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Figure 1: Examples of hand-colored animations generated using our approach (from left to right): walker (watercolor), teddy
(oil pastel), and strongman (watercolor). Note how our method creates variety introducing a desired level of temporal noise
while preserving the high-frequency details of the drawing medium and the low-frequency content created by an artist.

Abstract

We present an example-based approach to rendering hand-colored animations which delivers visual richness
comparable to real artwork while enabling control over the amount of perceived temporal noise. This is important
both for artistic purposes and viewing comfort, but is tedious or even intractable to achieve manually. We analyse
typical features of real hand-colored animations and propose an algorithm that tries to mimic them using only
static examples of drawing media. We apply the algorithm to various animations using different drawing media
and compare the quality of synthetic results with real artwork. To verify our method perceptually, we conducted
experiments confirming that our method delivers distinguishable noise levels and reduces eye strain. Finally, we
demonstrate the capabilities of our method to mask imperfections such as shower-door artifacts.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Picture/Image
Generation—Bitmap and framebuffer operations I.3.4 [Computer Graphics]: Graphics Utilities—Paint systems
I.3.m [Computer Graphics]: Miscellaneous—Visual arts

1. Introduction

Hand-colored animation is a type of traditional animation,
where each frame is created independently, from scratch. It

† e-mail:fiserja9@fel.cvut.cz

has a distinct visual style represented by a certain amount of
temporal flickering which arises due to misalignment of de-
tails in consecutive frames. This characteristic feature lends
it a look of liveliness and emotional expressivity, which is
being successfully leveraged by critically acclaimed artists
such as Bill Plympton and Frédéric Back.

c© 2014 The Author(s)
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Figure 2: Motivation—hand-colored animations (a) look temporally coherent when low-pass filtered (b). However, at higher
frequencies they contain details that reflect physical properties of the drawing medium and introduce temporal noise (c).

While temporal noise is usually understood as an undesir-
able artifact in NPR techniques [BNTS07, BBT09, BBT11,
OH12], used judiciously it may serve as an additional
medium of artistic expression, either to evoke a hand-crafted
look (such as sketchbook scenes in Disney’s Piglet’s Big
Movie), or to set a certain mood (e.g., Shadow World se-
quences in The Lord of the Rings). In Bill Plympton’s more
recent work (e.g., Cheatin’) noisy, hand-drawn sequences
are combined with coherent sequences to convey different
moods.

However, the nature of the medium makes it difficult to
control the amount of noise, and high noise levels can cause
visual fatigue in the viewer. This, in conjunction with the
amount of labor involved in production, creates a demand for
a more automated process that lets artists control the amount
of noise without eliminating it entirely.

Noris et al. [NSC∗11] recently presented a system which
affords control over the amount of temporal flickering in a
sequence of digitally drawn sketches. By registering individ-
ual strokes in selected keyframes, they reduce temporal jitter
using a weighted combination of original noisy motion and
smoothed inbetweening. Although this approach produces
impressive reduction of temporal noise level for sketchy vec-
tor drawings, it still requires a hand-drawn animation as an
input.

Our aim is to reach a more practical workflow that
takes a temporally coherent animation created using exist-
ing CG pipelines and enriches it with temporal noise syn-
thesized de novo from examples of an arbitrary drawing
medium. A similar workflow was recently used by Bénard
et al. [BCK∗13] in their framework, which extends Image
Analogies [HJO∗01] to render impressive stylized anima-
tions with a specific style or drawing medium given by ex-
ample. They focus on enforcing temporal coherency using
a sophisticated system of correspondence propagation; how-
ever, the underlying re-synthesis technique does not permit
control over the amount of temporal noise.

In this paper, we propose a novel example-based tech-
nique that not only preserve temporal coherency but also in-
troduces a controllable amount of temporal flickering that
conveys lively dynamics and visual richness which can be
used either to evoke an impression of hand-colored look or
provide an additional dimension of expressivity.

2. Related Work

Synthesizing various drawing media is one of the key
challenges of non-photorealistic rendering. A wide spec-
trum of techniques spanning from computational ap-
proaches [CAS∗97, HLFR07, LXJ12] to realistic example-
based methods [ZZXZ09,LBDF13,LFB∗13] has been devel-
oped. A key issue arises when these techniques are applied
to animations, where frame-independent synthesis leads to
unpleasant temporal noise that affects viewing comfort.

Many techniques have been proposed to alleviate this
issue by enforcing temporal coherency [BNTS07, BBT09,
BBT11, OH12]. Although these methods produce visually
pleasing results, their visual structure is inconsistent with
the natural look of noise typical for hand-colored animation.
A similar limitation holds also for procedural noise genera-
tion [BLV∗10, KP11] which allows for temporally coherent
stylization by suppressing temporal components of the gen-
erated noise.

Related to synthesis with temporal coherence are meth-
ods that try to enforce variety during synthesis [LH05,
LH06, RHDG10]. They introduce the ability to vary ran-
domness between scales, but due to being formulated in in-
dex domain, they cannot de-couple visual information across
scales, which would be necessary for temporal noise control.
Related multi-scale texturing approaches [VSLD13] may
use a separate source for each scale, but decomposing an
example image in this way is problematic.

A different approach to variety synthesis proposed by
Assa and Cohen-Or [ACO12] does not rely on texture
synthesis but instead decomposes the exemplar into lay-
ers, which are then recombined and the result is randomly
warped. In our scenario we would like to conform to the
user-defined shape, and the remaining small number of dis-
crete varying outputs is insufficient to simulate the variety
typical for hand-colored animation.

Our approach is inspired by image morphing tech-
niques [SRAIS10, DSB∗12] that extend state-of-the-art im-
age synthesis algorithms [WSI07, SCSI08]. Although these
methods have the potential to simulate the look-and-feel of
hand-colored animation they do not address the control over
the amount of temporal noise.

c© 2014 The Author(s)
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3. Our Approach

Noise found in hand-colored animations has a specific na-
ture. Artists tend to preserve coherency at a global level—
when the sequence is viewed at a distance (see Fig. 2a) or
when a low-pass filter is applied (Fig. 2b) the animation
is perceived to be temporally coherent. However, at a local
level, temporal variance in high-frequency details becomes
visible (Fig. 2c). This creates the impression of visual rich-
ness, reflecting the real physical properties of the drawing
medium used.
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Figure 3: Synthesis (denoted by B operator) of a noisy tar-
get animation T (subscripts denote frame numbers) from a
static reference animation R (red input) and a source draw-
ing medium S (blue input). When R is gradually blurred (R′,
R′′) using a low-pass filter h f with increasing strength f then
changes (d′, d′′) between corresponding synthesized frames
(T ′0 , T ′1 and T ′′0 , T ′′1 ) start to be more apparent and the level
of perceived temporal noise increases. Note, however, that
individual frames of T ′ and T ′′ appear similar when viewed
side-by-side with corresponding reference frames in R.

A characteristic feature of hand-colored animations is that
physical properties of the drawing medium are hard to con-
trol, so maintaining temporal coherency becomes tedious.
The difficulty increases with the scale of details an artist
wishes to preserve as coherent. Due to this, hand-colored an-
imations contain specific spatial changes between individual
frames that are perceived as a high-frequency temporal noise
when shown successively. The noise has flat power spectrum
(white noise) and gets subjectively stronger when the scale
of changing details increases (see Section 4.1 for details).

Vision science offers an explanation of this perception
with multi-channel models of human vision [Win05]. When
the human visual system processes the temporal signal, two
visual mechanisms, the transient and the sustained channels,
come into play [KT73, Wat86]. The sustained channel per-
forms a detailed analysis of stationary, or slowly moving,
objects (low temporal frequencies) while the transient is in-
volved in signalling the spatial location or change in spatial
location (high temporal frequencies). The content of tran-
sient channel is therefore perceived as noise, stimulus flick-
ering, or apparent movement [MRW94]. We hypothesize and

experimentally measure (see Section 4.1) that the larger the
spatial changes in frames, the higher the power spectrum
of temporal frequencies, the higher the energy in transient
channel, and accordingly the higher the level of perceived
noise in animation.

This mechanism motivated us to design a new algorithm
that enables control over the amount of perceived tempo-
ral noise (see Fig. 3). We render a sequence of images that
have similar low-frequency content as the reference anima-
tion while high-frequency details are reintroduced by exam-
ple in a random fashion. The user can then change the fre-
quency threshold to increase/decrease spatial extent of syn-
thesized details and thus control the level of perceived tem-
poral noise.

In the rest of this section we formulate the problem more
precisely and propose an algorithm to solve it. We also
briefly mention simple extensions that can further improve
the quality of the resulting image sequences.

3.1. Problem formulation

The input to our algorithm is a sample of a real drawing
medium S and a sequence of N reference images R that rep-
resent a coherent, noise-free animation with a similar ap-
pearance to S (see Fig. 3). The task is to synthesise a tar-
get animation T that satisfies the following three criteria
(see Fig. 4):

1. Fine consistency. Visual dissimilarity between source S
and target Ti should remain small (i is the frame num-
ber). This can be accomplished by minimizing estab-
lished patch-based energy [WSI07]:

∑
q∈Ti

min
p∈S
||P−Q||22 (1)

where Q denotes a patch of size w×w centered at the
target pixel q, and P is a patch of the same size taken from
source pixel p, possibly undergoing additional geometric
transformations (we consider rotations and reflections).

2. Coarse consistency. Low-frequency content of Ti should
be close to the low-frequency content of Ri. Formally we
need to minimize the L2-norm over all pixels of the low-
pass filtered signals:

||h f ∗Ri−h f ∗Ti||22 (2)

where h f is the low-pass filter with tunable strength f and
∗ is the convolution operator.

3. Temporal noise. Suppose R is a sequence showing a
static image over several frames and qi is a 1D function
yielding the value of a target pixel q ∈ Ti at the frame i.
We would like qi to contain a signal with white proper-
ties, i.e., its power spectrumQ(ω) = |F(q)|2 should have
uniformly distributed energies over all frequency bands.
Formally we can express this by minimizing the standard

c© 2014 The Author(s)
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Figure 4: Problem formulation—using the source drawing medium S and a temporally coherent animation R, the aim is to
synthesize a noisy target sequence T that has high-frequency details consistent on a patch level with S (fine consistency)
while at lower frequencies being similar to R (coarse consistency). When measuring the power spectrum |F(q)|2 of motion
compensated values stored at a pixel q over time we would like to obtain white noise, i.e., energy distributed uniformly over all
frequencies (temporal noise).

deviation ofQ:

1
N

N

∑
ω=1

(
Q(ω)− 1

N

N

∑
ω′=1
Q(ω′)

)2

(3)

Such a criterion can also be applied to a more general set-
ting when R contains moving objects. In this case we as-
sume global motion between consecutive frames is com-
pensated before values of qi are computed.

Note that, surprisingly, in (3) there is no explicit control
over the amount of perceived temporal noise. The only aim
of (3) is to enforce randomness in the optimization process.
Instead, the control is implicitly encoded in the strength f
of the low-pass filter h f used in (2). This follows from our
original observation that f can influence the scale of ran-
dom changes between consecutive frames and thus control
the level of perceived temporal noise.

3.2. Algorithm

In this section we propose an algorithm (see Fig. 5) that
jointly optimizes the proposed criteria (1–3). It extends the
multi-scale EM-like optimization scheme originally pro-
posed by Wexler et al. [WSI07] to find a good local mini-
mum of (1).

Fine consistency. The algorithm of Wexler et al. [WSI07]
utilizes image pyramids4S and4T to represent the source
and target images at multiple scales. It starts with the coars-
est level `= 1 and gradually upsamples the solution until the
finest level `= M is reached. At each level of the pyramid `
the following steps are performed iteratively:

• find nearest neighbor patches P ⊂ 4`
S for all target

patches Q⊂4`
T so that ||P−Q||22 is minimal.

• for each pixel q ∈ 4`
T compute the mode of colors at

collocated pixels p ∈ 4`
S that belong to retrieved nearest

neighbor patches P.

Coarse consistency. To integrate (2) into the joint optimiza-
tion process we can exploit the fact that the original Wexler
algorithm uses a multi-scale approach to optimize (1). In our

setting the synthesis at lower levels of the target pyramid
4T is redundant since from a certain level k a good solution
4k

T is already known: 4k
T = h f ∗Ri ↓ f , where ↓ f denotes

the downsampling operator that sets an appropriate sampling
rate according to the strength f of the low-pass filter h f . This
leads us to propose the following modified version of the
original algorithm.

Given the source drawing medium S and the user-
specified strength f of the low-pass filter h f , we initialize
source pyramid4S by low-pass filtering and subsampling S
at multiple levels `= 1 . . .M:

4`
S = h f̄ (`) ∗S ↓ f̄ (`) (4)

where f̄ (`) is a function which interpolates strength of the
low-pass filter h according to the level `. For a box filter
where f is the width of the box, f̄ (1) = f and f̄ (M) = 1.
Inbetween values are set so that the sampling rate of two
consecutive levels decreases with a subtle ratio of 0.85, as in
the work of Simakov et al. and Shechtman et al. [SCSI08,
SRAIS10], to reach finer granularity during the synthesis
and help avoid visual artifacts.

Once the source pyramid is built we create a target pyra-
mid4T with the same resolution as levels of4S and enforce
(2) by feeding downsampled low-frequency content of the
reference animation frame Ri into the coarsest level of 4T ,
i.e., 41

T = h f ∗Ri ↓ f . After this initialization the algorithm
continues as usual.

Note that successive downsampling of reference anima-
tion leads to removal of high-frequency details and intro-
duces fuzziness into the shape of region boundaries. This
is a desirable effect which is characteristic for drawing me-
dia such as watercolor (see Fig. 2). Nevertheless, there can
be situations when these irregularities are unintended. In
such case we provide mechanisms that allows to improve
the quality of border synthesis using local noise control and
source selection. These extensions are further discussed in
Section 3.3 and supplementary material.

Temporal noise. Suppose we have the same simplified set-

c© 2014 The Author(s)
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S 4S 4Ti h f ∗Ri

improving fine consistency

downsample upsample

pre-deforming randomization

Figure 5: Algorithm—the source drawing medium S is randomly pre-deformed and image pyramids of source 4S and target
frame 4Ti are built. The coarsest level of 4Ti is initialized by downsampled reference frame Ri. The user-specified strength f
of the low-pass filter h f is used for downsampling. The algorithm starts from coarsest level of4Ti and continues towards finer
levels. At each level ` fine consistency between4S and4T is improved. During this process generalized PatchMatch is utilized
to find nearest neighbor patches. The seed for the randomized search is always changed to avoid determinism.

ting as described in the formulation of temporal noise cri-
teria, i.e., a reference animation R that consists of a static
image played over several frames. The algorithm proposed
so far would lead to a sequence of static images T , where
each pixel q ∈ T would be constant over time. This is the
situation we need to avoid as our aim is to produce a noisy
sequence.

Direct minimization of (3) would be problematic as it re-
quires computation in the frequency domain, operates over
a large amount of data, and for moving objects complex
optical flow estimation is necessary to compensate for the
global motion. Rather than trying to minimize (3) explicitly
we instead synthesize each frame independently and intro-
duce randomness into the original deterministic algorithm
by randomly voting over possible patch candidates and pre-
deforming the source S. Later (in Section 4.1.1) we demon-
strate that such a simplified solution is sufficient to obtain
noisy sequences with equally distributed energies over all
frequency bands as required by (3).

Recently, PatchMatch—a fast approximate nearest neigh-
bor search algorithm [BSFG09, BSGF10] has become pop-
ular. Besides significant performance gains, it offers a kind
of non-determinism that we can exploit in our scenario. The
algorithm uses a random number generator to perform sam-
pling over possible candidates in the space of source patches.
Changing the seed of this generator causes the optimization
to converge to a different local minimum, changing the ap-
pearance of the resulting image.

For low values of f when the synthesis comprises only a
few pyramid levels, the likelihood of changes caused by ran-
domized PatchMatch reduces significantly. Accordingly, the
temporal variance of the resulting sequence T is insufficient
to evoke perception of noise in the observer. We attribute this

to two known perceptual principles: visual grouping [BL05]
and feature fusion [SHK∗07]. It was hypothesized that if two
visual features have a “common fate” (e.g. they move slowly
together in the same direction) and/or are “close enough” in
the successive frames, the observer is able to align and fuse
them. They are thus perceived as a single object in an ap-
parent motion. An effect of synthetic, unpleasant “floating
texture” is then perceived instead the desired noise (see sup-
plemental video for visual inspection).

We address this by randomly pre-deforming the source
texture for each synthesized frame, constructing a control
lattice with the control points randomly moved in a small
radius. The result is deformed using an as-rigid-as-possible
moving least squares approach [SMW06]. For our examples
we set the grid size to 50 pixels and shift each point 15 to
25 pixels in a random direction. The average offset between
synthesized features in two successive frames is above 20
pixels, which corresponds approximately to 20’ (visual ar-
cminutes). This value is much higher than the theoretical
minimal offset [SHK∗07] needed for spatial superposition
(2’ ≈ 2 pixels). This ensures that generated random features
are sufficiently far apart to avoid visual fusion.

Note again that the control over the amount of perceived
temporal noise is not addressed in this step since it is already
encoded in the previous coarse consistency phase by setting
the strength f of the low-pass filter h f . The algorithm per-
forms the synthesis starting from the initial coarse solution
that corresponds to the low-pass filtered version of Ri and
then optimizes for fine consistency while using randomiza-
tion to avoid getting stuck in the same solution. As the scale
of randomly synthesized details increases with the increas-
ing strength f the resulting target animation T appears to be
more noisy to the observer (see Section 4.1 for evaluation).

c© 2014 The Author(s)
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3.3. Extensions

The proposed algorithm can be improved further to gain lo-
cal control over the amount of temporal noise which can help
to preserve salient structures (see Fig. 6), make the viewer
pay attention to certain parts, or introduce additional chan-
nel of artistic expression (see supplementary videos). To en-
able this control, the isotropic h f in (2) is replaced with a
spatially varying low-pass filter where for each pixel differ-
ent strength fp is used. This change is incorporated into our
algorithm by setting a different starting level for each pixel,
i.e., at pixels with higher fp the synthesis starts at the coars-
est levels of the image pyramid.

Figure 6: Local noise control—with higher levels of noise
the overall shape consistency and presence of small but se-
mantically important features are not guaranteed due to sup-
pression of high-frequency details (left). By specifying the
spatially varying strength fp of the low-pass filter h f , sen-
sitive parts can be synthesized with a lower noise level and
thus preserved (right).

Orientation of the synthesized strokes (see Fig. 7) can also
be controlled locally to emphasize the shape of the animated
object or motion orientation. To do that the user can specify
two additional orientation fields: OS for the source drawing
medium and OR for the frames of the reference animation.
These can either be obtained automatically, e.g., by comput-
ing the per-pixel structure tensor [BCK∗13], or painted by
the user. When fine consistency term (1) is evaluated P is
always rotated to compensate for orientation mismatch be-
tween P and Q and during the correspondence propagation in
PatchMatch [BSFG09], axes-aligned directions are rotated
to respect the actual orientation of P.

Figure 7: Local orientation control—prescribed orienta-
tions enable the algorithm to synthesize output that better
follows the shape of the target region (right) in contrast to
the uncontrolled synthesis (left).

Besides noise level and orientation, the choice of the
source drawing medium can also be controlled locally to im-
prove the quality of the synthesized image. Further details
can be found in the supplementary material.

4. Results

We implemented our method using C++ except for Patch-
Match [BSFG09], which was implemented in both C++ and
CUDA. By default we use simple box filter for the low-pass
filter h f of which the strength f is expressed by the width of
the box in pixels. When the source drawing medium contains
sharp details a more accurate Lanczos3 filter [DSB∗12] can
be used to improve visual quality. For the fine consistency
term we use patches of size w = 7 and perform 4 Wexler et
al. [WSI07] optimization iterations using 8 PatchMatch it-
erations at each pyramid level. This number was set empiri-
cally to make a balance between effect of randomization and
the final visual quality. A lower value causes visual artifacts
while a higher value can suppress the effect of randomiza-
tion as there is higher probability that the algorithm reaches
a globally optimal solution.

(a) (b) (c)

Figure 8: Results—an additional set of 2D animations:
(a) golem [crayon], (b) tree [watercolor], (c) dragon [fire].
See the supplementary video for animations in motion.

(a) (b) (c) (d) (e)

Figure 9: Examples from the evaluation dataset consisting
of hand-colored snakes painted using different drawing me-
dia: (a) crayon, (b) chalk, (c) colored pencil, (d) regular pen-
cil, and (e) watercolor. Top row: hand-made, bottom row:
synthesized.

We applied our method to a set of four 2D and two 3D
animations (see Fig. 1 and 8). For the 2D cases a shape in a
rest pose was created and then a static textured image R0 was
synthesized using [LFB∗13] based on a drawing medium S.
This image was then deformed using as-rigid-as-possible de-
formation [SDC09] to produce the temporally coherent an-
imation R. In 3D we mapped textures synthesized from S
using [LFB∗13] on an animated triangle mesh and rendered
the temporally coherent animation R. For each R we synthe-
sized T based on S in various noise levels and played them

c© 2014 The Author(s)
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Figure 10: Spectral analysis—chalk snake in Fig. 9b: (a) Average profiles of the spatial power spectrum of the target frame
T1 synthesized at 8 different strengths f of the low-pass filter h f and a spectrum profile of the same frame drawn by an artist.
(b) Average temporal power spectra of the target sequence T synthesized at 8 different strengths of f and the average spectrum
of the animation drawn by an artist (motion in both sequences was compensated). (c) Normalized total power of visual channels
for 8 different strengths of f . As f increases, more information is processed by the temporal mechanism and accordingly more
temporal noise is perceived.

sequentially creating the impression of noise slider (see the
supplementary video).

The average computation time for one animation frame of
size 1Mpix was approximately 30 seconds using one core
of a Xeon 3.5GHz and 5 seconds when a CUDA version
of PatchMatch was used running on a GeForce GTX 660.
A significant speed-up can be reached on multi-core CPUs
since the proposed method operates purely in the spatial do-
main (the temporal coherency of the low-frequency content
is implicitly provided by the input sequence) and thus each
animation frame can be computed independently.

4.1. Evaluation

To evaluate the proposed method we created a simple ex-
perimental animation. It consists of 12 different poses of
a striped snake created from a rest pose using as-rigid-as-
possible deformation. We printed these poses on a paper us-
ing thin outlines and let an artist paint them manually using
5 different drawing media (see Fig. 9, top row and supple-
mentary video). Then we scanned them and performed rec-
tification. As the deformation field is known for each anima-
tion frame, we can easily compute its motion compensated
version. The resulting hand-colored sequences serve as both
ground truth for comparison and examples of drawing me-
dia for the synthesis of target sequences (see Fig. 9, bottom
row).

While it would be possible to compare the visual plau-
sibility of generated animations against these sequences us-
ing a two-alternative forced choice subjective experiment, it
should be noted that such a comparison would not in itself be
rigorous. This is because the natural animation contains mul-
tiple unknown hidden parameters, such as locally varying
noise levels or orientation field flickering for anisotropic me-

dia, that would have to be matched first. Furthermore, such a
comparison would be aesthetic at best, because it is impossi-
ble to judge the plausibility of the temporal noise separately
from the plausibility of the still image, which is significantly
affected by the selected synthesis method.

4.1.1. Spectral Analysis

We analysed the spectral properties of the synthesized se-
quences for increasing strengths f of the low-pass filter h f ,
both in spatial and temporal domains after motion compen-
sation. Results for the chalk sequence (see Fig. 9b) are pre-
sented in Fig. 10 (for other media see supplementary mate-
rial).

In the spatial domain the power spectra of the frames
synthesized using different strengths are similar (Fig. 10a),
i.e., the overall visual characteristic does not change sig-
nificantly. The method does not introduce notable over-
smoothing with increasing f ; only a subtle sharpening ef-
fect is visible. When compared to the power spectrum of
the real frame a more notable difference indicating subtle
over-smoothing is apparent, i.e., the synthesized images do
not look as sharp as the original painted by the artist. The
amount of this smoothing effect varies across drawing media
and is typically small enough so that the synthesized images
look convincing (see supplementary material).

In the temporal domain the average power spectrum of T
has the energy distributed equally over all frequency bands
(Fig. 10b), which corresponds to our aim to obtain char-
acteristics of white noise. It is also visible that the higher
the strength f , the higher the overall energy in the temporal
spectrum. This indicates increased perception of temporal
noise, which can be further verified by measuring power of
sustained and transient channels [Win05,ACMS10]. Results

c© 2014 The Author(s)
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are illustrated in the supplementary material, and overall en-
ergies for the chalk sequence are plotted in Fig. 10c. These
measurements confirm that the energy in the transient chan-
nel grows with the increasing strength f of the low-pass filter
h f and thus the perception of noise level increases.

4.1.2. Subjective Experiments

The spectral analysis above shows evidence that the increas-
ing strength f of the low-pass filter h f results in correspond-
ing growth of temporal noise. However, the relation between
the strength f set by the user and the real quantity of per-
ceived temporal noise remains to be investigated. Further-
more, it is also not clear how specific properties of the draw-
ing medium (e.g., crayon, watercolor) affect the visibility of
increasing noise level in animations and how this influences
eye strain of the observer.

To that end we designed two subjective experiments with
50 and 64 participants, respectively. In the first experiment
participants were asked to compare pairs of random se-
quences generated using our method and for each pair select
a sequence that appears more noisy to them. In the second
experiment we show just one sequence per question and ask
the participants to rate the degree of eye strain they expe-
rienced while watching it. There were 4 simulated media:
crayon, chalk, colored pencil, and watercolor (we excluded
the failure case, regular pencil), and 8 generated levels of
noise for each animation, i.e., 32 video stimuli in total.
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Figure 11: Overall results of subjective experiments—
(a) the two-alternatives-forced-choice study on the percep-
tion of temporal noise and (b) the study of eye strain in
hand-colored animations synthesized using our method. Er-
ror bars show the standard errors.

The overall results of both studies are shown in Fig. 11.
According the ANOVA tests [MR99] the null hypothesis
“there is perceptually no difference between levels of tem-
poral noise in the presented sequences” can clearly be re-
jected (p � 0.001), meaning that change of low-pass fil-
tering strength f produces sequences with perceptually dif-
ferent noise level. The same holds also for eye strain. The
multiple comparison test (Tukey’s honestly significant dif-
ferences [HT87]) returns an overall ranking of the individ-
ual noise levels and the eye strain with an indication of the

significance of the differences. In the first experiment, there
is a statistically significant difference between each level
of temporal noise produced by each value of f . The sec-
ond experiment exhibits two statistically significant group-
ings: chalk, crayon, watercolor (greater visual discomfort)
and watercolor, pencil (lesser visual discomfort).

Furthermore, the first experiment did not show any statis-
tically significant effect of the simulated medium on the level
of perceived temporal noise. Nevertheless, the second exper-
iment indicated that there may be a small effect of medium
type on the eye strain. Results also indicate slight non-linear
relationship between the strength of the low-pass filter f and
perceived amount of temporal noise. This motivated possi-
ble perceptual linearisation of our method, as shown in the
supplementary material.

In summary, both studies confirmed there is a relationship
between setting the strength f of the low-pass filter h f and
the levels of perceived temporal noise and eye strain. With
increasing f the level of noise and eye strain increases. More
details about experiment setup and obtained results can be
found in the supplementary material.

4.2. Comparison

For comparison purposes, we have attempted to adapt the
methods of [LH05] and [BCK∗13] to synthesize results
close to our hand-colored animation scenario. Clips compar-
ing these algorithms with our approach are included in the
supplementary video.

We have extended [LH05] in order to synthesize an an-
imation with a configurable amount of temporal noise by
manipulating the noise/scale settings and using an appro-
priate source of randomness. While the result was a reason-
ably consistent noisy sequence, as compared to our approach
the algorithm is unable to preserve either high-frequency de-
tails of the original drawing medium or the prescribed low-
frequency content. It also cannot easily provide local control
over the amount of noise.

When attempting to use [BCK∗13] we encountered the
problem that even when setting different weights to the tem-
poral coherence term the synthesis tends to converge to near-
identical results on consecutive frames when the shape or
color of the object of interest do not change significantly.
The only way to obtain noisy sequence was to deactivate ad-
vection vectors and let the algorithm synthesize each frame
independently. However, this solution offers only one noise
level which cannot be further controlled and there is no guar-
antee that the resulting sequence will be temporally coherent
(see supplementary material for further details).

5. Applications

By combining TexToons [SBCC∗11] with our approach, one
can produce hand-colored animation from a sequence of

c© 2014 The Author(s)
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outline-only hand-drawn sketches. Moreover, our technique
can mask shower door artifacts that sometimes appear be-
cause of the approximative nature of the original TexToons
framework (see Fig. 12 and the supplementary video).

Figure 12: TexToons—the output from the TexToons algo-
rithm is used as a reference for resynthesis. The shifted tex-
ture in the original sequence is denoted by the green curve
(upper row). With our approach (bottom row) consecutive
frames do not suffer from the “shower door” effect.

Other possible applications of our framework such as styl-
ization and imperfection masking in particle simulations, or
painterly rendering of photos and videos can be viewed in
supplementary materials.

6. Limitations

An implicit assumption of our method is that areas in the
reference animation R have counterparts in the source S that
are similar in the RGB domain. As our method draws the
samples exclusively from S, absence of a suitable source will
change the color of the output to match the most similar one
in S (see Fig. 13a–c). If this is not acceptable, color matching
could be applied or different exemplar images provided.

A similar situation occurs when S contains multiple areas
that have similar average intensity and chroma values and
are only distinguished by their fine-scale structure. As the
filter eliminates this information above a certain width, the
distinction between these areas is lost (see Fig. 13e–f). Syn-
thesis in such situations could be improved if some sort of
structural descriptor was taken into account.

When R contains large areas of solid color the algorithm
starts to produce artifacts (see Fig. 13g–i). It will also cause
the noise level settings to be ineffectual and hinder synthe-
sized frames from carrying the coherency information be-
tween frames. To rectify this, one may add some temporally-
coherent texture to the solid areas of R as an overlay, using
the workflow described in Section 4.

7. Conclusion and Future Work

We presented a new framework that allows the transfer of a
hand-colored look to 2D and 3D CG animations. Its ability
to control the amount of temporal noise provides a new chan-
nel of artistic expression, and enables the creation of longer

sequences that are less distracting to the observer yet still
preserve a lively hand-colored look. We showed that sim-
ply varying the strength of the spatial low-pass filter is suffi-
cient to control the amount of perceived temporal noise, and
demonstrated that the algorithm can mask visual artifacts in
temporally coherent animations. As a future work we plan
to extend it to handle more challenging situations (such as
automatically distinguishing areas with different fine-scale
structure) and extend local noise control to automatically
suppress temporal noise in areas with high edge or saliency
detector response.
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