
1

Tracing Worm Break-in and Contaminations via

Process Coloring: A Provenance-Preserving

Approach

Xuxian Jiang†, Florian Buchholz‡, Aaron Walters§, Dongyan Xu§,
Yi-Min Wang$, Eugene H. Spafford§

† Dept. of Information and Software Engineering § Dept. of Computer Science

George Mason University Purdue University

Fairfax, VA 22030 West Lafayette, IN 47907

xjiang@ise.gmu.edu {dxu, arwalter, spaf}@cs.purdue.edu

‡ Dept. of Computer Science $ Microsoft Research

James Madison University, Harrisonburg, VA 22807 Redmond, WA 98052

buchhofp@jmu.edu ymwang@microsoft.com

Abstract

To detect and investigate self-propagating worm attacks against networked servers, the following

capabilities are desirable: (1) raising timely alerts to trigger a worm investigation, (2) determining the

break-in point of a worm, i.e. the vulnerable service from which the worm infiltrates the victim, and

(3) identifying all contaminations inflicted by the worm during its residence in the victim. In this paper,

we argue that the worm break-in provenance information has not been exploited in achieving these

capabilities and thus propose process coloring, a new approach that preserves worm break-in provenance

information and propagates it along operating system level information flows. More specifically, process

coloring assigns a “color”, a unique system-wide identifier, to each remotely-accessible server process.

The color will be either inherited by spawned child processes or diffused transitively through process

actions. Process coloring achieves three new capabilities: color-based worm warning generation, break-

in point identification, and log file partitioning. The virtualization-based implementation enables more

tamper-resistant log collection, storage, and real-time monitoring. Beyond the overhead introduced by

virtualization, process coloring only incurs very small additional system overhead. Experiments with

real-world worms demonstrate the advantages of processing coloring over non-provenance-preserving

tools.

Index Terms

Networked Server, Internet Worm, Process Coloring, System Monitoring, Computer Forensics

Digital Object Indentifier 10.1109/TPDS.2007.70765 1045-9219/$25.00 © 2007 IEEE

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

2

I. INTRODUCTION

Internet worms have become increasingly stealthy and sophisticated in their infection and con-

tamination behavior. The recent absence of large-scale worm outbreaks does not indicate that Internet

worms are eliminated. Quite on the contrary, recent reports [6], [7] have suggested that emerging

worms may deliberately avoid massive propagation. Instead, they lurk in infected machines and in-

flict contaminations over time, such as rootkit and backdoor installation, botnet creation, and data

theft. In this paper, we focus on worm investigation in networked server environments which in-

volves the following tasks: (1) raising timely alerts to trigger a worm investigation, (2) determining

the break-in point of a worm, i.e. the vulnerable service from which the worm infiltrates the victim,

and (3) identifying all contaminations inflicted by the worm during its residence in the victim.

To perform these tasks, various log-based intrusion investigation tools have been developed [24],

[25], [31], [33]. As a typical example, BackTracker [31] traces back an intrusion starting from a

“detection point” and identifies files and processes that could have led to the detection point, using

the entire log of the system as input. Still, current log-based intrusion investigation tools have one

or more of the following limitations: (1) Many tools [24], [25], [31], [33] rely on an externally

determined detection point, from which the investigation will be initiated towards the break-in point

of the intrusion. However, it may be days or even weeks before such a detection point is found.

During this long “infection-to-detection” interval, the log remains a passive repository and does not

provide “leads” to initiate more timely investigations. (2) Log data generated by a host may be of large

volume. As reported in [31], log files as large as 1.2GB can be generated daily. Current tools do not

pre-classify log entries and, as a result, the bulk un-categorized log data can lead to high log processing

overhead. (3) Many log-based tools do not address tamper-resistant log collection, while advanced

worms tend to tamper with the log and logging facilities after break-in. For example, syscall-wrapping

[31], a commonly used mechanism for system call logging, can easily be circumvented [19].

In this paper, we address the above limitations by preserving worm break-in provenance infor-

mation and propagating it along information flows at the operating system (OS) level. We argue that

the break-in provenance information has not been fully utilized in worm investigation. More specifi-

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

3

cally, we present process coloring, a provenance-preserving approach to worm alert as well as worm

break-in and contamination tracing. In this approach, a “color,” a unique system-wide identifier, is as-

sociated with every potential worm break-in point, namely every remotely accessible service process

(e.g., web, mail, or DNS service process) in a server host. The color will be either inherited directly

by any spawned child process, or diffused indirectly through processes’ actions (e.g., read or write

operations) along the information flows between processes or between processes and objects (e.g.,

files or directories). As a result, any process or object affected by a colored process will be tainted

with the same color. To preserve the provenance of such influence, the corresponding log entry will

also record the color. Process colors, as recorded in the log entries, reveal valuable information about

possible worm break-ins and contamination actions. Process coloring will bring the following key

capabilities to worm investigation:

• Color-based determination of worm break-in point All worm-affected processes and contami-

nated objects will bear the color of the original vulnerable service – the break-in point through

which the worm has broken into the server host. By examining the color of any worm-related

log entry, the break-in point can be determined or narrowed down before detailed log analysis.

• Color-based partitioning of log file The log color provides a natural index to partition the log

file. To reveal the contaminations caused by a worm, it is no longer necessary to examine the

entire log file. Instead, only those log entries carrying the color of the worm’s break-in point

need to be inspected. Color-based log partitioning substantially reduces the volume of log data

to be analyzed for worm contamination reconstruction.

• Color-based worm warning Process coloring turns the passive log into an active generator

of worm warnings based on coloring anomalies shown in the log entries. The colors reveal

anomalous influence between processes or between processes and objects under a worm attack,

which is not supposed to exhibit under normal circumstances. Worm warnings are generated

in real-time by monitoring the log entry colors – a new capability not provided by the non-

provenance-preserving tools.

Our process coloring prototype also achieves more tamper-resistant log collection and storage.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

4

Process coloring leverages the virtualization technology, especially the virtual machine introspection

(VMI) technique [23], which enables external (relative to the server host being monitored) log col-

lection, storage, and monitoring. Our prototype extends the User-Mode Linux (UML) [18] virtual

machine monitor (VMM) for log collection with negligible additional overhead beyond the overhead

incurred by UML itself.

The effectiveness of process coloring has been demonstrated in our experiments with a number

of real-world worms and their variants. For each worm experiment, we are able to receive real-time

warnings that trigger a timely investigation without having to wait for an external detection point; we

are able to identify the break-in point of the worm before detailed log analysis; and we only have to

use a subset of the log entries as input to reconstruct a full account of the worm’s contaminations.

In this paper, we focus on the application of process coloring to the investigation of worms that

target networked server hosts running multiple service processes. However, process coloring is a

generic, extensible mechanism that may be applied to other types of malware. The rest of the paper

is organized as follows: Section II gives an overview of the process coloring approach. Section III

presents its implementation. Experimental evaluation results are presented in Section IV. Section

V discusses possible attacks against process coloring. Section VI discusses related work. Finally,

Section VII concludes this paper.

II. PROCESS COLORING OVERVIEW

Based on the classic information flow models [10], [16], [17], [26], process coloring relies on the

operating system (OS) level information flows, where the principals are processes and the objects are

system objects such as files, directories, and sockets. Our new contribution lies in the preservation

of worm break-in provenance information (i.e. possible worm break-in points), which is defined as

process colors, diffused along OS-level information flows, and recorded in log entries.

A. Initial Coloring

Figure 1 shows an example of initial process coloring in a server host that consolidates multiple

services. A unique system-wide identifier called color is assigned to each service process. A worm

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

5

trying to break into the server will have to exploit a certain vulnerability of a (colored) service process.

The color of the exploited process will then be diffused (Section B) in the host, following the actions

performed by the worm. As a result, the break-in and contaminations by the worm will be evidenced

by the color of the affected processes and system objects and correspondingly, by the color of the

associated log entries.

Apache Sendmail NFS/RPCMySQL

Fig. 1. Process coloring view of a networked server running multiple services

A service may involve more than one process. For example, the Samba service will start with

two different processes smbd and nmbd; while portmap and rpc.statd processes both belong to the

NFS/RPC service. These processes can be assigned the same color. However, if we need to further

differentiate each individual process (e.g., “which Apache process is exploited by a Slapper worm?”),

multiple colors can be assigned to processes belonging to the same service or application. A benefit

of such assignment is a finer granularity of log partitioning.

B. Color Diffusion

After the service processes are initially colored, the colors will be diffused to other processes

along OS-level information flows through processes and system-wide shared objects. More specif-

ically, process colors are diffused via operations performed by system calls – the OS interface that

a worm uses to inflict contaminations (e.g., backdoor installation). Table I shows a color diffusion

model that accounts for an incomplete list of operations. We define two types of color diffusion:

• Direct color diffusion involves one process directly affecting the color of another process. This

can happen in a number of ways: (1) Process spawning: if a process issues the fork, vfork,

or clone system call, the new child process will inherit the color of the parent process. (2)

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

6

Abstract Operation Color Diffusion Description Example Events/Actions
create < p1, o > color(o) = color(p1) Subject p1 creates create, mkdir, link,

a new object o mknod, pipe, symlink
create < p1, p2 > color(p2) = color(p1) Subject p1 creates fork, vfork, clone,

a new subject p2 execve
read < p1, o > color(p1)∪ = color(o) Subject p1 reads read, readv, recv,

from object o access, stat, fstat
read < p1, p2 > color(p1)∪ = color(p2) Subject p1 reads ptrace

from subject p2

write < p1, o > color(o)∪ = color(p1) Subject p1 writes write, writev, truncate,
to object o chmod, chown, fchown,

send, sendfile
write < p1, p2 > color(p2)∪ = color(p1) Subject p1 writes ptrace, kill

to subject p2

destroy < p1, o > - Subject p1 destroys unlink, rmdir, close
object o

destroy < p1, p2 > - Subject p1 destroys kill, exit
subject p2

TABLE I

THE COLOR DIFFUSION MODEL: A PROCESS IS A SUBJECT AND A SHARED RESOURCE IS AN OBJECT.

Code injection: a process may use code injection (e.g., via ptrace system call) to modify the

memory space of another process. (3) Signal processing: A process may send a special signal

(e.g., the kill command) to another process. If received and authorized, the signal will invoke

the corresponding signal handler and thus affect the execution flow of the signaled process.

• Indirect color diffusion from process p1 to p2 can be represented as p1 ⇒ o ⇒ p2, where o

is an intermediate resource (object). There are two types of intermediate objects: those that

are dynamically created and will not exist after the relevant process is terminated (e.g., UNIX

sockets) and those that may persistently exist (e.g., files) and later affect other processes if the

processes acquire certain information from them. In Linux operating systems, the following

types of objects are involved in process coloring: files, directories, network sockets (including

UNIX sockets), named pipes (FIFO), and IPC (messages, semaphores, and shared memory).

To support indirect color diffusion, the OS data structures of these objects will be extended

to record their colors. When a process obtains information from a colored object, the process

will be tainted with that color1. We note that process coloring does not address the implicit

information exchange through the status of covert information channels [34]. Such channels

1 As shown in [12], to determine whether the information really influences the process - without the source code of the latter - is
equivalent to solving the Halting Problem [44]. To be conservative, we consider that once a process reads from a tainted source, it will
be tainted.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

7

usually have rather limited bandwidth for information exchange and we have not seen any

Internet worm that utilizes system timer/clock, CPU utilization, disk space availability, or

other covert channels to affect other processes. Therefore we do not address them in this

paper.

We point out that runtime color diffusion is the key difference between process coloring and

the log-based tools that are not provenance-preserving [24], [25], [31]. Color diffusion propagates

the worm break-in provenance information (i.e. the color) along the OS information flows so that

the transitive influence of the worm break-in is captured and recorded in log entries. The three key

capabilities of process coloring – color-based worm warning, break-in point identification, and log

partitioning – are enabled by provenance preservation. On the other hand, with no provenance in-

formation in the log entries, the other log-based tools rely on an external detection point to trigger

a worm investigation. Moreover, to identify the break-in point, a back-tracking session needs to be

performed using the entire log file as input.

2568: httpd

fd 5

accept

2568(execve): /bin//sh

execve

inet sock(80)

recv

dup2(5, 0); dup2(5, 1); dup2(5,2) read(0, ...)

2568(execve): /bin/bash −i

dup2(5, 0); dup2(5, 1); dup2(5,2) read(0, ...)

2587: /bin/cat

dup2(5, 0); dup2(5, 1); dup2(5,2) read(0, ...) execve

unix sock("/var/run/.nscd_socket")

connect

fork, execve

2586: /bin/rm −rf /tmp/.bugtraq.c

fork, execve

unix sock("/var/run/.nscd_socket")

connect

/tmp/.uubugtraq

open, dup2, write

/tmp/.bugtraq.c

unlink

Fig. 2. A process color diffusion example illustrating the break-in of the Slapper worm

An example: the Slapper worm Figure 2 illustrates process color diffusion during the break-in of

the Slapper worm [39], which exploits a vulnerable Apache service as its break-in point. In Figure

2, an oval represents a running process, a rectangle represents a file, and a diamond represents a

network socket. Inside the oval are the PID and name of the process. Initially, all Apache httpd

processes are colored “RED”. Right after the successful exploitation, the exploited httpd process

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

8

(PID: 2568, color: RED) executes (by sys execve syscall) the program “/bin//sh” (2568, RED), which

then executes (by sys execve) the program “/bin/bash -i” (2568, RED). The “/bin/bash -i” process

further spawns (by sys fork) two child processes: process “/bin/rm -rf /tmp/.bugtraq.c” (2586, RED)

and process “/bin/cat” (2587, RED) – their colors are inherited from their parent process via direct

color diffusion. Later on, the write operation (sys write) of process “/bin/cat” (2587, RED) updates

the file (/tmp/.uubugtraq), which is thus tainted “RED”. As we will show in Section IV.A.3, this file

will be used to generate (by sys read) the worm process to infect other vulnerable hosts. Via indirect

color diffusion, the worm process will also be colored “RED”.

Theoretical background Process color diffusion is an instantiation of the generic label propagation

model [11]. In this model, a system is comprised of active principals and passive objects. Audit

information, defined as labels, is propagated according to information exchange between principals –

either directly or indirectly via passive objects – in the system. The key idea is that if one principal

causes the information flow [17] of another principal, then the former’s labels should be propagated

to the latter. We instantiate the label propagation model in the context of process color diffusion along

OS-level information flows, starting with the following definitions:

C: the set of colors initially assigned to service processes as provenance information.

P : the set of processes (principals) in the host.

Pg: the subset of processes that are initially colored, each of which is a potential worm break-in point.

O: the set of system objects in the host.

init color(): C → 2Pg : the initial coloring function assigning a color to a subset of processes⊂ Pg
2.

We also define the initial system state S0 as the state right after initial coloring, where Pg �= ∅;

∀c, c′ ∈ C : init color(c) ∩ init color(c′) = ∅; and ∀p ∈ Pg : color(p) ⊂ C (color() is the color

set of a principal or an object, as shown in Table I). The following two properties, which have been

proved under the general model [11], also hold in the context of process coloring:

• Property 1 If information is exchanged between principal p ∈ init color(c) and principal p′,

then c will be in the color set of p′ after the information exchange.

2 It is possible that more than one process belonging to the same server application be initially assigned the same color.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

9

• Property 2 If a color c is found in the color set of principal p′ /∈ Pg, then information was

potentially exchanged between p′ and a principal p ∈ init color(c).

C. Log Collection and Monitoring

Log collection and coloring Process coloring employs system call (syscall) interception to gener-

ate log entries and tag them with process colors. As demonstrated in [4], [5], [24], [25], [31], [35],

[41], syscall interception is effective in revealing and understanding intrusion steps and actions. Un-

fortunately, the commonly used syscall hooking technique (e.g., in [4], [27], [31]) is vulnerable to

the re-hooking attack, where an intruder easily subverts the log collection function [19]. Instead, our

process coloring prototype is based on the virtual machine introspection (VMI) technique [23], where

the interception of system calls occurs not in the syscall dispatcher, but on the virtualization path of a

virtual machine (VM). As such, the interceptor is an integral part of the underlying VM implementa-

tion. With log generation, coloring, and storage all taking place outside of the VM, process coloring

achieves stronger tamper-resistance than existing techniques.

Each log entry will record all “context” information of a system call (e.g., current process, syscall

number, parameters, return value, return address, and time stamp), which is tagged with the color(s)

of the current process. We note that the log format can be easily extended to include richer auditing

information such as “who did it” (UID) and “where did it come from/go to” (IP/port).

Real-time log monitoring and warning generation Process coloring provides a unique opportunity

to externallymonitor the VM without interfering with the VM’s normal operations. More specifically,

by monitoring the log entries generated at runtime, it is possible to detect anomalies inside the VM

caused by worm activities. In particular, the color(s) of a log entry, combined with other information in

the log entry, may reveal abnormal influence between processes that is not supposed to happen under

normal circumstances. Such a color-based anomaly will raise a worm warning in real-time which

triggers a timely log-based investigation. The following are two examples of color-based anomaly:

• Color mixing is the situation where a previously uni-colored process starts to exhibit more than

one color. Based on the rationale of color diffusion, coloring mixing indicates that the process

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

10

has been influenced by another process with a different provenance. Considering the initial

assignment of colors to mutually unrelated service processes, such cross-service influence is

likely an anomaly and warrants a warning for administrator attention.

• Unusual color inheritance is the situation where a process inherits the color of an unlikely

parent process. Without color information, this child process (e.g., a shell or a utility process

like gcc, nice and find) may look perfectly “normal”. However, its color reveals the suspicious

context under which it is created and therefore raises a warning.

Specific instances of the above color-based warnings will be presented in Section IV.A. They are

generated by a real-time log monitor running outside of the VM. In addition to the “color-mixing”

and “unusual color inheritance” anomalies, the administrator will be able to specify more complex or

customized anomaly predicates that combine the color information with information in other fields of

the log entries.

III. PROCESS COLORING PROTOTYPE IMPLEMENTATION

In this section, we present key aspects of process coloring implementation. Our prototype lever-

ages User-Mode Linux (UML), an open-source VM implementation where the guest OS runs directly

in the unmodified user space of the host OS, and only considers the ext2 file system. To support

process coloring, a number of key data structures (e.g., task struct, ext2 inode info) are modified to

accommodate the color information.

A. Process Color Setting

In our prototype, a new field color is added to the process control block (PCB) task struct in

the Linux kernel. To facilitate the setting and retrieval of the color field, two additional system calls

(sys setcolor and sys getcolor) are implemented. There exists a possibility that these two new syscalls

be abused to undermine process coloring. If their interfaces are exposed, it would be easy for worm

authors to add code to corrupt the color assignment. Although a strong authentication scheme may be

used to restrict the usage of these two system calls, it may not be desirable as it essentially achieves

security by obscurity. Our solution to this problem is to create and maintain a separate color mapping

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

11

table within the syscall interceptor, which allows process color setting calls only after a service process

starts but before it accepts service requests.

B. Color Diffusion

Direct diffusion If a new process is created by the fork/vfork/clone system call, it will inherit the

color of its parent process. When a process is being manipulated via the ptrace system call, the dif-

fusion of color will depend on the system call parameter. If the call has parameter PTRACE PEEKTEXT,

PTRACE PEEKDATA, or PTRACE PEEKUSER, the color(s) of the ptraced process will be diffused to the

ptracing process. Conversely, if the call has parameter PTRACE POKETEXT, PTRACE POKEDATA, or

PTRACE POKEUSER, the color(s) of the ptracing process will be diffused to the ptraced process. For

signal processing, the color(s) of the signaling process will be diffused to the signaled process. Fi-

nally, there are system calls (sys waitpid and sys wait4) that will lead to color diffusion from the child

process to the parent process.

Indirect diffusion Indirection diffusion involves an intermediate resource (object). In principle,

it is feasible that the system data structure for the corresponding resource be extended to record the

color information. Among all possible intermediate resources, files and directories are the two most

exploited by worms. Since they are persistent resources, their colors also need to be persistently

recorded. Intuitively, we can extend the corresponding inode data structure to accommodate the color

attribute. However, adding a color field may essentially change the implementation of reading/writing

files from/to a hard disk or even corrupt the underlying file system. After carefully examining all fields

in the current inode data structure, i.e., ext2 inode info, we find that the field i file acl is intended

to record the corresponding access control flags (ACL) but is not used in the ext2 file system. In

our current prototype, this field is leveraged to save the color value (represented as bitmap) of the

corresponding file or directory. For non-persistent resources (e.g., IPC and network sockets), our

current prototype only supports sockets, shared memory, and pipes.

C. Log Collection and Monitoring

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

12

Guest User Space

Guest OS Kernel/UML

P
tr

ac
e

Interceptor

Log monitor Log

Host OS Kernel (with VMM support)

Fig. 3. Tamper-resistant log collection by positioning the

interceptor on the system call virtualization path

The log collection and coloring mechanism is

based on the underlying virtual machine imple-

mentation, i.e. UML, as shown in Figure 3. UML

adopts a system call-based virtualization approach

and supports VMs in the user space of the host

OS. Leveraging the capability of ptrace, a special

thread is created to intercept the system calls made

by any process in the VM and redirect them to the guest OS kernel. The interceptor for system

call log collection and coloring is located on the system call virtualization path. Therefore, it is

tamper-resistant against malicious processes running inside the VM. Moreover, once the interceptor

has collected a certain amount of log data (e.g., 16K), the log data will be pushed down to the host

domain. The log file is accessed by a real-time log monitor running in the host domain. The log

monitor accepts color-based anomaly predicates specified by the administrator and generates worm

warnings at runtime.

IV. EXPERIMENTAL EVALUATION

A. Experiments with Real-World Worms

We evaluate the effectiveness of process coloring using a number of real-world Internet worms

including Adore [1], Ramen3 [2], Lion [3], Slapper [39], SARS [8], and their variants. Each worm

experiment is conducted in a virtual distributed worm playground called vGround [29], which is a

realistic, confined, and scaled-down network environment. A vGround consists of network entities

and end hosts both realized as VMs. The end host VMs are enhanced with process coloring. In our

worm experiments, the vGrounds involve server VMs running real-world services as well as client

VMs running as service requestors. Meanwhile, vGround strictly confines worm traffic and damages

for experiment safety.

3 The Ramen worm has three possible break-in points: LPRng (CVE-2000-0917), rpc.statd (CVE-2000-0666), and wu-ftp (CVE-
2000-0573) - the last one cannot lead to a successful break-in.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

13

A.1 Efficiency of Worm Investigations

We present in detail the experiments with Lion, Slapper, and SARS worms to demonstrate the

three new capabilities of process coloring (Section I). The color-based worm warning capability

will be described in the next three sub-sections. In this section, we focus on the efficiency of worm

investigations enabled by process coloring. Table II shows the key statistics of the respective log files

created in the worm experiments. Each log file contains log entries collected during a 24-hour period,

including both worm-related entries and normal service access entries.

Lion Worm Slapper Worm SARS Worm
Exploited Service (break-in point) BIND (bind-8.2.2 P5-9) Apache (apache-1.3.19-5) Samba (samba-2.2.5-10)

(CVE references) (CVE-2001-0010) (CAN-2002-0656) (CAN-2003-0201)
Log collection time period 24 hours 24 hours 24 hours
Number of log entries 129,386 293,759 166,646

Size of log data 8.0M 18.5MB 10.7MB
Number of worm-relevant log entries 66,504 195,884 19,494

Size of worm-relevant log data 3.9MB 12.2MB 1.3MB
Number of files “touched” by the worm 120,342 62 200
Percentage of worm-related entries 48.7% 65.9% 12.1%

TABLE II

STATISTICS OF LOG FILES GENERATED BY PROCESS COLORING IN THREE WORM EXPERIMENTS

During each experiment, we are able to name the worm’s break-in point (second row of Table

II) readily by the color of the log entry involved in the corresponding worm warning. On the other

hand, the non-provenance-preserving tools [24], [25], [31] will have to perform a trace-back using the

entire log file as input. To reconstruct the contamination actions of the worm, only the log partition

that bears the color of the break-in point needs to be processed, while the entire log file is needed

by the non-provenance-preserving tools. More specifically, the log partition contains 48.7% (Lion

worm), 65.9% (Slapper worm), and 12.1% (SARS worm) of the log entries in the respective log file

(last row of Table II). We point out that because log entries are naturally partitioned by their colors,

increasing requests to other unexploited services in the experiments will further lower the percentage

of worm-related log entries.

A.2 Lion Worm Experiment

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

14

NFS/RPC Service

xinetd Service

LPD Service

WWW Service

DNS Service

353: portmap

378: rpc.statd

497: xinetd

533: lpd

31122: named

1: init

581: ghttpd

Fig. 4. A process coloring view of a vulnerable server

VM before Lion infection

Experiment setup Figure 4 shows a process col-

oring view of an uninfected server VM that hosts a

number of services: a BIND (bind-8.2.2 P5-9) ser-

vice, an NFS/RPC service (portmap and rpc.statd), a

printer service (lpd), and a web server (ghttpd). Each

service is assigned its own color. In particular, the

BIND (DNS) service vulnerable to the Lion worm is

assigned the color “RED”. From another VM in the

vGround, we launch the Lion worm to infect the server VM4. Before the worm infection, we as the

administrator set two worm warning predicates in the external real-time log monitor: The first predi-

cate states that an “unusual color inheritance” warning will be raised if a log entry is generated by a

shell process that inherits the color of the BIND service (“RED”). The second predicate states that a

“color mixing” warning will be raised if a log entry is generated by one of the service processes that

bears more than its original color.

Color-based warning and break-in point identification After the Lion worm attack begins, the

real-time log monitor raises two warnings: The first warning (“unusual color inheritance”) is triggered

by a log entry generated by a process sh:

RED: 31168 ["sh"]: 11_execve("/bin/rm -rf /dev/.lib")

This is not a normal shell process as it bears the color (“RED”) of BIND. In normal operations,

the BIND service is not supposed to create or influence a shell process.

The second warning (“color mixing”) is triggered by a log entry generated by the ghttpd web

server when making a read call (the entry is not shown due to its extreme length). It shows that the

ghttpd process, originally assigned “NAVY”, suddenly bears both “NAVY” and “RED” colors. This

is suspicious because the web server is not supposed to be influenced by the BIND service. Detailed

explanation for this color mixing will be described in the reconstruction of Lion contaminations.

4 This “seed” worm is instrumented to target the vulnerable server VM. However, the worm copy injected to the server VM is of the
original version.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

15

Both warnings are real-time detection points that lead to the investigation of the Lion worm

break-in and contaminations. Before detailed log analysis, the “RED” color readily indicates that

the break-in point is the BIND service – an improvement in investigation efficiency over the non-

provenance-preserving tools.

1

4

2

3

1: Collecting localhost information

31383(execve): ./hack.sh

31122(execve): /bin/sh

2: Downloading a worm replica

/sbin/asp

3: Replacing all HTML files named index.html with a self−carried one

4: Installing the worm replica and inititating next round of infection

31347: ./1i0n.sh

bind
bindx.sh

and erasing some logs

31122:
named

Fig. 5. Lion worm contaminations reconstructed from “RED” log entries

Color-based log partitioning With the log file partitioned by colors, only the “RED” log entries are

used as input for the reconstruction of Lion worm contaminations. The result is shown in Figure 5. We

note that the procedure of log-based contamination reconstruction itself is not performed by process

coloring. Instead, we can simply leverage the causality-based back-tracking [31] and forward-tracking

[33] algorithms – with a reduced input size.

We describe the result in Figure 5 to demonstrate the sufficiency of color-based log partitioning.

In other words, we show that by using only the “RED” log entries, we can still derive a complete

account of Lion contamination actions and we confirm this by comparing our result with a detailed

Lion worm report [3]. In Figure 5, the leftmost oval is the vulnerable named daemon (PID: 31122).

After a successful exploitation of the named process, a worm replica is downloaded (Circle 2 in

Figure 5) to the server VM. The worm overwrites all HTML files named index.html in the system

with its own HTML file for web defacement (Circle 3). Interestingly, we observe from the log that

the worm attempts to execute the file replacement twice – a detail not reported in [3]. The first file

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

16

replacement attempt is by the shell code (PID: 31181) after executing the malicious buffer overrun

code (Circle 2 and Circle 3). The second attempt happens when the driving script ./1i0n.sh (PID:

31347) is executed (Circle 4). Recall the color-mixing warning at runtime – it is caused by the

index.html file replacement: As soon as the ghttpd process (“NAVY”) reads the replaced file (“RED”),

the color mixing occurs.

The worm then tries to initiate the next round of infection (Circle 4). In the thick dotted circle

inside Circle 4, we find two “RED” dangling files bind and bindx.sh, which are introduced by the

worm but never accessed by any worm-related process5. Since there is only one server VM running

the vulnerable BIND service in the vGround, the worm cannot find another host to infect and the file

bindname.log storing the IP addresses of possible victims remains empty.

A.3 Slapper Worm Experiment

Sendmail Service

crond Service

Apache Service

xinetd Service

NFS/RPC Service

453: portmap

633: xinetd

673: sendmail

697: crond

2182: crond 2183: run−parts 2193: awk

2523: httpd

2555: httpd

2556: httpd

2557: httpd

2558: httpd

2559: httpd

2560: httpd

2561: httpd

2562: httpd

2563: httpd

1: init

Fig. 6. A process coloring view of a vulnerable server VM before

Slapper infection

Experiment setup The Slapper worm

experiment is conducted in a different

vGround. We initially assign various colors

to service processes in an uninfected server

VM. Especially, the vulnerable Apache ser-

vice (apache-1.3.19-5 with openssl-0.9.6b-

8 package) is assigned “RED”. Through di-

rect diffusion, the colors of all spawned httpd

worker processes are also “RED”. A process

coloring view of the server VM before the

Slapper infection is shown in Figure 6. The normal web requests are generated by multiple client

VMs requesting a 2890-byte index.html file.

Color-based warning and break-in point identification After the Slapper worm attack begins,

the real-time log monitor raises two “unusual color inheritance” warnings: The first warning is an

abnormal sh process bearing the color (“RED”) of the Apache service:
5 A forensic analysis of the VM reveals that these two files contain the exploitation code for the BIND vulnerability.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

17

1: Downloading the worm

as a uuencoded file

4: Activating the worm to start next round of infection

A

B

C

A: /tmp/.uubugtraq B: /tmp/.bugtraq.c C: /tmp/.bugtraq

3: Generating the Slapper worm binary by locally compiling the source

2568: httpd

2568(execve): /bin/bash −i

2595: /tm
p/.bugtraq 192.168.2.2

2: Recovering the original

source file by uudecoding it

2568: httpd

fd 5 after accept

2568(execve): /bin//sh

inet sock(80)

2568(execve): /bin/bash −i

2587: /bin/cat

unix sock("/var/run/.nscd_socket")

2586: /bin/rm −rf /tmp/.bugtraq.c

2588: /usr/bin/uudecode −o /tmp/.bugtraq.c /tmp/.uubugtraq

2589: /usr/bin/gcc −o /tmp/.bugtraq /tmp/.bugtraq.c −lcrypto

2595: /tmp/.bugtraq 192.168.2.2

unix sock("/var/run/.nscd_socket")

/tmp/.uubugtraq

/tmp/.bugtraq.c

2590: /usr/lib/gcc−lib/i386−redhat−linux/2.96/cpp0

2591: /usr/lib/gcc−lib/i386−redhat−linux/2.96/cc1

2592: /usr/bin/gcc 2593: /usr/lib/gcc−lib/i386−redhat−linux/2.96/collect2

/tmp/cc7Bh66a.i

/tmp/ccGXrYjN.s

/tmp/cc0u8DTM.ld2592(execve): /usr/local/bin/as2592(execve): /bin/as

2592(execve): /usr/bin/as

2594: /usr/bin/ld

/tmp/ccYTx5k2.c/tmp/ccu4v8yU.o

/tmp/.bugtraq

/tmp/cccAZX4s.o

Fig. 7. Slapper worm contaminations reconstructed from “RED” log entries

RED: 2563 ["sh"]: 11_execve("/bin/bash -i")

The second warning is caused by a “RED” gcc process:

RED: 2586 ["gcc"]:

11_execve("/usr/lib/gcc-lib/i386-redhat-linux/2.96/cpp0 -lang-c

-D__GNUC__=2 -D__GNUC_MINOR__=96 -D__GNUC_PATCHLEVEL__=0 -D__ELF__

-Dunix -Dlinux -D__ELF__ -D__unix__ -D__linux__ -D__unix -D__linux

-Asystem(posix) -Acpu(i386) -Amachine(i386) -Di386 -D__i386

-D__i386__ -D__tune_i386__ /tmp/.bugtraq.c /tmp/cc0f78Vl.i")

Under normal circumstances, these processes are not likely to be spawned by a web server. In

addition to the above two warnings, we also notice from the real-time log monitor that there is a surge

of “RED” log entries (> 10000 in one minute) generated without a corresponding web request rate

increase. This is also suspicious as a normal web access generates only 15 log entries that represent

the known sequence of Apache server actions.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

18

All the above real-time anomalies warrant further investigation of the “RED” log entries. Before

detailed log analysis, we are able to determine that the break-in point of the attack is the Apache web

server.

Color-based log partitioning The “RED” log entries constitute 65.9% of the entire log file. The

relatively high percentage of “RED” entries is a result of the large, distinct footprint of the Slapper

worm in the victim: During the transmission of a Slapper worm copy, a uuencoded source file is sent

from the infecter to the victim. More specifically, the sender issues a sendch call for every byte of

the uuencoded file. Correspondingly, the victim calls sys read for every byte received (totaling 94320

calls). Moreover, each encoded byte is then written (using the cat command) to a local file named

/tmp/.uubugtraq, leading to another 94320 sys write system calls. The result of the Slapper worm

contamination reconstruction is shown in Figure 7.

RED: 2523["httpd"]: 2_fork(void) = 2567
RED: 2567["httpd"]: 214_setgid(48) = 0
RED: 2567["httpd"]: 5_open("/etc/group", 0, 438) = 5
...
RED: 2567["httpd"]: 5_open("/var/nis/NIS_COL...", 0, 438) = −2
RED: 2567["httpd"]: 206_setgroups(1, 081eb4c0) = 0
RED: 2567["httpd"]: 213_setuid(48) = 0
...
BROWN: 673["sendmail"]: 5_open("/proc/loadavg", 0, 438) = 5
BROWN: 673["sendmail"]: 192_mmap2(0, 4096, 3, 34, 4294967295, 0) = 1073868800
BROWN: 673["sendmail"]: 3_read(5, "0.26 0.10 0.03 2...", 4096) = 25
BROWN: 673["sendmail"]: 6_close(5) = 0
BROWN: 673["sendmail"]: 91_munmap(1073868800, 4096) = 0
...
RED: 2567["httpd"]: 102_accept(16, sockaddr{2, cac91f3a}, cac91f38) = 5
RED: 2567["httpd"]: 3_read(5, "\1281\1\0\2\0\24...", 11) = 11
RED: 2567["httpd"]: 3_read(5, "\7\0À\5\0\128\3\...", 40) = 40
RED: 2567["httpd"]: 4_write(5, "\132@\4\0\1\0\2\...", 1090) = 1090
RED: 2567["httpd"]: 3_read(5, "\128Ê", 2) = 2
RED: 2567["httpd"]: 3_read(5, "\2\1\0\128\0\0\0...", 202) = 202
RED: 2567["httpd"]: 4_write(5, "\128!\132ýFÞ\7B| ...", 35) = 35
RED: 2567["httpd"]: 3_read(5, "\128!", 2) = 2
RED: 2567["httpd"]: 3_read(5, "\0RØÔþn-A¸÷?(\1\...", 33) = 33
RED: 2567["httpd"]: 4_write(5, "\128\129ôh¸\132«...", 131) = 131
RED: 2567["httpd"]: 3_read(5, "(nil", 32769) = 0
RED: 2567["httpd"]: 6_close(5) = 0

Fig. 8. Log excerpt showing the pre-exploitation of the Slapper

worm attempting to get the over-writable heap address in the

vulnerable Apache server. BROWN log entries are not related.

To show the sufficiency of “RED” log en-

tries, we compare our result with a detailed

Slapper worm analysis [39] and confirm that

Figure 7 reveals all contaminations by the

Slapper worm. The worm first exploits an

httpd worker process (PID:2568) to gain sys-

tem access. A uuencoded version of the worm

source code is then downloaded (Circle 1 in

Figure 7) and uudecoded (Circle 2) to recon-

struct the original code, which is compiled

(Circle 3) to generate the worm binary code.

The binary code is executed (Circle 4) in an attempt to infect other hosts.

Interestingly, Figure 7, constructed by the causality-based algorithm [31], [33], does not reveal

a preamble of the Slapper worm attack. This preamble can be uncovered by searching the “RED”

log entries as follows: First, the IP address of the infecter VM can be derived from the log entry

that records the first accept system call in Figure 7. This IP address is then searched against the

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

19

“RED” log entries not involved in Figure 7. 23 log entries are found containing the same IP address,

which record 23 accept calls made right before the actual Slapper exploitation takes place. These calls

correspond to 23 TCP connections initiated from the (same) infecter VM: The first 21 connections

have no payload; the 22nd connection is an invalid HTTP request, which turns out to be a request to

obtain the Apache server version; and the 23rd connection leads to a short interaction as shown in

the log excerpt in Figure 8. From [39], we know that the 21 no-payload connections are for checking

the reachability of the Apache server and for depleting the Apache server pool to make sure that the

two subsequent exploitations have the same heap layout. The pre-exploitation aims at deriving the

over-writable heap address in the vulnerable Apache server. This heap address is then reused in the

actual exploitation.

A.4 SARS Worm Experiment

Sambe Service − the Entry Point of SARS Worm

NFS/RPC Service

SSH Service

DHCP Service

xinetd Service

 Sendmail Service
(Color Mixing!)

5721: smbd 6277: smb

5725: nmbd

6279: /bin//sh

6280: /bin//sh

6282: /bin/tar zxvf sars.tar.gz

6284: /bin/rm −rf sars.tar.gz

6285: ./start.sh669: sendmail

679: sendmail

494: portmap

513: rpc.statd

632: sshd

6411: dhclient

1: init

646: xinetd

6281: /usr/bin/wget http://xxx.xxx.xxx/xxx/sars.tar.gz

Fig. 9. A process coloring view of a Redhat 8.0 server running multiple

services after it is infected by the SARS worm. The anomalous color mixing

in the sendmail process triggers the SARS worm investigation.

Experiment setup The SARS

worm is a multi-platform worm

that is able to propagate across

all major distributions of Linux

platforms (Redhat, Debian, SuSE,

Mandrake, and Gentoo) and BSD

platforms (FreeBSD, OpenBSD,

and NetBSD). As our current proto-

type is based on UMLVMs, our ex-

periment is conducted in a Linux-

based vGround. The vulnerable

Samba service (samba-2.2.5-10) is assigned “RED.”

Color-based warning and break-in point identification Similar to the Lion worm experiment, the

real-time log monitor issues two warnings – one is an “unusual color inheritance” warning involving

an abnormal sh process bearing the color of the Samba server (“RED”); while the other is a “color

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

20

mixing” warning where the originally “YELLOW” sendmail service suddenly acquires the color of

Samba service (“RED”). These two warnings warrant detailed log analysis, before which we can

readily infer that the break-in point is the Samba service.

Color-based log partitioning The “RED” log entries account for 12.1% of the entire log file.

Figure 9 shows the Redhat 8.0-based server VM after the SARS infection. The figure indicates that

the exploitation code involves some redundancy as two “RED” /bin//sh processes are executed: One

quits immediately after its creation; while the other one retrieves the worm copy and starts process

start.sh (PID: 6285, shown in Figure 9), which executes the worm binary in the victim. From the

“RED” entries, the full account of SARS worm contaminations can be reconstructed: We observe

that the SARS worm contains a primitive user-level rootkit with the purpose of hiding the existence

of worm-related files, directories, active processes, and network connections. The SARS worm also

inserts a number of backdoors such as a web server and an ICMP-based backdoor, which allow an

attacker to access the infected host later. System-wide information such as the host’s IP address and

the information in configuration files /etc/hosts and /etc/passwd is collected by the worm and sent to

a hard-coded email account as an email attachment. Note that this is the reason for the earlier “color

mixing” warning when “YELLOW” sendmail is tainted “RED” – the color of Samba. The equipment

of advanced payloads, such as the rootkit in the SARS worm, indicates the recent trend of increasingly

stealthy worms in the making.

B. Runtime Overhead of Process Coloring

To measure the system overhead introduced by process coloring, we perform a number of bench-

marking experiments using McVoy’s LMbench [36], a suite of benchmarks targeting various sub-

systems of UNIX platforms. The experiments are conducted using a Dell PowerEdge 2650 server

running Linux 2.4.18 with a 2.6GHz Intel Xeon processor and 2GB RAM. Three sets of experiments

are performed: running LMbench on the original Linux kernel (Linux), on the unmodified UML ker-

nel (UML), and on the modified UML kernel with process coloring capabilities (COLORING). The

results are shown in Table III.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

21

Configuration null cal open close signal handler fork exec
Linux 0.47 2.11 2.47 117 363
UML 11.0 146 28.5 4707 8016
COLORING 11.0 147 29.0 4910 8221

(a) Process-related times in μs

Configuration 2p/0K 2p/16K 2p/64K 16p/16K 16p/64K
Linux 0.81 1.17 1.19 3.48 22.2
UML 9.11 8.75 9.67 16.7 46.7
COLORING 10.9 11.5 10.7 19.1 47.2

(b) Context switching times in μs

Configuration create (10K) delete (10K) mmap page fault select (100fd)
Linux 58.8 10.5 141.0 1.35 3.197
UML 226.2 90.2 772.0 15.0 21.9
COLORING 228.6 90.2 792.0 15.1 21.9

(c) File and VM system latencies in μs

TABLE III

LMBENCH RESULTS SHOWING LOW additional PROCESS COLORING OVERHEAD

Table III(a) shows the process operation overhead. Table III(b) shows the context switching time

under varying number of processes and working set sizes. File system and virtual memory latency

results are shown in Table III(c). The results indicate that UML suffers a significant performance

penalty caused by its user-level implementation. However, process coloring only incurs a small extra

performance degradation on top of that from the original UML. The reason lies in the interceptor

placement. By positioning the interceptor within the system call virtualization path, our prototype is

able to avoid an additional context switch per system call, which is needed in other syscall interception

schemes [35]. In addition, the log data push-down is not performed upon every invocation of system

call. Instead, an internal cache (16K) is maintained to amortize the overall disk write operations.

Finally, we note that process coloring is not dependent on a specific VM platform. Moreover, we

expect that the performance penalty caused by virtualization (not by the design of process coloring)

be significantly reduced with more efficient VM platforms (e.g., Xen [20] via para-virtualization) and

the upcoming architecture support for VMs (e.g., Intel’s Vanderpool technology [22]).

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

22

V. DISCUSSION

In this section, we examine possible evasion strategies as well as a limitation of process coloring.

Low-level evasion The integrity of the colors of active processes and intermediate resources is crit-

ical to the trustworthiness of worm investigation results. Since the current prototype maintains the

color information within the kernel of the system being monitored, it is possible that this information

be manipulated through certain low-level attacks. For example, if the process color is recorded in

the task struct PCB structure, a method called direct kernel object manipulation (DKOM) [13] can

be used to modify the color value (e.g., by writing to the special device file /dev/kmem). Fortunately,

solutions such as CoPilot [40], Livewire [23], and Pioneer [42] have been proposed to address the

issue of OS kernel integrity. Another possible counter-measure is to create a shadow structure, which

is maintained by the virtual machine monitor (VMM) and is thus inaccessible from inside the VM.

However, compared with our current prototype, the shadowing solution poses significantly greater

challenge in deriving VM operation semantics from low-level information collected via virtual ma-

chine introspection, affecting the accuracy and completeness of worm investigation results.

Evasion by diffusion-cutting It is possible that a worm uses a hidden channel to escape color

diffusion. For example, a worm could use the initial part of an attack to crack a weak password,

which is later used in a separate session to gain system access and complete the rest of the worm

contamination. Process coloring can track any action performed within each break-in, but it cannot

automatically associate the second break-in with the first one. However, any anomaly during the

second break-in will expose the responsible login session, which may lead to the identification of the

cracked password. Based on the log data from the first break-in, the administrator may still be able to

correlate those two disjunct break-ins.

Evasion by color saturation If a worm is aware of the coloring scheme, it may attempt to acquire

more colors or introduce many “noise” log entries from unrelated services right after its break-in. As

a result, the associated colors cannot uniquely identify the break-in point. However, to the worm’s

disadvantage, the color saturation attack will lead to the color mixing anomaly, which gives away

the worm immediately. The color saturation attack does expose a weakness of our current prototype,

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

23

which uses a single color field. Although our prototype is able to accommodate multiple colors of a

process (using a bitmap), it is not able to differentiate between an inherited color and a diffused color.

The inherited color of a process can only be inherited from its parent and will not be changed by its

own or others’ behavior. The diffused colors, on the other hand, reflect the color diffusions through

its own or others’ actions. With this distinction, the inherited colors can be used to partition the log

file, while the diffused colors can be used to detect a color-mixing point for further examination of

other log partitions possibly affected.

We point out that like other anomaly-based detection techniques, the color-based warning capa-

bility could lead to false positives. However, our experiments have so far produced few false positives

in consolidated server environments. This can be explained by the nature of color-based anomalies

which indicates abnormal influence or dependency between processes that are supposed to be in-

dependent of each other. Considering the processes that originate from various independent server

applications, any unexpected influence or dependency between them is deemed anomalous and will

be captured by a color-based warning. We do acknowledge that, in other operating environments not

addressed in this paper, the color-based warning capability could result in higher false positive rate.

For example, a client machine, different from a server host, may run client-side applications with legal

influence or dependency between each other (e.g., via shared files or common helper processes). In

this environment, process coloring may generate a false alarm when a legal inter-application influence

is taking place and eliminating such false positives is our ongoing work. Our expectation is that such

false positives can be reduced by enhancing the color-based anomaly predicates to specify – and thus

to exclude – legal inter-application influence. The enhanced predicates will leverage the rich seman-

tic contextual information carried by the log entries. Another effective approach to reducing false

positives is to “insulate” the few shared files and helper processes so that inter-application influence

caused by these common objects/subjects will not raise color anomaly alarms.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

24

VI. RELATED WORK

Process coloring can be integrated into existing log-based intrusion investigation tools [24], [25],

[31], [33], making them provenance-preserving. Most notably, both BackTracker [31] and Taser [25]

are able to reconstruct the sequence of steps that have occurred during an intrusion – from an external

detection point (e.g., a corrupted file) back to the break-in point. The forward-tracking extension [33]

of BackTracker further identifies all possible damages caused by the intrusion after the back-tracking

session. Both back-tracking and forward-tracking require the entire log as input. With process col-

oring, the break-in point can be determined or narrowed down by the color(s) of the detection point,

while the volume of inspected log can be reduced by color-based log partitioning. Moreover, process

coloring brings the new capability of real-time worm warning by detecting color-based anomalies,

turning the log file into an active warning generator.

Information flow models [10], [16], [17] have been increasingly applied as the underpinnings

of taint-based security techniques developed at different levels, including the instruction [14], [38],

language [28], [37], [47], and OS (this work and [25], [31]) levels. These techniques complement each

other and are applicable to different scenarios. TaintCheck [38] works at the instruction level to detect

overwrite attacks and generate exploit signatures. TaintBochs [14] focuses on the lifetime tracking

of sensitive data (e.g., passwords) stored in memory. Both of them monitor information flows at the

granularity of machine instruction and therefore are not able to provide semantic information about

system-wide worm contaminations (e.g., What are the commands executed by the worm? Which

files are affected by the worm? Are there backdoors or rootkits in the compromised system?). The

language-level techniques [28], [37], [47] track information flows at the granularity of object, variable,

or memory location inside a program. As a result, they are able to leverage fine-grain application

semantic information to detect attacks against the program (which usually requires its source code).

However, they cannot capture the influence between OS-level processes, which is the main focus of

process coloring. Finally, process coloring does not require program source code, making it suitable

for the first line of worm defense.

Process coloring can also be applied to file and transaction repair/recovery systems. The re-

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

25

pairable file service [48] aims at identifying possible file system level corruptions caused by a root

process, assuming that the administrator has already identified the root process that starts an attack

or causes a human error. It then uses the log data to identify the files that may have been contami-

nated by that process. The repairable file service implements a limited version of the forward tracking

capability mentioned earlier by only tracking file system-level corruptions. Meanwhile, a similar

technique [9] exists in the database area, which is capable of recording contaminations at the transac-

tion level and rolling back the damages if a transaction is later found malicious. This technique also

requires external identification of malicious processes or transactions. Process coloring can enhance

these techniques by tracking more sophisticated contamination behavior via color diffusion, raising

anomaly alarms based on suspicious log colors, and achieving more tamper-resistant log collection.

Recent advances in virtual machine technologies have created tremendous opportunities for in-

trusion monitoring and replay [5], [21], [23], [30], system problem diagnosis [32], [45], [46], attack

recovery and avoidance [21], [43], and data life-time tracking [14], [15]. For example, ReVirt [21] is

able to replay a system’s execution at the instruction level. Time-traveling virtual machines such as

[32], [45], [46] provide highly effective means to re-examine and troubleshoot system execution and

configuration. Process coloring complements these efforts by leveraging virtual machine technologies

for worm warning, break-in point identification, and log partitioning. In addition, process coloring

can be integrated into other VM-based networked server systems to add provenance-awareness to

these systems.

VII. CONCLUSION

We have presented the design, implementation, and evaluation of process coloring, a provenance-

preserving approach to worm warning and investigation. By associating a unique color to each

remotely-accessible service and diffusing the color based on actions performed by processes in a

networked server host, process coloring preserves the worm break-in provenance information and

propagates it along operating system information flows. Process coloring achieves three key ca-

pabilities: (1) color-based worm warning; (2) color-based determination of worm break-in points;

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

26

and (3) color-based log partitioning to reduce the input size of worm contamination reconstruction.

The virtual machine introspection-based implementation enables external log collection, storage, and

monitoring. Our experiments with a number of real-world Internet worms demonstrate the efficiency

and effectiveness of process coloring.

VIII. ACKNOWLEDGMENT

The authors would like to thank the anonymous IEEE Transactions on Parallel and Distributed

Systems (TPDS) reviewers whose comments have helped to improve the presentation of this paper.

The anonymous reviewers of a preliminary conference version of this paper [49] are also acknowl-

edged. This work was supported in part by a gift from Microsoft Research and by the US National

Science Foundation (NSF) under Grants OCI-0438246, OCI-0504261, and CNS-0546173. Any opin-

ions, findings, and conclusions or recommendations expressed in this material are those of the authors

and do not necessarily reflect the views of the NSF.

REFERENCES

[1] Linux AdoreWorms. http://securityresponse.symantec.com/avcenter/venc/data/linux.adore.worm.html.

[2] Linux Ramen Worm. http://service1.symantec.com/sarc/sarc.nsf/html/pf/linux.ramen.worm.html.

[3] SANS Institute: Lion worm. http://www.sans.com/y2k/lion.htm.

[4] Sebek. http://www.honeynet.org/tools/sebek/.

[5] The Honeynet Project. http://www.honeynet.org.

[6] The Strange Decline of Computer Worms. http://www.theregister.co.uk/2005/03/17/f-

secure websec/print.html.

[7] VirusWriters Get Stealthy. http://news.zdnet.co.uk/internet/security/0,39020375,39191840,00.htm.

[8] SARS Worms. http://www.xfocus.net/tools/200306/413.html, June 2003.

[9] Paul Ammann, Sushil Jajodia, and Peng Liu. Recovery from Malicious Transactions. IEEE

Transactions on Knowledge and Data Engineering, Volume 14, Issue 5, 1167-1185, September

2002.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

27

[10] D. Bell and L. LaPadula. MITRE Technical Report 2547 (Secure Computer System): Volume

II. Journal of Computer Security, vol. 4, no. 2/3, pages 239-263, 1996.

[11] F. Buchholz. Pervasive Binding of Labels to System Processes. Ph.D. Thesis, also as CERIAS

Technical Report 2005-54, Purdue University, 2005.

[12] Florian Buchholz and Eugene H. Spafford. On the Role of File System Metadata in Digital

Forensics. Journal of Digital Investigation, December 2004.

[13] Jamie Butler. Direct Kernel Object Manipulation (DKOM).

http://www.blackhat.com/presentations/win-usa-04/bh-win-04-butler.pdf, 2004.

[14] J. Chow, B. Pfaff, T. Garfinkel, K. Christopher, and M. Rosenblum. Understanding Data Life-

time via Whole System Simulation. Proc. of the 13th USENIX Security Symposium, San Diego,

USA, August 2004.

[15] J. Chow, B. Pfaff, T. Garfinkel, and M. Rosenblum. Shredding Your Garbage: Reducing Data

Lifetime Through Secure Deallocation. Proc. of the 14th USENIX Security Symposium, San

Diego, USA, August 2005.

[16] D. R. Clark and D. R. Wilson. A Comparison of Commercial and Military Computer Security

Policies. Proc. of the 1987 IEEE Symposium on Security and Privacy, pages 184-194, 1987.

[17] D. E. Denning. A Lattice Model of Secure Information Flow. Commun. ACM 19, 5 (May),

236-243, 1976.

[18] J. Dike. User Mode Linux. http://user-mode-linux.sourceforge.net.

[19] Maximillian Dornseif, Thorsten Holz, and Christian Klein. NoSEBrEaK - Attacking Honeynets.

Proc. of the 5th Annual IEEE Information Assurance Workshop, Westpoint, June 2004.

[20] B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, I. Pratt, A. Warfield, P. Barham, and R. Neuge-

bauer. Xen and the Art of Virtualization. Proc. of ACM SOSP 2003, October 2003.

[21] GeorgeW. Dunlap, Samuel T. King, Sukru Cinar, Murtaza A. Basrai, and Peter M. Chen. ReVirt:

Enabling Intrusion Analysis Through Virtual-Machine Logging and Replay. Proc. of the 5th

Symposium on Operating Systems Design and Implementation (OSDI), December 2002.

[22] Rich Uhlig et al. Intel Virtualization Technology. IEEE Computer, Special Issue on Virtualiza-

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

28

tion Technology, May 2005.

[23] Tal Garfinkel and Mendel Rosenblum. A Virtual Machine Introspection Based Architecture for

Intrusion Detection . Proc. of the 2003 Symposium on Network and Distributed System Security

(NDSS), February 2003.

[24] A. Goel, W.-C. Feng, D. Maier, W.-C. Feng, and J. Walpole. Forensix: A Robust, High-

Performance Reconstruction System. Proc. of International Workshop on Security in Distributed

Computing Systems, June 2005.

[25] A. Goel, K. Po, K. Farhadi, Z. Li, and E. de Lara. The Taser Intrusion Recovery System. Proc.

of the 2005 Symposium on Operating Systems Principles (SOSP), October 2005.

[26] J. A. Goguen and J. Meseguer. Security Policies and Security Models. Proc. of the 1982 IEEE

Symposium on Security and Privacy, pages 11-20, 1982.

[27] J. Grizzard, J. Levine, and Henry Owen. Re-Establishing Trust in Compromised Systems: Re-

covering from Rootkits that Trojan the System Call Table. Proc. of the 9th European Symposium

on Research in Computer Security, September 2004.

[28] V. Halder, D. Chandra, and M. Franz. Practical, Dynamic Information Flow for Virtual Ma-

chines. Proc. of the 2nd International Workshop on Programming Language Interference and

Dependence, 2005.

[29] X. Jiang, D. Xu, H. J. Wang, and E. H. Spafford. Virtual Playgrounds for Worm Behavior In-

vestigation. Proc. of the 8th International Symposium on Recent Advances in Intrusion Detection

(RAID 2005), September 2005.

[30] Xuxian Jiang and Dongyan Xu. Collapsar: A VM-Based Architecture for Network Attack De-

tention Center. Proc. of the 13th USENIX Security Symposium, San Diego, USA, August 2004.

[31] S. T. King and P. M. Chen. Backtracking Intrusions. Proc. of the 2003 Symposium on Operating

Systems Principles (SOSP), October 2003.

[32] S. T. King, George W. Dunlap, and P. M. Chen. Debugging Operating Systems with Time-

Traveling Virtual Machines. Proc. of the 2005 Annual USENIX Technical Conference, April

2005.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

29

[33] Samuel T. King, Z. Morley Mao, Dominic G. Lucchetti, and Peter M. Chen. Enriching Intrusion

Alerts Through Multi-Host Causality. Proc. of the 2005 Network and Distributed System Security

Symposium (NDSS), February 2005.

[34] B. Lampson. Protection. In Proc. of the 5th Princeton Conf. on Information Sciences and

Systems, Princeton, 1971. Reprinted in ACM Operating Systems Rev. 8, 1 (Jan. 1974), pp 18-24.

[35] Z. Liang, VN Venkatakrishnan, and R. Sekar. Isolated Program Execution: An Application

Transparent Approach for Executing Untrusted Programs. Proc. of the 19th Annual Computer

Security Applications Conference, December 2003.

[36] L. McVoy and C. Staelin. LMbench: Portable Tools for Performance Analysis. USENIX Annual

Technical Conference, 1996.

[37] A. C. Myers. JFlow: Practical Mostly-Static Information Flow Control. Proc. of ACM Sympo-

sium on Principles of Programming Languages (POPL), 1999.

[38] J. Newsome and D. Song. Dynamic Taint Analysis for Automatic Detection, Analysis, and

Signature Generation of Exploits on Commodity Software. Proc. of the 2005 Network and Dis-

tributed System Security Symposium (NDSS), February 2005.

[39] Frederic Perriot and Peter Szor. An Analysis of the Slapper Worm Exploit. Symantec White

Paper http://securityresponse.symantec.com/avcenter/reference/analysis.slapper.worm.pdf.

[40] N. L. Petroni, T. Fraser, J. Molina, and W. A. Arbaugh. Copilot - a Coprocessor-based Kernel

Runtime Integrity Monitor. Proc. of the 13th USENIX Security Symposium, San Diego, USA,

August 2004.

[41] Niels Provos. Improving Host Security with System Call Policies. USENIX Security Symposium,

August 2003.

[42] A. Seshadri, M. Luk, E. Shi, A. Perrig, L. van Doorn, and P. Khosla. Pioneer: Verifying Integrity

and Guaranteeing Execution of Code on Legacy Platforms. Proc. of ACM SOSP 2005, October

2005.

[43] A. Stavrou, A. D. Keromytis, J. Nieh, V. Misra, and D. Rubenstein. MOVE: An End-to-End

Solution To Network Denial of Service. Proc. of the 2005 Symposium on Network and Distributed

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

30

System Security (NDSS), February 2005.

[44] A. M. Turing. On Computable Numbers, with an Application to the Entscheidungs Problem.

Proc. of London Math. Soc. Ser. 2, 42:230-265, 1937.

[45] A. Whitaker, Richard S. Cox, and S. D. Gribble. Configuration Debugging as Search: Finding

the Needle in the Haystack. Proc. of USENIX OSDI 2004, December 2004.

[46] Andrew Whitaker, Richard S. Cox, and Steven D. Gribble. Using Time Travel to Diagnose

Computer Problems. Proc. of the 11th SIGOPS European Workshop, September 2004.

[47] W. Xu, S. Bhatkar, and R. Sekar. Taint-Enhanced Policy Enforcement: A Practical Approach to

Defeat a Wide Range of Attacks. Proc. of the 2006 USENIX Security Symposium, 2006.

[48] N. Zhu and T. Chiueh. Design, Implementation and Evaluation of Repairable File Service. Proc.

of the 2003 International Conference on Dependable Systems and Networks, San Francisco, CA,

June 2003.

[49] X. Jiang, A. Walters, F. Buchholz, D. Xu, Y. M. Wang, and E. H. Spafford. Provenance-Aware

Tracing of Worm Break-in and Contaminations: A Process Coloring Approach. Proc. of the IEEE

International Conference on Distributed Computing Systems (ICDCS 2006), July 2006.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

