
BlueStreaming: Towards Power-Efficient Internet P2P
Streaming to Mobile Devices

∗

Yao Liu1 Fei Li1 Lei Guo2 Yang Guo3 Songqing Chen1

1Department of Computer Science 2Microsoft Corporation 3Bell Labs
George Mason University Mountain View, CA, USA Alcatel-Lucent

{yliud, lifei, sqchen}@cs.gmu.edu leguo@microsoft.com yang.guo@alcatel-lucent.com

ABSTRACT

P2P streaming applications are very popular on the Internet today.
However, a mobile device in P2P streaming not only needs to con-
tinuously receive streaming data from other peers for its playback,
but also needs to continuously exchange control information (e.g.,
buffermaps and file chunk requests) with neighboring peers and up-
load the downloaded streaming data to them. These lead to exces-
sive battery power consumption on the mobile device.

In this paper, we first conduct Internet experiments to study in-
depth the impact of control traffic and uploading traffic on bat-
tery power consumption with several popular Internet P2P stream-
ing applications. Motivated by measurement results, we design
and implement a system called BlueStreaming that effectively uti-
lizes the commonly existing Bluetooth interface on mobile de-
vices. Instead of activating WiFi and Bluetooth interfaces alterna-
tively, BlueStreaming keeps Bluetooth active all the time to trans-
mit delay-sensitive control traffic while using WiFi for streaming
data traffic. BlueStreaming trades Bluetooth’s power consumption
for much more significant energy saving from shaped WiFi traf-
fic. To evaluate the performance of BlueStreaming, we have im-
plemented prototypes on both Windows and Mac to access existing
popular Internet P2P streaming services. The experimental results
show that BlueStreaming can save up to 46% battery power com-
pared to the commodity PSM scheme.

Categories and Subject Descriptors

C.2.4 [Distributed Systems]: Distributed applications

General Terms

Measurement, Design, Experimentation

Keywords

P2P, Internet Mobile Streaming, Bluetooth, Power Saving

1. INTRODUCTION
Internet Peer-to-Peer (P2P) streaming applications are very pop-

ular today. For example, PPTV [1], PPStream [2], SopCast [3],

∗Area Chair: Surender Chandra

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MM’11, November 28–December 1, 2011, Scottsdale, Arizona, USA.
Copyright 2011 ACM 978-1-4503-0616-4/11/11 ...$10.00.

and QQLive [4] are all Internet-scale P2P streaming systems that
provide hundreds of TV channels and serve millions of Internet
users every day. As a result, CNN has started to use P2P technol-
ogy provided by Octoshape to deliver high quality live video to its
users [5]. According to Cisco’s report [6], today, global P2P TV
systems have generated over 280 petabytes (and 6% of) Internet
video traffic per month, and is growing at a rate of 47% annually.

In tandem with the fast-growing Internet streaming services, mo-
bile devices are pervasively used today. For example, it has been
reported that iPad users generated 2.5 times more Internet traf-
fic than iPhone users for accessing popular services such as US-
AToday, Google Maps, Bloomberg, eBay after its release [7]. To
support mobile Internet accesses, 802.11 and the third generation
(3G) wireless networks are also quickly developing. For example,
WiFi operates in more than 595,000 public hotspots [8]. Jupiter
Research also estimated that 65% households in the United States
have home-deployed WiFi access points (APs) [9].

However, using mobile devices to receive Internet streaming ser-
vices can quickly exhaust the limited battery supply because receiv-
ing Internet streaming services often involve continuous and bulk
data transmissions, decoding, rendering, and displaying. Among
them, wireless data transmissions consume a significant amount of
energy. For example, it was reported that the WiFi radio on HTC
Tilt 8900 series consumes up to 5x more power than the base energy
consumption of the phone [10]. A lot of efforts have been made
to save battery power consumed by the wireless network interface
cards (WNICs) by exploiting sleep opportunities via proxying [11],
batching [12], PSM-throttling [13], etc. However, existing power
saving strategies mainly focus on client/server (C/S) based stream-
ing applications. Compared to C/S based streaming, Internet P2P
streaming can further aggravate the battery power consumption on
mobile devices due to the following unique characteristics.

First, different from C/S based streaming, a client participating
in P2P streaming needs to continuously exchange extra control traf-
fic, such as buffermaps and fine-grained data chunk requests, with
neighbors. Such control traffic, on the one hand, greatly facili-
tates the streaming content distribution in a scalable manner. On
the other hand, it also remarkably increases the total number of IP
packets transmitted and reduces the inter-packet delays, which fur-
ther reduces the sleep opportunities of the WNIC.

Second, critical to the scalability of a P2P system, a client par-
ticipating in P2P streaming has to upload the downloaded content
to other neighboring peers. Such uploading requirement does not
exist in C/S based streaming. The uploading traffic increases the to-
tal traffic volume for a P2P client, resulting in more battery power
consumption.

Third, a client participating in P2P streaming receives streaming
content from multiple sources instead of a single server. Further-

more, these streaming sources are changing dynamically along time
since a P2P client often needs to frequently connect to new neigh-
bors to download missing file chunks. In addition, the dynamics
of the streaming sources result in different round-trip times to the
client, making data receiving at the client side totally random, and
making it difficult for the WNIC to switch into the power saving
mode (PSM).

In this paper, we first conduct Internet measurements to study
in-depth the impact of Internet P2P streaming on battery consump-
tion on mobile devices with several popular Internet P2P stream-
ing applications. Our measurement results show that: (1) a client
in P2P streaming needs to transmit an extremely large number of
small packets for control traffic (e.g., twice as many as streaming
data packets). Such a large number of frequent and delay-sensitive
control packets not only increase the traffic volume, but also signif-
icantly reduce the inter-packet delay and the potential sleep time of
the WNIC on the mobile device; (2) the amount of uploading traf-
fic a mobile client needs to transmit to its neighbors changes from
time to time and from application to application, ranging from 10
Kbps to over 1.5 Mbps. In addition to increasing the transmission
load on the WNIC, such highly un-predictable uploading further
reduces the inter-packet delay and the sleep opportunities of the
WNIC for power saving; and (3) a client in P2P streaming receives
packets from dynamically changing sources (e.g., 3 to 20 peers),
making it difficult to employ server or client-centric traffic shaping
techniques to save power consumption on mobile devices.

Motivated by the measurement results, we seek to address these
challenges for power-efficient Internet mobile P2P streaming ser-
vices. Accordingly, we propose and design the BlueStreaming sys-
tem by leveraging the commonly existing Bluetooth interface on
mobile devices. In BlueStreaming, instead of having WiFi and
Bluetooth interfaces to work alternatively, we always keep Blue-
tooth active to transmit delay-sensitive control traffic. With intel-
ligent traffic shaping techniques applied on the WiFi interface for
data traffic, the extra battery power consumed by the Bluetooth in-
terface can be over-compensated by the greater power saving on the
WiFi interface. Furthermore, the uploading traffic from the client is
opportunistically scheduled on both interfaces to minimize battery
power consumption incurred.

To evaluate the performance of BlueStreaming, we have imple-
mented prototypes on both Windows and Mac OS to participate in
several popular Internet P2P streaming services. Our experimen-
tal results show that BlueStreaming can effectively reduce battery
power consumption by up to 46% without affecting streaming qual-
ity. In summary, this paper makes the following contributions:

• Through Internet measurement and analysis, we show that when
a mobile device participates in Internet P2P streaming services,
its battery power consumption is highly affected by its control
traffic, uploading traffic, and the dynamics of neighboring peers.

• We design and implement BlueStreaming, a power-efficient In-
ternet P2P streaming system that takes into account the unique
characteristics of Internet P2P streaming and trades Bluetooth’s
power consumption for greater power saving on the WiFi inter-
face via intelligent traffic shaping.

• We evaluate our BlueStreaming prototype with popular Inter-
net P2P streaming applications in both infrastructure and hybrid
modes, and show that BlueStreaming can improve energy saving
by up to 46% compared to the commodity PSM scheme.

The remainder of the paper is organized as follows. Section 2 de-
scribes some related work. We present our measurement results in
Section 3 and the design of BlueStreaming in Section 4. The imple-
mentation is described in Section 5 and the evaluation is discussed
in Section 6. We make concluding remarks in Section 7.

2. BACKGROUND AND RELATED WORK
With pervasive wireless Internet accesses, power saving has been

considered on the commodity WNIC. Today most WNIC can op-
erate in two power modes: Constantly Awake Mode (CAM) and
PSM. It has been reported in [10] that a mobile smartphone in CAM
uses as much as 1120 mW power, while it consumes much less
power of 72 mW in PSM. In practice, commodity WiFi devices
often use adaptive PSM (PSM-A) instead of static PSM. PSM-A
switches between CAM and PSM modes. If there is no network
activity (idle) for a pre-determined time period, called idle time-

out interval, the WiFi interface would switch to PSM by sending a
NULL data frame with the Pwr Mgt field set to 1. It only wakes
up to check the Traffic Indication Map (TIM) per beacon interval
(e.g., 100 ms). The WiFi interface can notify AP that it is ready to
receive buffered data by sending another NULL data frame with the
Pwr Mgt field set to 0. To further improve the energy efficiency,
a lot of prior work has sought to exploit idle opportunities for the
WNIC. For example, µPM [14] allows the WiFi interface to exploit
short intervals in terms of microseconds between MAC frames to
enter the low power mode. Catnap [12], on the other hand, exploits
large sleep intervals by scheduling TCP transfers at the granularity
of application data units with the help of workload hints.

Meanwhile, since mobile devices commonly have equipped with
multiple network interfaces that have different power consumption
rates, research has been conducted on alternatively activating dif-
ferent interfaces for battery power saving, focusing on substituting
a high-power consumption interface with a low-power consump-
tion interface whenever possible. For example, Agarwal et al. pro-
posed to wake up the WiFi interface for incoming calls using GSM
radio [15]. In CoolSpots [16], policies were proposed to intelli-
gently switch between the Bluetooth and WiFi interfaces. However,
CoolSpots is not appropriate for today’s Internet streaming delivery
to mobile devices because Bluetooth alone cannot afford the con-
stant bandwidth demanded by modern streaming applications (see
Section 4.1). In contrast to CoolSpots that uses the two interfaces
alternatively, BlueStreaming uses both WiFi and Bluetooth inter-
faces simultaneously, and relies on the greater power saving on the
WiFi interface to overcompensate the extra power consumption in-
curred by the Bluetooth interface.

Focusing on Internet streaming to mobile devices, Bertozzi et
al. proposed to switch off the WiFi interface during playback
and turn it on when running out of streaming buffer [17]. Lin-
ear prediction was proposed to select sleep time intervals for the
WNIC [18]. PSM-throttling [13] utilizes client-side reshaping of
TCP traffic to improve energy saving. Compared to existing work,
this study shows that a client in P2P streaming not only gener-
ates extra uploading traffic, but also transmits highly frequent and
delay-sensitive control traffic, making direct adoption of existing
solutions ineffective.

3. MEASUREMENT AND ANALYSIS
To investigate the battery power consumption on mobile devices

in popular Internet P2P streaming applications, in this section, we
conduct measurements with several existing Internet P2P streaming
applications. We then analyze the traffic in-depth in order to study
underlying factors that impact the battery power consumption.

3.1 Methodology and Result Overview
To study the battery power consumption on mobile devices in re-

ceiving P2P streaming services, we first use a 2nd generation iPod
Touch (iTouch) running iOS 3.1.2 to receive streaming services.
We conduct experiments with TVUPlayer [19], and Justin.tv [20].
To the best of our knowledge, TVUPlayer is the only P2P based

Table 1: Summary of Statistics on Laptop

Name Archi- Encoding Total # of Total # of Total # of Sleep Time Average# of
tecture Rate (Kbps) IP Packets Contro Packets Streaming Packets (%) Neighbors

PPTV P2P 400 191716 116819 70873 4.42 12
PPS P2P 396 433935 322779 85180 0.09 20
SopCast P2P 530 305826 202240 92457 0.99 3
QQLive P2P 500 293474 183814 108827 7.12 4

J.tv C/S 433 123655 56689 66966 21.44 N/A

streaming application available on iTouch at the time of this mea-
surement, while Justin.tv is a C/S based Internet streaming service.

In these experiments, we set up Wireshark to listen on the same
channel to capture all incoming/outgoing packets. Since we log
packets at the data-link layer, we are able to get frame control in-
formation from IEEE 802.11 headers. We use Pwr Mgt flag in
the frame control field to determine the Power Management mode
that the WiFi interface will switch to after the transmission of the
current frame. All experiments are run for 30 minutes and are con-
ducted with a dedicated AP running 802.11g in order to minimize
traffic contention.

We set both TVUPlayer and Justin.tv to watch channels with the
same streaming rate (281 Kbps), and examine the potential power
consumed by the WiFi interface. Our results show that during 30
minutes test, C/S based Justin.tv allows the WNIC to sleep for 83%
time, while in P2P based TVUPlayer, the WNIC can only sleep for
26% time, meaning 3 times more power consumption in receiv-
ing P2P streaming services. Given that iOS uses an extremely ag-
gressive PSM-A policy (idle timeout interval is only about 20-25
ms [10]), the energy performance of TVUPlayer on other mobile
devices could be even worse.

Although the above results provide an overview of the power in-
efficiency P2P streaming services for mobile devices, TVUPlayer
is not as widely used as other P2P based Internet streaming services
such as PPTV (PPLive is renamed as PPTV), PPStream (PPS), Sop-
Cast and QQLive, each of which serves millions of Internet users
daily. To study in-depth the battery power consumption of mobile
devices in these applications, we further conduct experiments with
a laptop computer since these applications do not have a version
for mobile devices. We again compare their results against C/S
based Justin.tv (J.tv) [21]. In these experiments, the laptop com-
puter connects to a dedicated AP running 802.11n and watches dif-
ferent channels of these popular applications. The laptop runs Win-
dows 7 with Maximum WiFi Power Saving enabled. Again,
Wireshark is used to capture all incoming and outgoing packets
to/from the laptop at the data-link layer. Because each peer in P2P
streaming is required to upload to its neighbors and such upload-
ing throughput can be highly un-predictable (we will show later in
Section 3.3), we thus conduct experiments at various times of a day
and first present the results of tests that involve the least amount
of uploading traffic. This makes the comparison against C/S based
J.tv more meaningful because otherwise the additional high upload-
ing from a mobile device undoubtedly increases the battery power
consumption. Note that these tests are not necessarily accessing
unpopular channels, since uploading of a peer is also affected by a
number of other factors.

Table 1 summarizes some raw data based on the traces we have
collected in the experiments. Note that Total # of Streaming Pack-

ets refers to the downloaded streaming data packets only. Although
the video encoding rates are different across four P2P applications,
it is not necessarily correlated to the amount of time that the WiFi
interface has spent in the PSM: both PPTV and PPS stream at sim-
ilar rates, but they have different power efficiency; SopCast allows

the WiFi interface to sleep for less than 1% of the session time with
a streaming rate of 530 Kbps, but at a similar rate of 500 Kbps
in QQLive, the WiFi interface operates in the PSM for 7% of the
session time, and is the most power efficient.

Nevertheless, compared to C/S based J.tv in which the WiFi op-
erates in the PSM for 21% of the session time, none of these four
popular P2P streaming applications is power efficient. Note that
all above experiments involve a small amount of uploading traffic.
If the laptop has to upload more to neighboring peers, the power
efficiency of P2P streaming applications would be even worse (we
will show soon in Section 3.3).

While the sleep time varies in different P2P streaming applica-
tions, above results on both the mobile device and the laptop show
that compared to C/S based streaming, a mobile client in existing
P2P streaming applications is much less power efficient. As afore-
mentioned, this is likely due to the uploading and control traffic.
To quantify their impact, next we further analyze the incoming and
outgoing traffic to/from our testing client.

3.2 Impact of Control Traffic
Figures 1, 2, 3, and 4 show more detailed traffic analysis in the

above experiments for PPTV, PPS, SopCast, and QQLive, respec-
tively. Figure 1(a) shows the packet size distribution of PPTV. As
indicated by this figure, the packet size distribution is highly bi-
modal. Via reverse-engineering, we find that only about 37% pack-
ets are streaming packets with the size around 1408 bytes while
about 60% packets have a size less than 300 bytes. Similarly, Fig-
ures 2(a), 3(a), and 4(a) show that there are more than 74%, 66%,
and 62% small packets in the streaming sessions of PPS, SopCast,
and QQLive, respectively.

Recall that existing P2P streaming systems mainly use a pull
based mesh structure, in which neighboring peers need to fre-
quently exchange control information. For example, peers ex-
change buffermaps to determine data chunk availability among
neighbors. Peers also need to send out file chunk requests
to retrieve missing streaming data chunks. In addition, PPTV, PPS,
Sopcast, and QQLive all use UDP to transmit packets. Thus, these
small packets can only be control traffic of the P2P protocol. Via
reverse-engineering, it is confirmed that these packets include both
buffermaps exchanged with neighbors and file chunk requests sent
to neighbors.

Table 1 shows that in all these P2P streaming applications, there
are more control packets (the 5th column) than streaming data
packets (the 6th column). PPS even generated about 3 times more
control packets than data packets. Regardless of the total traffic
amount of these control packets, such a large number of control
packets can significantly reduce the the inter-packet delay and thus
idle time of the WiFi interface. This would result in more battery
power consumption. Figures 1(b), 2(b), 3(b), and 4(b) show the
inter packet delay distribution in these experiments. In these fig-
ures, Inter Streaming Packet delay considers only ingress
streaming data packets. Inter Control Packet delay con-
siders both incoming and outgoing control packets, and Inter

100 300 500 700 900 1100 1300 1500
0

0.2

0.4

0.6

0.8

1

IP Packet Size (bytes)

C
u

m
u

la
tiv

e
 F

ra
ct

io
n

(a) Packet Size (CDF)

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

10
5

0

0.2

0.4

0.6

0.8

1

Inter Packet Delay (ms)

C
u

m
u

la
tiv

e
 F

ra
ct

io
n

Inter Packet
Inter Streaming Packet
Inter Control Packet

(b) Inter Packet Delay (CDF)

0 10 20 30
0

30

60

90

120

150

180

Time (minute)

C
o
n
tr

o
l T

ra
ff
ic

 T
h
ro

u
g
h
p
u
t
(K

b
p
s)

(c) Control Traffic Throughput

Figure 1: PPTV (400Kbps)

100 300 500 700 900 1100 1300 1500
0

0.2

0.4

0.6

0.8

1

IP Packet Size (bytes)

C
u

m
u

la
tiv

e
 F

ra
ct

io
n

(a) Packet Size (CDF)

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

10
5

0

0.2

0.4

0.6

0.8

1

Inter Packet Delay (ms)

C
u

m
u

la
tiv

e
 F

ra
ct

io
n

Inter Packet
Inter Streaming Packet
Inter Control Packet

(b) Inter Packet Delay (CDF)

0 10 20 30
0

30

60

90

120

150

180

Time (minute)

C
o
n
tr

o
l T

ra
ff
ic

 T
h
ro

u
g
h
p
u
t
(K

b
p
s)

(c) Control Traffic Throughput

Figure 2: PPS (396Kbps)

100 300 500 700 900 1100 1300 1500
0

0.2

0.4

0.6

0.8

1

IP Packet Size (bytes)

C
u

m
u

la
tiv

e
 F

ra
ct

io
n

(a) Packet Size (CDF)

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

10
5

0

0.2

0.4

0.6

0.8

1

Inter Packet Delay (ms)

C
u

m
u

la
tiv

e
 F

ra
ct

io
n

Inter Packet
Inter Streaming Packet
Inter Control Packet

(b) Inter Packet Delay (CDF)

0 10 20 30
0

30

60

90

120

150

180

Time (minute)

C
o
n
tr

o
l T

ra
ff
ic

 T
h
ro

u
g
h
p
u
t
(K

b
p
s)

(c) Control Traffic Throughput

Figure 3: SopCast (530Kbps)

100 300 500 700 900 1100 1300 1500
0

0.2

0.4

0.6

0.8

1

IP Packet Size (bytes)

C
u

m
u

la
tiv

e
 F

ra
ct

io
n

(a) Packet Size (CDF)

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

10
5

0

0.2

0.4

0.6

0.8

1

Inter Packet Delay (ms)

C
u

m
u

la
tiv

e
 F

ra
ct

io
n

Inter Packet
Inter Streaming Packet
Inter Control Packet

(b) Inter Packet Delay (CDF)

0 10 20 30
0

30

60

90

120

150

180

Time (minute)

C
o
n
tr

o
l T

ra
ff
ic

 T
h
ro

u
g
h
p
u
t
(K

b
p
s)

(c) Control Traffic Throughput

Figure 4: QQLive (500Kbps)

Packet delay takes all packets transmitted into account. As
shown in these figures, while 10% and 3% successive streaming
packets of PPTV and PPS arrive with a delay larger than 100 ms
(meaning opportunities for power saving), about 60% control pack-
ets in PPTV and 42% in PPS are sent/received within 1 ms from the
preceding one. This causes the overall Inter Packet delay to signif-
icantly deviate from Inter Streaming Packet delay patterns.

Although control packets are much more frequent than streaming
data packets, the throughput of control traffic is relatively small. As
shown in Figures 1(c), 2(c), 3(c), and 4(c), the throughput of control
traffic of the four P2P streaming applications is less than 100 Kbps
for most of the time. In these figures, the throughput is averaged
over 10 seconds. The relatively small control traffic throughput is
mainly due to the small size of control packets. This is a very im-
portant feature that we could explore to save power consumption
in BlueStreaming in Section 4. Although control traffic may in-
crease with the increase of uploading, typically the control traffic
throughput is still much smaller than the streaming data rate.

3.3 Impact of Uploading Traffic
The measurement results we have presented above involve a

minimum amount of uploading traffic. In practice, a P2P client may
upload more and the uploading throughput may also change from
time to time. Figure 5 shows the uploading variations of our client
with a minimum uploading average and a maximum uploading av-
erage in our over fifty 30-minute tests at various time. As shown in
this figure, the throughput of uploading traffic could reach as high
as over 1 Mbps in PPTV, PPS, and SopCast. Such a high upload-
ing throughput clearly consumes more battery power. As shown
in Table 3, with a larger amount of uploading traffic transmitted,
the sleep time (%) of the WiFi interface in all four applications de-

Table 3: Comparison of Sleep Time (%)

PPTV PPS SopCast QQLive

MAX 4.42 0.09 0.99 7.12

MIN 0.08 0.00 0.22 4.33

creases significantly, and in PPS it even could not switch into the
PSM at all.

3.4 Impact of the Number of Neighbors
Both control traffic and uploading traffic are affected by the num-

ber of neighbors a peer communicates with at a time. A larger
number of neighbors not only increase the control information ex-
changed with different peers and the uploading traffic amount, but
also divide large idle time intervals into smaller ones because the
response time of different peers to our client varies significantly.
During the experiments, we have kept track of the number of peers
that our streaming client downloaded data from. As shown in the
last column of Table 1, during the 30-minute test, our client in
QQLive exchanges streaming data with 4 neighboring peers on av-
erage every 10 seconds, while it involves 12 neighbors on average
in PPTV.

Summary of Measurement Results: Our study shows that in In-
ternet P2P streaming (1) although of small throughput, the control
traffic is highly frequent, which remarkably reduces the potential
sleep time of the WiFi interface; (2) the uploading required from a
peer changes dynamically and could reach a very high throughput,
which directly affects the battery power consumption and worsens
the client side traffic pattern; (3) the dynamics of peers’ neighbors
directly affect both control and uploading traffic, and the variance

0 10 20 30
0

400

800

1200

1600

Time (minute)

U
p
lo

a
d
 T

h
ro

u
g
h
p
u
t
(K

b
p
s)

(a) PPTV

0 10 20 30
0

400

800

1200

1600

Time (minute)

U
p
lo

a
d
 T

h
ro

u
g
h
p
u
t
(K

b
p
s)

(b) PPS

0 10 20 30
0

400

800

1200

1600

Time (minute)

U
p
lo

a
d
 T

h
ro

u
g
h
p
u
t
(K

b
p
s)

(c) SopCast

0 10 20 30
0

400

800

1200

1600

Time (minute)

U
p
lo

a
d
 T

h
ro

u
g
h
p
u
t
(K

b
p
s)

(d) QQLive

Figure 5: Variation of Upload Throughput (averaged over 10 seconds)

Table 2: Simple Strategies Do Not Work Well

Name Total # of Sleep Distortion/Freeze
Streaming Time (%) Time (%)

PSM-A 109800 5.24 0

Bluetooth only 37228 N/A 96

WiFi with traffic shaping 121598 26.89 38

BlueStreaming

Client

Cl
as
sif
ier

Classifier

Shaper

Uplo
ad

Sch
edu

ler

BlueStreaming

Access Point

Figure 6: Overview of BlueStreaming Architecture

of response time among neighbors further shortens inter-packet de-
lay.

4. DESIGN OF BLUESTREAMING
As discussed in the last section, P2P streaming differs from tra-

ditional client-server based streaming on the additional control traf-
fic, uploading traffic, and data receiving from multiple peers. These
can lead to excessive battery power consumption on mobile de-
vices.

4.1 Motivation
To save power consumed for data transmission, an intuitive so-

lution is to always switch to a low power interface, e.g., Bluetooth
connection when available. Another solution is to use WiFi inter-
face only, but aggressively shapes the traffic by brutally buffering
all packets for long enough and transmit them in a very large MAC
frame periodically.

We implement both of these schemes. Table 2 shows the re-
sults when accessing a QQLive channel of 500 Kbps for 30 min-
utes. Bluetooth only saves energy consumption by only using
Bluetooth for all transmissions. However, Bluetooth alone cannot
afford the constant bandwidth demanded by the application. As a
result, Table 2 shows that the client with Bluetooth only re-
ceives about only 34% streaming data packets compared to PSM-A.
This causes the playback to be frozen all the time during the entire
streaming session.

On the other hand, in WiFi with traffic shaping, the control pack-
ets are also buffered and sent in burst periodically via WiFi. Table
2 shows that such an approach can make the WiFi interface to sleep
for 26% of the session time. However, the delayed control pack-
ets have caused the client to receive 10% more streaming packets,
indicating the delay-sensitivity of control traffic. Moreover, by an-
alyzing the captured frames of the playback and comparing with
those captured in PSM-A (since we do not have access to the orig-
inal video), we find that quality degradation (playback freezing or
distortion) happens for a total of 684 seconds, which is 38% of the
entire streaming session.

The above results demonstrate that these intuitive strategies us-
ing either interface may cause problems in both user perceived
quality and the efficiency of transmission. We next present our de-
sign of BlueStreaming to intelligently utilize both WiFi and com-

monly existing Bluetooth interfaces on mobile devices for Internet
P2P streaming accesses.

4.2 BlueStreaming Overview
To efficiently deal with control traffic in P2P streaming,

BlueStreaming leverages the Bluetooth interface on a mobile de-
vice to transmit control traffic. For this purpose, BlueStreaming
always classifies the incoming and outgoing traffic to/from a client
into two classes: ingress/egress control traffic and ingress/egress
data traffic. BlueStreaming uses Bluetooth to transmit both ingress
and egress control traffic. In addition, since uploading is inevitable
and Bluetooth is always active in BlueStreaming, Bluetooth also
uploads to neighbors whenever there is available bandwidth. The
WiFi interface is mainly used for streaming data downloading, as
well as uploading opportunistically upon excessive uploading.

Figure 6 depicts the architecture of BlueStreaming. Logically,
BlueStreaming consists of three main components: the traffic clas-
sifier at both the AP and the client sides to decouple control traffic
from streaming data traffic, the traffic shaper at the client side for
shaping data traffic to save battery power, and the uploading sched-
uler at the client side to handle uploading traffic. The successful
design of these three components, however, needs to address the
following challenges:

• traffic classifier: given that in most P2P streaming, control traf-
fic and data traffic use the same channel (port number), how can
control traffic be decoupled from data traffic transparently (trans-
parent to the application)?

• traffic shaper: since most existing P2P streaming traffic is de-
livered over UDP and a client often dynamically communicates
with a set of different peers at a time, how shall BlueStreaming
shape the downstream traffic to a client?

• uploading scheduler: because uploading from a peer is neces-
sary and critical to the scalability of a P2P system, how does
a client perform uploading while minimizing the corresponding
battery power consumption?

4.3 Traffic Classifier: Diverting Control Traf-
fic to Bluetooth

Since Bluetooth operates with about 20% power compared to
WiFi in an active state, with BlueStreaming, a mobile device seeks
to use Bluetooth to transmit the large number of small delay-
sensitive control packets in order to put the WiFi interface into sleep

mode for a longer time. This requires Bluetooth to provide suffi-
cient bandwidth to transmit control traffic. Commodity Bluetooth
interfaces today typically offer a low data rate of 1 Mbps or so.
Although we have shown in Section 3 that control traffic may fluc-
tuate from time to time depending on a number of factors such as
the number of neighbors, the control traffic rate is often very low.
Using Bluetooth to transmit control traffic also needs to consider
the time sensitivity of control packets. A previous study shows that
the delay of the control traffic would cause repetitive requests of the
same data chunks [22]. Thus, to ensure timely delivery of control
packets, in BlueStreaming, the Bluetooth interface stays active all
the time so that control packets are transmitted without any delay.

To transmit control packets via Bluetooth, control traffic must
be separated from data traffic at runtime. In BlueStreaming, the
traffic classifier is responsible for decoupling control packets from
data packets. Since there are both incoming and outgoing control
packets, the traffic classifier works at both the AP and the client
sides. Because (1) the current design of BlueStreaming aims to be
application transparent, (2) both control traffic and data traffic in
typical P2P streaming services use a same port, and (3) the classi-
fication must be real time, BlueStreaming has to avoid deep packet
inspection for any application specific information.

Thus, in BlueStreaming, we leverage a feature that we have
found via our measurement for runtime packet decoupling. In Sec-
tion 3, Figures 1(a), 2(a), 3(a), and 4(a) show the packet size distri-
bution. As shown in these figures, the control packets are of a much
smaller size compared to that of streaming data packets. Thus, in
BlueStreaming, we leverage the packet size to differentiate differ-
ent types of packets. Although the classification is based on our
observation in the measurements, we have further conducted mea-
surements with these P2P streaming services for prolonged time in
order to validate its accuracy.

Once the control traffic is decoupled, it is easy to divert to the
Bluetooth interface. Upon packet arrival, merging received packets
from different interfaces is straightforward since these P2P stream-
ing applications use UDP.

4.4 Traffic Shaper: Shaping Ingress Stream-
ing Traffic

After all control packets are diverted to the Bluetooth channel,
only data traffic is transmitted through WiFi. Thus, more energy
could be saved by exploiting the idle time of the WiFi interface.

Figures 1(b), 2(b), 3(b), and 4(b) show the inter-packet delays.
As shown in these figures, although the Inter Packet delay distribu-
tion of WiFi (without control traffic) is similar to the distribution of
Inter Streaming Packet delay, the increase of sleep opportunity due
to control traffic elimination is still small. This is likely due to the
multiple uploading peers instead of only a single server. Multiple
uploading peers have different response time to this client, result-
ing in different ingress streaming packet arrival time as observed in
our measurement.

Thus, after diverting control traffic, BlueStreaming still needs to
handle incoming traffic from different neighboring peers. A natu-
ral scheme is to do traffic shaping at the AP. Since BlueStreaming
mainly deals with UDP based streaming, the traditional TCP based
traffic shaping in the client-server based architecture, such as PSM-
throttling, does not work. In addition, due to the QoS requirements
of Internet streaming services, such streaming packets cannot be
buffered for too long.

To this end, in the traffic shaper, BlueStreaming utilizes the
buffer maintained by the WiFi AP: the streaming packets arrived
over time are combined into a single MAC frame burst. As a result,

the interval between bursts is significantly enlarged and the WiFi
interface can exploit these opportunities to switch into the PSM.

To minimize the change to AP, the traffic shaper in BlueStream-
ing works by not sending the NULL or PS-Poll frame even when
the TIM indicates that there are buffered frames for the client. This
forces the AP to continue to buffer frames destinated to this client.
A subtle issue here is to determine when to wake up and retrieve
buffered data. In BlueStreaming, we set it based on: (1) streaming
bitrate, (2) effective WiFi bandwidth, and (3) QoS requirements.
The first two are easy to determine. The third one, however, is
highly application dependent. On the one hand, it impacts the client
perceived streaming quality directly, although the playout buffer
can absorb most of such delay. On the other hand, P2P applica-
tions usually use a timer to determine if any data chunk needs to
be re-requested. For certain chunks that are not received in time,
they will either be forfeited if their deadline has already passed or
they will be requested again [22]. Hence, if streaming packets are
buffered at the AP for too long, the application would believe such
packets are lost, and request them again.

On the other hand, if the WiFi interface keeps staying in the
sleep mode without responding to AP’s beacon messages, the
AP would believe that the client is no longer associated. After
a pre-determined timeout interval, the AP would start dropping
its buffered frames. Thus, how long the data packets should be
buffered is critical, which directly determines the sleep duration of
the WiFi interface.

Taking all the above considerations into account, we set the
packet buffering duration as follows:

Tbuf = min

(

Tre−req × (1−
Rate

BWWiFi

), TAP−timeout

)

(1)

where Tre−req is the re-request timer of P2P applications, Rate

is the bitrate of the streaming channel, BWWiFi is the estimated
bandwidth of the WiFi link, and TAP−timeout is the timeout dura-
tion after that the AP starts to drop buffered data for the client.

4.5 Uploading Scheduler: Scheduling Upload
Wisely

In P2P streaming, peers should upload data to neighbors. This is
the key to the scalability of any P2P application. But such upload-
ing brings new complexities. First, uploading to other peers of the
downloaded data directly incurs the consumption of the uploading
bandwidth and battery power. Second, uploading incurs a compa-
rable number of control packets. Third, uploading is very dynamic
and hard to predict in P2P streaming since it depends on how many
peers the client is serving at a time. As a result, uploading may
seriously offset our energy saving efforts.

Aiming to solve these issues efficiently so that the minimum bat-
tery power is consumed for such uploading, we design an uploading
scheduler working at two levels: Priority-based Bluetooth Upload-

ing and Opportunistic WiFi Uploading. In short, BlueStreaming
tends to fully utilize the always-on Bluetooth first, and then oppor-
tunistically utilize WiFi for uploading if needed.

4.5.1 Priority-based Bluetooth Uploading

In the previous measurement, we have shown that control traffic,
although resulting in a large number of packets, occupies a small
portion in the traffic volume. Utilizing Bluetooth for control traf-
fic transmission typically consumes less than 20% of the available
Bluetooth bandwidth. This leaves a lot of Bluetooth bandwidth un-
used because the Bluetooth interface in BlueStreaming is always
active. Thus, when there are uploading packets pending, un-used
Bluetooth bandwidth is firstly exploited to transmit the uploading

traffic. Since Bluetooth is kept active to transmit frequent control
traffic, diverting uploading packets to it does not incur much more
power consumption.

While the above idea works intuitively, a design pitfall is the
delay of control packets due to the streaming data uploading to
neighbors. In order to ensure timely delivery of control packets,
upstream data packets should not be diverted to Bluetooth when
the bandwidth utilization of Bluetooth reaches a threshold. For this
purpose, different priorities should be assigned to control traffic and
data traffic. A higher priority should always be given to the control
packets when data packets also present.

4.5.2 Opportunistic WiFi Uploading

Since WiFi provides a much higher data rate compared to Blue-
tooth, when high uploading is demanded and it cannot be com-
pleted by Bluetooth, BlueStreaming considers to opportunistically
use WiFi to deliver uploading traffic in burst. For this pur-
pose, similar to downstream/incoming packets, intermittent up-
stream/outgoing packets are combined and sent at a higher data
rate by buffering outgoing streaming packets for a certain amount
of time at the network layer at the client side.

The timing in the above process is critical. Although it is appeal-
ing to buffer the packets for long enough and then transmit them
in a very large MAC frame, it would impact the performance of
the requesting peer and may cause our BlueStreaming client to re-
ceive excessive repetitive requests. This can further increase the
number of control packets and negatively impact the throughput of
the Bluetooth channel. In order for WiFi to upload with a min-
imum consumption of extra battery power, the scheduler should
work seamlessly with the PSM mechanism on the client.

Thus, to opportunistically utilize WiFi for uploading when
needed, the uploading scheduler schedules to transmit burst upload-
ing traffic before or right after “shaped” downstream traffic based
on the PSM configuration.

• If the idle timeout interval used in PSM is only based on out-
going traffic activities, BlueStreaming starts to upload while the
WiFi interface is in PSM. It will switch from PSM to CAM and
the transmission is scheduled to finish right before the start of
downstream packet transmissions. Note that the end-timing of
uploading is not stringent, because the AP will not start to send
buffered downstream packets until it receives a NULL wake-up
or PS-Poll frame from the client. Under such a scheduling pol-
icy, the time spent for downloading streaming packets would be
counted toward the idle timeout interval.

• If the idle timeout interval for PSM is based on both incoming
and outgoing traffic activities, the scheduler can schedule the up-
loading via WiFi after being notified by the AP that it has no
more buffered data packets.

In either case, the client can sleep for:

Tsleep = min

(

Tre−req × (1−
Rate

BWWiFi

), TAPtimeout

)

−

SIZEUp−Buf

BWWiFi

(2)

where SIZEUp−Buf denotes the volume of uploading packets
buffered in the outgoing buffer at the client side.

5. IMPLEMENTATION
To evaluate the performance of BlueStreaming, we have imple-

mented prototype systems on both Mac OS and Windows. In this
section, we discuss some implementation and deployment issues.

5.1 Prototype Implementation
Our current prototypes run on laptops since laptops have im-

plemented more complete Bluetooth profiles including Personal
Area Network (PAN) as desired by BlueStreaming. BlueStreaming
could be totally AP-transparent if control traffic can be separated at
the transport layer. However, as we mentioned before, existing P2P
streaming applications do not differentiate control traffic from data
traffic at the transport layer. Therefore, we need a traffic classifier
at both the AP and the client sides. We prototyped BlueStreaming
AP using a MacBook as AP for both WiFi and Bluetooth. It shares
its wired Ethernet connection via WiFi and Bluetooth interfaces.
In a nutshell, the traffic classifier works at the IP layer. It inter-
cepts packets at the IP layer, modifies destination addresses, and
re-injects the packets to the corresponding interfaces.

The traffic shaper utilizes the buffer maintained at the WiFi AP
by allowing the client not to wake up even if it has buffered packets.
For this purpose, we implement a buffer at the network layer of
our AP, which buffers downstream data packets and then forwards
to the link layer in burst periodically. The buffering time is set
according to Equation (1).

The upload scheduler is implemented at the client side. In our
experiments, the idle timeout interval of PSM set by the driver is
solely based on outgoing network activities. Therefore, we sched-
ule outgoing uploading traffic before the bursty downloading of in-
coming traffic. To implement this, we set up a client side buffer
at the network layer to buffer its outgoing packets. It also logs the
timestamp of the first arrived packet of the latest incoming burst via
WiFi, and determines when to start transmitting bursty uploading
traffic based on Equation (2).

5.2 Infrastructure vs. Hybrid Mode
BlueStreaming can be deployed in two modes in practice: (1) an

Infrastructure mode where a dedicated AP provides both WiFi and
Bluetooth connections, and (2) a Hybrid mode where an intermedi-
ate device is used.

A BlueStreaming client needs both WiFi and Bluetooth inter-
faces, so that both interfaces can be used in parallel. In an infras-
tructure mode, the AP also needs to have both interfaces so that a
BlueStreaming client and the AP can direct different types of traffic
to different subnets (e.g. wireless LAN and bluetooth PAN).

In practice, however, a Bluetooth-enabled AP is not so common
compared to a WiFi AP. If WiFi AP does not support Bluetooth,
we allow a BlueStreaming client to operate in a hybrid mode by
utilizing other Bluetooth-enabled network devices nearby. The in-
termediate devices should have a Bluetooth interface as well as a
connection to the AP (wired or wireless). In practice, the hybrid
mode can be easily deployed by using a plug-and-play Bluetooth
dongle. In this mode, a BlueStreaming client can form an ad-hoc
network with the intermediate device, and ask it to relay its traffic.

Another natural concern is the range mismatch problem of WiFi
and Bluetooth. The expected communication range of WiFi is
about 100 meters, while Bluetooth often covers only about 10 me-
ters. In BlueStreaming, the hybrid mode can help deal with this is-
sue. That is, with a relay in the middle, the communication distance
of Bluetooth can double. Multi-hop relay could also be leveraged
if necessary. We will study the impact of relay in the hybrid mode
in the next section. If there is no relay possible at all, the user has
to use WiFi as before.

On the other hand, the new Bluetooth standard may shed light
on this range mismatch issue. For example, with the development
of Bluetooth 4 [23], Bluetooth can improve its coverage to 50 me-
ters or more. Better yet, with new low energy techniques, such an

improved communication range may not necessarily increase the
energy consumption.

5.3 Channel Selection and Competition
Avoidance

Co-existence of Bluetooth and WiFi has attracted a lot atten-
tion during the past years, because Bluetooth and WiFi may op-
erate in the same spectrum. When a Bluetooth transmission and
a WiFi transmission happen at the same frequency, interferences
could happen and packets may be lost.

Recent advances of wireless technology have made significant
progress to address this problem. For example, hardware ven-
dors today commonly use specific co-existence algorithms to han-
dle Bluetooth and WiFi traffic intelligently when both interfaces
are in operation. Operating systems such as Windows 7 also im-
plement Adaptive Frequency Hopping (AFH) to minimize interfer-
ences. In our experiments, our laptop is equipped with the latest
Bluetooth/WiFi combo chipset from Broadcom and runs Windows
7. We will study retransmissions rates in Section 6.4.

6. PERFORMANCE EVALUATION

6.1 Experimental Setup
To evaluate BlueStreaming, we run our Windows prototype to

access PPTV, PPS, SopCast, and QQLive. A laptop (MacBook) is
set as the BlueStreaming Access Point for both WiFi and Bluetooth,
and WiFi runs 802.11n at 2.4GHz. A second laptop runs Windows
7 and acts as the BlueStreaming client to run the four applications.
The third laptop associates with the AP and captures WiFi traffic
in a promiscuous mode. In a hybrid mode, a fourth laptop is used
to relay the control traffic between our testing client and the AP by
associating with the AP via WiFi, while the AP turns off its Blue-
tooth interface and only serves as AP for WiFi. In all experiments,
laptops are placed 3 meters from each other except that the traffic
sniffer (the third laptop) and our testing client (the second laptop)
are placed close to each other.

6.2 Energy Saving in the Infrastructure Mode
We first examine the effectiveness of BlueStreaming in infras-

tructure mode. For each of the four applications, three tests are
conducted: (1) PSM-A (without BlueStreaming), (2) BlueStream-
ing with only the traffic classifier enabled, and (3) BlueStreaming
with all three components enabled. Because there is always up-
loading traffic from our testing client, the traffic shaper has to work
with the uploading scheduler in order to maximize power saving.
So we did not test BlueStreaming with only the traffic classifier and
the shaper enabled. Each of these tests is conducted for 30 minutes.
For each application, three tests are carried out consecutively in the
hope that the Internet conditions and dynamics of these P2P ser-
vices have not remarkably changed.

Table 4: PPTV at 400 Kbps

Name Total # of Total # of Sleep Consumed
Streaming Control Time (%) Energy(J)

PSM-A 66465 147554 0.56 2005

Classifier only 66121 121512 25.82 1745

BlueStreaming 70622 132466 60.50 1090

Table 4 gives an overview of the power saving on our testing
client when accessing a channel of 400 Kbps in PPTV. During all
three tests, our testing client receives smooth playback and cap-
tured frames show no quality degradation when compared to that
in PSM-A. However, the amount of the battery power consumed

by the WiFi interface for receiving streaming data is vastly differ-
ent. With PSM-A, the WiFi interface spent only 10 seconds in the
PSM and more than 99% of the session time in the active mode.
When the traffic classifier is enabled, the amount of power saving
is greatly improved: the WiFi interface spent more than 25% of
session time in the PSM. When BlueStreaming is fully enabled, the
WiFi interface spent over 60% time in the PSM, a 134% improve-
ment over the case with only the traffic classifier enabled.

The additional sleep time of WiFi does not necessarily mean ad-
ditional energy saving since BlueStreaming keeps Bluetooth active
all the time and thus constantly consumes some battery power. We
need to take that into account to evaluate the total power consump-
tion of BlueStreaming. Since we do not use an instrument to mea-
sure the absolute battery consumption, we rely on the specification
given in [16] and [10] to estimate the total power consumed. That
is, the WiFi interface consumes 1120 mW in the CAM and 72 mW
in the PSM; the Bluetooth interface consumes 120 mW in the ac-
tive mode, and 25 mW in the idle mode. Note that we consider
Bluetooth to be always active, which is conservative for the total
power saving. The last column of Table 4 shows that considering
the total power consumption of both the WiFi and Bluetooth inter-
faces, the classifier only and BlueStreaming can save over 13% and
46% energy, respectively, when compared to PSM-A.

Figure 7 further shows the Inter Packet Delay distribution of
WiFi traffic in these three tests. Compared to Figure 7(a), Figures
7(b) and 7(c) show that the Inter Packet delay distribution and Inter
Streaming Packet delay are similar to each other, indicating the ef-
fectiveness of Traffic Classifier in diverting control traf-
fic and exploiting sleep opportunities for the WiFi interface. In par-
ticular, Figure 7(c) shows a very pronounced bimodal pattern when
all BlueStreaming components are enabled: about 95% packets ar-
rive within 1 ms of the preceding one, while the rest arrive over
600 ms of the preceding packet, demonstrating the effectiveness of
downstream traffic shaping.

Figure 8 further plots a snapshot (10 seconds) of the traffic pat-
tern on the WiFi interface of our testing client in these three tests.
Both incoming and outgoing packets are included. Figure 8(a)
shows the traffic pattern when PSM-A is used. The traffic pat-
tern shows a stair-case shape, and the small intervals between suc-
cessive packets imply few opportunities for the WiFi interface to
switch into PSM. Streaming with the classifier only can divert the
frequent control packets to Bluetooth, resulting in more sleep op-
portunities as shown in Figure 8(b). However, due to the varia-
tion of response time from different neighbors, the traffic pattern is
still not bursty enough. With the help of Traffic Shaper in
BlueStreaming, Figure 8(c) shows that bursty traffic is sent more
regularly and periodically, given that the interval between bursts is
determined by Equation (1).

Table 5: QQLive at 500 Kbps

Name Total # of Total # of Sleep Consumed
Streaming Control Time (%) Energy(J)

PSM-A 109800 206259 5.24 1917

Classifier only 105702 190428 34.37 1584

BlueStreaming 103600 187311 52.89 1234

Table 5 shows the results of our testing client accessing a 500
Kbps channel in QQLive. The table shows that although QQLive
transmits 50% more packets than PPTV, it has more power saving
in PSM-A and Classifier-only than in PPTV. This is likely
due to the smaller variation of response time from a different num-
ber of neighboring peers. However, the request time-out Tre−req

of QQLive is smaller than that of PPTV (based on our reverse en-

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

10
5

0

0.2

0.4

0.6

0.8

1

Inter Packet Delay (ms)

C
um

ul
at

iv
e

F
ra

ct
io

n

Inter Packet
Inter Streaming Packet
Inter Control Packet

(a) PSM-A

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

10
5

0

0.2

0.4

0.6

0.8

1

Inter Packet Delay (ms)

C
um

ul
at

iv
e

F
ra

ct
io

n

Inter Packet
Inter Streaming Packet

(b) Classifier only

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

10
5

0

0.2

0.4

0.6

0.8

1

Inter Packet Delay (ms)

C
um

ul
at

iv
e

F
ra

ct
io

n

Inter Packet
Inter Streaming Packet

(c) BlueStreaming

Figure 7: PPTV 30-min Tests: Inter Packet Delay of WiFi (CDF)

1200 1202 1204 1206 1208 1210
0

0.2

0.4

0.6

0.8

Time (second)

T
o
ta

l T
ra

ff
ic

 (
M

B
)

(a) PSM-A

1200 1202 1204 1206 1208 1210
0

0.2

0.4

0.6

0.8

Time (second)

T
o
ta

l T
ra

ff
ic

 (
M

B
)

(b) Classifier only

1200 1202 1204 1206 1208 1210
0

0.2

0.4

0.6

0.8

Time (second)

T
o
ta

l T
ra

ff
ic

 (
M

B
)

(c) BlueStreaming

Figure 8: Traffic Pattern of PPTV

gineering), and thus traffic shaping is less effective for QQLive.
Even so, the extra amount of battery power saved by applying traf-
fic shaping and upload scheduling is still prominent: the WiFi in-
terface spent more than 52% of the session time in the PSM.

While omitting detailed results of PPS and SopCast due to page
limit, we also show the overall energy saving for them in Figure 9,
where Blue-I means BlueStreaming under the infrastructure mode
and Blue-H means BlueStreaming under the hybrid mode. Because
PPS has a very small request time-out value, our client saves about
10% energy in BlueStreaming compared to PSM-A. SopCast, on
the other hand, has a larger Tre−req smiliar to that of PPTV, and
thus our client can save about 45% energy with BlueStreaming.

6.3 Hybrid Mode
We have shown that BlueStreaming is effective in saving power

in the infrastructure mode where the AP supports both Bluetooth
and WiFi. In practice, if Bluetooth is out of range or the AP does
not support Bluetooth, we propose to use the hybrid mode. In this
section, we evaluate BlueStreaming in hybrid mode with a relay
node in the middle. The intermediate node forms a Bluetooth Ad-
hoc network with our BlueStreaming client, and joins the subnet of
BlueStreaming AP via the WiFi connection.

Since control traffic in P2P streaming is delay-sensitive, a
particular concern on the hybrid mode is the delay of relaying,
which could increase the response time at the application layer
and deteriorate streaming quality. Because of the highly dynamic
nature of P2P streaming overlay, we could not directly use
application layer response time to compare the delay in different
scenarios. Instead, we use Ping to measure the approximate round
trip time from our BlueStreaming client to the AP via different
paths, and estimate the increased control traffic delay. In short,
the control traffic could be delivered under three scenarios: (1)
PSM-A via a direct WiFi connection when BlueStreaming is not
enabled; (2) BlueStreaming-Infrastructure via a direct
Bluetooth connection; and (3) BlueStreaming-Hybrid

via a relayed Bluetooth device. For PSM-A and

BlueStreaming-Infrastructure, we use standard
Ping to measure the RTT. For BlueStreaming-Hybrid, we
run a customized Ping at our BlueStreaming client that measures
the RTT of the relayed connection to AP.

We send out one Ping request every 1 second with 32 bytes
payload, which is the payload of a typical control packet. For each
scenario, we take the average of 400 RTT results. Table 6 shows
that with a direct 802.11n WiFi connection, the RTT is about 3
ms; with a direct Bluetooth connection in the infrastructure mode,
the RTT increases to about 22 ms on average, which is likely due
to the smaller throughput of Bluetooth; with a relayed Bluetooth
connection in the hybrid mode, the RTT slightly increases to 25 ms,
which is due to the additional WiFi transfer occurred between the
relay node and the WiFi AP. Apart from the potentially increased
control traffic response time, the streaming quality during the tests
has no degradation in either the infrastructure or hybrid mode.

Figure 9 further summarizes the average energy consumption
across four applications in these tests. The figure shows that the
estimated energy consumption is comparable in both modes.

Due to high dynamics of P2P streaming overlay, it is not appro-
priate to say if one mode is better/worse than the other in terms of
power saving even if they have demonstrated slightly different per-
formance on energy consumption. Nevertheless, it is reasonable to
conclude that BlueStreaming running in both modes can achieve
good power saving.

6.4 Retransmission Rate
Throughout our experiments, we have been using 802.11n at 2.4

GHz band (instead of 5 GHz), which is the same band that Blue-
tooth operates on. In addition to that, using airport scan on
the MacBook to scan all available WiFi APs nearby, we find that
all non-overlapping channels (channel 1, 6, and 11) of 2.4 GHz are
occupied by more than 6 APs each during our experiments because
our experiments are done in a lab covered by the AP hotspots. Be-
cause we run our experiments during 1pm to 5pm local time, there
are a lot of wireless users around, meaning lots of background traf-

Table 6: RTT based on customized

Ping

Name RTT (ms)

PSM-A 3

BlueStreaming-Infrastructure 22

BlueStreaming-Hybrid 25

PSM−A Blue−I Blue−H
0

500

1000

1500

2000

2500

E
ne

rg
y

(J
)

PPTV
PPS

SopCast
QQLive

Figure 9: Energy Consumption Comparisons

PSM−A Blue−I Blue−H
0

0.02

0.04

0.06

0.08

R
e
tr

a
n
sm

is
si

o
n
 R

a
te

PPTV
PPS
SopCast
QQLive

Figure 10: Retransmission Rates

fic. Both sharing 2.4 GHz band and significant background traffic
may cause collisions and interferences.

To examine the situation of such intereferences, we study the
re-transmission rate during our experiments. Figure 10 depicts the
average retransmission rate of WiFi traffic throughout our exper-
iments. The result shown in the figure is the mean of five runs.
When the Bluetooth interface is not used, the retransmission rate
under PSM-A across four applications is about 0.01. When we
turn on BlueStreaming and use the infrastructure mode to transmit
P2P streaming traffic, the retransmission rate increases to above
0.04. This shows in our environment, actively using Bluetooth
does mildly increase retransmissions. When BlueStreaming uses
an intermediate node to relay control traffic in the hybrid mode,
the retransmission rate increases to about 0.06, possibly because
the relay node uses WiFi to communicate with our BlueStreaming
AP and deliver control traffic. Even so, the streaming quality in
the experiments is not degraded, demonstrating the practicability
of BlueStreaming. In an environment with less background traffic,
the retransmission rate could further decrease.

7. CONCLUSION
Recently the Internet has witnessed the rapid increase of P2P

streaming traffic and the quick shift of using mobile devices for
Internet accesses. Unfortunately, accessing delay-sensitive stream-
ing services on a mobile device is hindered by the limited battery
power supply, because a mobile client in P2P streaming needs to
transmit more traffic, including uploading to neighbors as well as
exchanging a large number of control packets with neighbors. In
order to enable power-efficient P2P streaming to mobile devices,
in this work, we have designed and implemented BlueStreaming,
a system that simultaneously utilizes WiFi and commonly exist-
ing Bluetooth interfaces. The energy consumed by the Bluetooth
interface is effectively over-compensated by the greater power sav-
ing on the WiFi interface. Extensive experiments with our imple-
mented prototypes demonstrate the effectiveness and practicability
of BlueStreaming.

8. ACKNOWLEDGEMENT
We appreciate constructive comments from our shepherd Suren-

der Chandra and anonymous referees. The work is partially sup-
ported by NSF under grants CNS-0746649, CNS-1117300, CCF-
0915681, CCF-1146578, and AFOSR under grant FA9550-09-1-
0071.

9. REFERENCES
[1] “PPTV (previously PPLive),” http://www.pptv.com/.

[2] “PPStream,” http://www.ppstream.com/.

[3] “SopCast,” http://www.sopcast.com/.

[4] “QQLive,” http://live.qq.com/.

[5] “CNN Live Video,” http://www.cnn.com/help/liveflash.html.

[6] “Cisco VNI,” http://www.cisco.com/en/US/
solutions/collateral/ns341/ns525/ns537/

ns705/ns827/white_paper_c11-481360.pdf.

[7] “Apple’s iPad Generates 2.5x the Wireless Data Traffic
Generated by the iPhone,” http://bytemobile.com/
news-events/2010/archive_260410.html.

[8] “WiFi,” http://v4.jiwire.com/search-hotspot-locations.htm.

[9] V. Bychkovsky, B. Hull, A.K. Miu, H. Balakrishnan, and
S. Madden, “A Measurement Study of Vehicular Internet
Access Using In Situ Wi-Fi Networks,” in Proc. of ACM

MOBICOM, 2006.

[10] E. Rozner, V. Navda, R. Ramjee, and S. Rayanchu,
“NAPman: Network-Assisted Power management for WiFi
Devices,” in Proc. of ACM MobiSys, 2010.

[11] S. Chandra and A. Vahdat, “Application-specific Network
Management for Energy-Aware Streaming of Popular
Multimedia Formats,” in Proc. of USENIX Annual Technical

Conference, 2002.

[12] F. Dogar, P. Steenkiste, and K. Papagiannaki, “Catnap:
Exploiting High Bandwidth Wireless Interfaces to Save
Energy for Mobile Devices,” in Proc. of ACM MobiSys,
2010.

[13] E. Tan, L. Guo, S. Chen, and X. Zhang, “PSM-throttling:
Minimizing Energy Consumption for Bulk Data
Communications in WLANs,” in Proc. of IEEE ICNP, 2007.

[14] J. Liu and L. Zhong, “Micro Power Management of Active
802.11 Interfaces,” in Proc. of ACM MobiSys, 2008.

[15] Y. Agarwal, R. Chandra, A Wolman, P. Bahl, K. Chin, and
R. Gupta, “Wireless Wakeups Revisited: Energy
Management for Voip over Wi-Fi Smartphones,” in Proc. of

ACM MobiSys, 2007.

[16] T. Pering, Y. Agarwal, R. Gupta, and R. Want, “CoolSpots:
Reducing the Power Consumption of Wireless Mobile
Devices with Multiple Radio interfaces,” in Proc. of ACM

MobiSys, 2006.

[17] D. Bertozzi, L. Benini, and B. Ricco, “Power Aware
Network Interface Management for Streaming Multimedia,”
in Proc. of IEEE WCNC, 2002.

[18] Y. Wei, S. M. Bhandarkar, and S. Chandra, “A Client-side
Statistical Prediction Scheme for Energy Aware Multimedia
Data Streaming,” IEEE Transactions on Multimedia, vol. 8,
no. 4, 2006.

[19] “TVUPlayer,” http://itunes.apple.com/us/app/id323640984.

[20] “Justin.tv,” http://itunes.apple.com/us/app/id358612216.

[21] “Justin.tv,” http://www.justin.tv.

[22] Y. Liu, F. Li, L. Guo, and S. Chen, “Reducing Data Request
Contentions for Improved Streaming Quality,” in Proc. of

ACM NOSSDAV, 2010.

[23] “Bluetooth 4,” http://www.gizmodo.com.au/2010/04/
bluetooth-4-0-uses-less-power-while-extending-range/.

