct iTouch to watch a popular channel and an unpopu-
lar channel with a same streaming rate. The two experiments are
conducted with the same network settings. The popular channel is
accessed from 8 PM to 9 PM, and the unpopular one is accessed
from midnight to 1 AM in the morning. Figure 10 shows the re-
sults of watching the unpopular channel of 281 Kbps, while Figure
11 shows the results of watching the popular channel of 281 Kbps.
Since both channels are encoded with the same streaming rate, the
CDF of packet size, as shown in Figure 10(a) and Figure 11(a),
are largely similar. However, Figure 10(d) and Figure 11(d) show
that when watching the popular channel, the device uploads much
more traffic than when watching the unpopular one. Such upload-
ing traffic results in a smaller percentage of large inter packet delay
as shown in Figure 11(b).

As aresult, Table 7 shows that while the WNIC can sleep about
40% of time when watching the unpopular channel, it can only
sleep about 25% of time when watching the popular channel. The
uploading overhead can result in 15% less sleep time. Note that in
this popular channel session, the uploading is not excessive, as on
average the uploading bandwidth is around 175 Kbps. If the up-
loading is higher, more battery power would have been consumed.

Table 7: Uploading Throttling (P2P)

Channel | Encoding Rate | Total # of | Sleep Time
(Kbps) Packets (%)
Unpopular 281 502987 40.6
Popular 281 634527 259

These experiments show upload throttling can be effective, par-
ticular because these P2P streaming systems do not enforce tit-for-
tat. Otherwise, the received streaming quality might be affected.
In practice, these results imply that a user in P2P streaming can
choose to watch the unpopular channels in order to preserve more
battery power.

5.2.2 Smart Caching at Access Point Does Not Help

While upload throttling may not be fair to other peers in
a P2P system, and potentially can affect the user’s perceived
streaming quality if fit-for-tat-like mechanisms are enforced, smart
caching can alleviate this concern. Smart caching at access points
(SCAP) [14] has been proposed to reduce/eliminate uploading in
P2P applications by caching the downloaded data in the AP in case
they need to be uploaded to other peers soon. For P2P streaming
applications, a peer needs to quickly upload the downloaded con-
tent to others, and thus the AP only needs to maintain a small buffer
to temporarily cache downstream data. When uploading is needed,
the mobile device does not need to send the packet by itself. In-
stead, it sends a compressed packet telling the AP to do that for it.
The AP will detect which cached packet to send and send the packet
on behalf of the mobile device. Compared with upload throttling,
SCAP could be transparent to the application. However, the mobile
device still needs to receive requests from neighbors, and thus the
control traffic generated by uploading is not eliminated.

We did not implement SCAP on our iTouch. Instead, to evalu-
ate the potential benefit of using SCAP, we assume the best case
in which all uploading traffic from the iTouch is eliminated to esti-
mate the maximum power saving. We re-evaluate the trace shown
in Figure 11 for watching a popular channel and we calculate the

Throughput (Kbps)

1400

__700
&
600
1200) g
1000 _‘g_ 500
400
800 3
S 300
600 =
200
400 g
£ 100
200 > 9
2 60 0

20 4
Time (minute)

(d) Upload Throughput

0 40
Time (minute)

(c) Throughput

Figure 11: TVUPlayer - P2P Streaming for One Hour (281 Kbps) - Popular Channel

Sos Sos
S 0.6 LE 0.6
% 0.4 E 0.4 :
g E =Inter Packe!
gz S Sy rae
0100 300 500 700 900 1100 1300 1500 10102 107 10° 100 10° 10° 10° 10°
IP Packet Size (bytes) Inter Packet Delay (ms)
(a) Packet Size (CDF) (b) Inter Packet Delay (CDF)
Table 8: Estimated Effectiveness of SCAP
Encoding Rate | Total # of | Sleep Time
(Kbps) Packets (%)
w/o SCAP 281 634527 25.9
SCAP 281 597746 26.4

potential power saving by counting all inter packet delays that are
larger than the idle timeout interval as the sleep time of the WNIC.
‘We have validated our method on our iTouch based on the data link
layer control information for streaming sessions shown in previous
sections. The error is less than 1%.

As shown in Table 8, compared to the case without using SCAP,
SCAP only allows the WNIC to sleep 18 seconds more (less than
1 % of the session time). This surprising result, however, has some
underlying reasons. Table 8 shows that the number of uploading
packets saved by SCAP is relatively small (less than 40000), about
6% of the total number of packets. However, as shown in Table 7,
twice more packets can be saved by watching an unpopular chan-
nel. This indicates that there is a significant portion of control traf-
fic packets involved in uploading. Without removing these control
packets, SCAP cannot increase many more opportunities for the
WNIC to switch into the power saving mode.

These results on smart caching indicate that reducing uploading
alone is not necessarily very helpful. The control traffic plays a
very important role in P2P streaming and must be taken into con-
sideration. This is why reducing the streaming quality or upload
throttling are more effective, in which control packets are reduced
proportionally.

5.3 Summary

The experiments in this section show that reducing transmission
has trivial impact on power saving for mobile devices in RTSP,
Pseudo streaming, and Chunk-based streaming, mainly because the
server also reduces the sending rate when a lower quality streaming
session is accessed although there is additional bandwidth avail-
able.

On the other hand, while reducing streaming quality is helpful
for power saving in P2P streaming, it may not be desirable for end-
users. Without sacrificing the streaming quality, simply reducing
upload alone such as smart caching does not help, because the con-
trol traffic is not reduced. However, upload throttling can reduce
both the uploading and control traffic, and thus can reduce the bat-
tery power consumption on the mobile device.

Considering both aspects, i.e., how to transmit and how much
to transmit, during the streaming data transmission, in the current
practice, we find Chunk-based streaming is more power-efficient
than others. That is, a mobile user who wants to save battery power
may always want to choose Chunk-based streaming delivery first if
it is available. Pseudo streaming could be the next choice. On the

other hand, different delivery approaches are not always available
for the same video clip. Thus, Internet streaming service providers
utilizing other approaches should adopt more power-saving tech-
niques in order to better serve mobile users.

6. RELATED WORK

Along the popularity of wireless Internet accesses, a lot of re-
search has been conducted on battery power saving on mobile de-
vices. For example, Chandra studied typical Internet streaming ser-
vices over wireless connections and concluded that 802.11 PSM
does not save energy if the streaming rate is over 56 Kbps [27].
Anand et al. considered a self-tuning approach to adapt the WNIC’s
behavior to the access pattern and the intent of applications [28]. A
power saving technique to reduce energy X delay product was
proposed in [29]. Qiao et al. [30] proposed a smart power saving
mode. Guo et al. designed a cooperative relay service in order to
exploit the idle communication power of the WNIC for network
throughput improvement [31]. Targeting streaming services deliv-
ered over the Internet to wireless devices, PSM-throttling leverages
traffic shaping from the client side in order to allow the WNIC to
sleep for a longer time [12]. This client-centric scheme eliminates
the demand of infrasfrasture support as required by many previous
schemes. For P2P applications such as P2P streaming running on
wireless devices, Tan et al. designed SCAP [14] in order to re-
duce the power consumption on wireless devices by caching the
uploading traffic at the AP. In SCAP, the upload from the wire-
less device can be performed directly from the AP instead of the
wireless device, which could save both uploading bandwidth and
battery power consumption on the wireless device. More recently,
Xiao et al. studied the power consumption of mobile YouTube [32]
and we have also examined resource utilization in different Internet
mobile streaming architectures [33].

On the other hand, since mobile devices these days commonly
have multiple network interfaces, plenty of work has considered
to leverage the different power consumption rate of these inter-
faces [34, 35, 36, 37]. For example, CoolSpots [34] was proposed
to intelligently switch between the Bluetooth and the WiFi inter-
faces. Agarwal et al. proposed to wake up the WiFi interface for
incoming calls using the GSM radio [37]. Most recently, authors
in [38] proposed Wiffler to reduce power consumption of mobile
devices by augmenting 3G using WiFi.

While a lot of aforementioned efforts had aimed to reduce the
battery power consumption by the wireless network interfaces on
mobile devices, little is known about their feasibility and effective-
ness for streaming to mobile devices. Furthermore, in the current
practice, how streaming data is transmitted to mobile devices and
how much data is transmitted under different protocols have not
been thoroughly investigated. Our work in this study measures, an-
alyzes, and compares the battery power efficiencies on data trans-
mission under different delivery approaches. We have also ex-
plored potentials of various power saving techniques. Our results

provide new insights for further improving the battery utilization
on mobile devices when receiving Internet streaming services.

7. CONCLUSION

Along the pervasive usage of all kinds of mobile devices for In-
ternet accesses, more and more streaming services are provided
over the Internet to mobile users. However, receiving streaming
services on mobile devices can consume a significant portion of
the limited battery power supply. In this paper, we set to examine
the battery power consumption on mobile devices in receiving such
streaming services, focusing on streaming data transmission. Our
measurement and analysis provide some new insights for providing
power-efficient Internet mobile streaming services in the current
practice. In particular, we show that Chunk-based streaming deliv-
ery is currently the most power-efficient approach with appropriate
traffic shaping techniques. On the other hand, while P2P stream-
ing is scalable and very promising, it is challenging to reduce the
battery power consumption without sacrificing the streaming qual-
ity. Besides adding to the state-of-the-art, our results also provide
some basis for next step research for more battery power-efficient
and scalable Internet mobile streaming services.

8. ACKNOWLEDGEMENT

We appreciate constructive comments from our shepherd Wei-
Tsang Ooi and anonymous referees. The work is partially sup-
ported by NSF under grants CNS-0746649, CNS-1117300, CCF-
0915681, CCF-1146578, and AFOSR under grant FA9550-09-1-
0071.

9. REFERENCES
[1] “CTV,” http://itunes.apple.com/app/id340381556.

[2] “CCTV,” http://itunes.apple.com/app/id331259725.

[3] “W.TV,” http://itunes.apple.com/app/id318676629.

[4] “ImgoTV,” http://itunes.apple.com/app/id349448995.
[5] “NHKworld,” http://itunes.apple.com/app/id350732480.
[6] “SPBtv,” http://itunes.apple.com/app/id356830174.

[7] “OrbLive,” http://itunes.apple.com/app/id290195003.
[8] “Air Video,” http://itunes.apple.com/app/id306550020.
[9] “Justin.tv,” http://itunes.apple.com/app/id358612216.

[10] “Verizon Wireless: V CAST,”
http://products.vzw.com/index.aspx?id=video.

[11] “AT&T Mobile TV,” http://www.att-mobiletv.com.

[12] E. Tan, L. Guo, S. Chen, and X. Zhang, “PSM-throttling:
Minimizing Energy Consumption for Bulk Data
Communications in WLANSs,” in Proc. of IEEE ICNP,
Beijing, China, October 2007.

[13] S.Chandra and A.Vahdat, “Application-specific network
management for energy-aware streaming of popular
multimedia formats,” in Proc. of USENIX ATC, 2002.

[14] E. Tan, L. Guo, S. Chen, and X. Zhang, “SCAP: Smart
Caching in Wireless Access Points to Improve P2P
Streaming,” in Proc. of IEEE ICDCS, June 2007.

[15] “Real Time Streaming Protocol (RTSP),”
http://www.ietf.org/rfc/rfc2326.txt.

[16] “Mobile YouTube,” http://m.youtube.com.

[17] “Vuclip,” http://m.vuclip.com.

[18] “Fast Start,” http://www.microsoft.com/
windows/windowsmedia/technologies/
bettertogether.aspx#faststart.

[19] “Apple HTTP Live Streaming,”
http://tools.ietf.org/html/draft-pantos-http-live-streaming.

[20] “Flash HTTP Streaming,”
http://www.adobe.com/products/httpdynamicstreaming/.

[21] “Microsoft Smooth Streaming,”
http://www.iis.net/download/SmoothStreaming.

[22] X. Hei, C. Liang, J. Liang, Y. Liu, and K. Ross, “Insights
into PPLive: A Measurement Study of a Large-Scale P2P
IPTV System,” in Proc. of IPTV Workshop, Edinburgh,
Scotland, UK, May 2006.

[23] “TVUPlayer,” http://itunes.apple.com/app/id323640984.

[24] J. Adams and G. Muntean, “Adaptive-Buffer Power Save
Mechanism for Mobile Multimedia Streaming,” in Proc. of
IEEE ICC, 2007.

[25] F. Dogar, P. Steenkiste, and K. Papagiannaki, “Catnap:
Exploiting High Bandwidth Wireless Interfaces to Save
Energy for Mobile Devices,” in Proc. of ACM MobiSys,
2010.

[26] Y. Huang, T. Fu, D. Chiu, J. Lui, and C.Huang, “Challenges,
Design and Analysis of a Large-scale P2P-VoD System,” in
Proc. of ACM SIGCOMM, 2008.

[27] S. Chandra, “Wireless network interface energy consumption
implications of popular streaming formats,” in Proc. of
MMCN, 2002.

[28] M. Anand, E. Nightingale, and J. Flinn, “Self-Tuning
Wireless Network Power Management,” in Proc. of ACM
MOBICOM, Sept. 2003.

[29] H. Yan, R. Krishnan, S. A. Watterson, D. K. Lowenthal, and
K. Li, “Client-Centered Energy and Delay Analysis for TCP
Downloads,” in Proc. of INWQoS, June 2004.

[30] D. Qiao and Kang G. Shin, “Smart Power-Saving Mode for
IEEE 802.11 Wireless LANS,” in Proc. of IEEE INFOCOM,
2005.

[31] L. Guo, X. Ding, H. Wang, Q. Li, S. Chen, and X. Zhang,
“Exploiting Idle Communication Power to Improve Wireless
Network Performance and Energy Efficiency,” in Proc. of
IEEE INFOCOM, April 2006.

[32] Y. Xiao, R. Kalyanaraman, and A. Yla-Jaaski, “Energy
Consumption of Mobile YouTube: Quantitative
Measurement and Analysis,” in Proc. of NGMAST,
Washington, DC, September 2008.

[33] Y. Liu, F. Li, L. Guo, and S. Chen, “A Measurement Study of
Resource Utilization in Internet Mobile Streaming,” in Proc.
of ACM NOSSDAV, 2011.

[34] T. Pering, Y. Agarwal, R. Gupta, and R. Want, “CoolSpots:
Reducing the Power Consumption of Wireless Mobile
Devices with Multiple Radio interfaces,” in Proc. of ACM
MobiSys, Uppsala, Sweden, 2006.

[35] T. Armstrong, O. Trescases, C. Amza, and E. de Lara,
“Efficient and Transparent Dynamic Content Updates for
Mobile Clients,” in Proc. of ACM MobiSys, Uppsala,
Sweden, 2006.

[36] A.Rahmati and L. Zhong, “Context-for-wireless:
Context-sensistive energy-efficient wireless data transfer,” in
Proc. of ACM MobiSys, 2007.

[37] Y. Agarwal, R. Chandra, A Wolman, P. Bahl, K. Chin, and
R. Gupta, “Wireless Wakeups Revisited: Energy
Management for Voip over Wi-Fi Smartphones,” in Proc. of
MobiSys, San Juan, Puerto Rico, 2007.

[38] A. Balasubramanian, R. Mahajan, and A. Venkataramani,
“Augmenting Mobile 3G Using WiFi: Measurement, Design,
and Implementation,” in Proc. of ACM MobiSys, 2010.

