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Abstract

Navigational capabilities of people in urban areas are
to a large extent determined by their knowledge of current
location. In addition to location information available by
means of global positioning sensors, images can provide
additional and often complementary information about rel-
ative position and/or viewpoint of the person with respect
to some known landmarks. In order to enable such func-
tionality, landmarks (e.g. buildings) have to be reliably and
efficiently recognized.

In this paper we describe a hierarchical approach for
recognition of buildings. At the first stage, we use a
novel and efficient representation named localized color
histograms. This representation enables efficient retrieval
of a small number of candidate matches from the database.
At the second stage, the recognition is refined by matching
descriptors associated with local image regions. Once the
correct building is identified, the relative pose with respect
to the building is recovered. The proposed approach is vali-
dated by extensive experiments, with images taken in differ-
ent weather conditions, seasons and with different cameras.

1 Introduction

With the wide dissemination of digital cameras and var-
ious navigational aids and sensors, images acquired by the
cameras can provide additional means for determining the
position of a person in the urban area. This can be achieved
in a two stage process, by first acquiring a database of
buildings and/or locations of a particular area from different
viewpoints, followed by recognition of a new query view by
matching it to the closest model in the database. From the
application standpoint this problem is of interest for above
mentioned navigation task. This problem is also interesting
as an instance of object recognition problem. The class of
buildings posses many similarities, while at the same time
calls for the techniques which are capable of fine discrim-

ination between different instances of the class. From the
perspective of applications the natural concern is efficiency
and scalability, which will be addressed in this paper.

1.1 Related work

The localization problem as considered in this applica-
tion comprises two phases: location recognition and relative
pose recovery of the camera with respect to the query view.
In the presented work, we focus on the recognition aspect
and point the reader to some standard techniques for pose
recovery. The problem of location and building recognition
has been addressed by several authors in the past, mostly
considering outdoors scenes. In [9] authors used vanish-
ing direction for alignment of a building view in the query
image to the canonical view in the database and proposed
matching using descriptors associated with interest regions,
followed by the relative pose recovery between the views
from planar homographies. Authors in [6] proposed to ex-
tract invariant regions and used a set of color moment in-
variants to represent them. Recognition was based on the
number of matched regions. In [3] the recognition part was
achieved by matching line segments and their associated de-
scriptors. False matches were rejected by imposing epipolar
geometry constraint. An alternative approach was proposed
in work of [14] on context-based place recognition. The
representation of individual locations was in this case ob-
tained by integrating responses of the bank of filters over
coarse spatial regions and fitting a Gaussian mixture model
to the responses. This method enabled coarse classification
of locations and also exploited spatial relationships between
locations captured by Hidden Markov Model. The proposed
location model did not allow for actual pose recovery of the
camera with respect to the scene.

One of the central issues pertinent to the recognition
problem is the choice of suitable representation of the class
and its scalability to large number of exemplars. In the con-
text of object recognition, both global and local image de-
scriptors have been considered. Commonly used global de-
scriptors, which provide some invariance to occlusions and



clutter proposed in the past include responses to banks of
filters [15] and multi-dimensional histograms [4]. In [12],
the authors suggested to improve the discriminant power of
plain color indexing technique with encoding of spatial in-
formation, by dividing the image into 5 partially overlap-
ping regions. Local feature based techniques have recently
become very effective in the context of different object
recognition problems. They perform favorably in the pres-
ence of large amount of clutter and changes in viewpoint.
The representatives of local image descriptors include scale
invariant features [8, 11] and their associated descriptors,
which are invariant with respect to rotation or affine trans-
formations. From the perspective of the application the ef-
ficiency of the approach has to be considered. The meth-
ods which employ solely geometric and local feature based
matching techniques are often quite slow as pointed out in
work of [9]. Therefore, when dealing with large databases,
it’s desirable to have some simple indexing vector for all
models, so that unlikely models can be eliminated in ad-
vance.

1.2 Paper overview

In this paper, we propose to tackle the building recog-
nition problem by a two stage hierarchical approach. The
first stage is comprised of an efficient coarse classifica-
tion scheme based on localized color histograms computed
over dominant orientation structures in the image. A small
number of best candidate models is chosen for the sec-
ond recognition stage comprised of matching scale invariant
keypoints and their associated descriptors. Once the most
likely model view is found, we recover the relative pose of
the camera with respect to the query view. The main con-
tribution of this paper is the localized color histogram de-
scriptor used in the fast indexing scheme. We demonstrate
high discrimination capability of the proposed descriptor in
extensive experiments using the ZuBuD database [5] which
contains 201 buildings of Zürich with 5 views each. These
images are taken with two cameras, under different weather
conditions, seasons and with deliberate occlusion.

2 Localized color histograms

In order to exploit the efficiency and compactness of the
histogram based representations and at the same time gain
the advantages of discrimination capability and robustness
of local feature descriptors, we propose a representation of
buildings which trades these characteristics favorably. The
representation is motivated by the observation, that build-
ings contain constrained geometric structure, such as paral-
lel and orthogonal lines and planar structures. Parallel lines
in the world intersect in the image plane at vanishing points.
In case of urban environments the dominant line directions

are typically aligned with three orthogonal axes of the world
coordinate frame.

We propose to compute the color distribution only based
on pixels whose orientation complies with main vanishing
directions, which are more likely to come from buildings.
Consequently, our histograms representation is robust to
background change and occlusion, which cause big trou-
ble for standard global histogram techniques. Discriminat-
ing power is gained by weakly encoding the spatial infor-
mation. This is achieved by treating the histograms of the
different dominant orientations separately. We coined the
representation ”localized color histogram” for two reasons:
pixels contributing to the histogram are localized in build-
ing area; those pixels are divided into several groups and
each group has its associated histogram. The whole process
will be described to more detail in the following section.

2.1 Dominant vanishing directions

The detection of vanishing directions in the image,
which are due to the presence of dominant man-made struc-
tures is based on our earlier work where we proposed an ef-
ficient vanishing point detection scheme [7]. The detection
of line segments is followed by simultaneous grouping of
lines into dominant vanishing directions and estimation of
vanishing points using expectation maximization algorithm
(EM). The EM algorithm typically converges in several it-
erations, due to effective initialization stage based on peaks
in orientation histogram. In our experiments, the number
of EM iterations is set to be 10, but we often observe good
convergence after less than 5 iterations. For buildings which
lack dominant orientations, the vanishing point estimation
process is terminated due to the lack of straight line sup-
port. In such cases, the first recognition stage would be by-
passed and matching based on local descriptors is carried
out. We have not encountered this situation throughout our
experiments.

2.2 Pixels membership assignment

In the above step, we have obtained the principal orien-
tations of detected line segments. The EM process typically
returns two or three vanishing points, which correspond to
principal directions vx,vy and vz in the world coordinate
frame. These directions can be labelled and referred to as
left (vx), right (vy) and vertical vz , based on coordinates
of their corresponding vanishing points with respect to the
center of an image. The label remains the same for a wide
range of out-of-plane and in-plane rotation.

Once the vanishing directions are computed each im-
age pixel with gradient magnitude above some threshold is
classified as belonging into one of the groups (left, verti-
cal and right) if the difference between its gradient direc-



tion and the principal direction vx,vy and vz is less than
some threshold τo; τo = 30o in our experiments. Otherwise
the pixel is classified as an outlier and removed. Cough-
lan and Yuille [2] have demonstrated that small objects like
bike and robot can be detected using such an outlier model.
While sky like background will be removed as middle row
of Figure 1 shows, the pixels belonging to background clut-
ter (e.g. trees and grassland) still remain. Note that those
pixels are located in area where gradient direction changes
frequently, so their neighboring pixels are unlikely to be-
long to the same group. Hence most of the remaining clutter
can be eliminated by doing connected component analysis
for each group of pixels separately and removing small con-
nected components.

The final group membership assignments are shown in
the third row of Figure 1, where bushes and trees have been
eliminated. Note that the color coded membership of fore-
ground pixels remains stable across different views, which
enables us to achieve representation which is robust with
respect to change of viewpoints. We will next demonstrate
that highly discriminative descriptor can be obtained by ex-
tracting color information guided by the membership infor-
mation.

2.3 Indexing vector formation

Color information of (only) pixels which belong to prin-
cipal directions is considered in the next step. Unlike the
traditional color indexing technique where pixel color is
represented in 3D RGB space or 2D hue-saturation space,
we adopt the 1D hue representation [1]. The RGB is first
transformed to (Y,Cb, Cr) defined as
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The hue value is then calculated by

H = arctan(Cb, Cr)/π − 1 ≤ H ≤ 1 (1)

The hue histogram of each group of pixels is computed and
quantized into 16 bins. In order to avoid the boundary ef-
fects, which cause the histogram to change abruptly when
some values shift smoothly from one bin to another, we
use linear interpolation to assign weights to adjacent his-
togram bins according to the distance between the value
and the bin’s central value. Finally, the three histogram
vectors hx, hy and hz are concatenated into one indexing
vector h to represent each image. The benefit of using only
the hue information is two fold: hue histogram represen-
tation is robust to illumination change; the indexing vector
is more compact compared to other indexing vectors1. As

1The descriptors surveyed by T. S. Huang in [10] are typically on the
order of 102.

Figure 1. Three views of the same building.
Top row: original images. Second row: pixel
membership assigned using geometric con-
straints. Third row: pixel membership as-
signed after connected component analysis.
Background pixels are coded with deep blue,
while red, light blue and yellow color repre-
sent three group of pixels, respectively. Bot-
tom row: indexing vector for each image

.

our experiments show, the hue histogram is quite discrim-
inative. This is partly due to the object (building) pixels
being grouped according to their direction, thus the spatial
information is weakly encoded in the indexing vector.

2.4 Building retrieval

Given a 16× 3 = 48 dimensional indexing vector repre-
senting each image, building retrieval can proceed by com-
paring histogram vector of the test image and model im-
ages. The distance between two indexing vectors is the sum
of three individual histogram distances

d(h1, h2) = d(h1
x, h2

x) + d(h1
y, h2

y) + d(h1
z, h

2
z). (2)

There is one subtle issue: because of the viewpoint change,
pixels which belong to left group in one view may be in the
right group in another image, and vice versa. For instance
pixels in the front facade belong to different groups for two
images in Figure 3. Consequently, if the distance is com-
puted by the above formula, the result will be sensitive to
this viewpoint change.



Figure 2. Three views of another building
with more background clutter and view point
change. Top row: original images. Mid-
dle row: pixel membership assigned in the
end. Background pixels are coded with deep
blue, while red, light blue and yellow color
represent three group of pixels, respectively.
Bottom row: indexing vector for each image.
Note that the color of this building is similar
to the building in Figure 1, but their indexing
vectors are quite different.

We resolve this problem by combining the histograms of
left and right groups, i.e. we consider those two groups of
pixels as one large group and represent its color distribution
using one histogram. The 16×2 = 32 dimensional indexing
vector still shows high discriminative power in our experi-
ments. The bottom rows of Figures 1 and 2 show the actual
indexing vectors. As a byproduct we obtain a shorter index-
ing vector, which is good for both storage and comparison.
Going one step further and combining the three histograms
into one, greatly deteriorates the discrimination capability,
as shown in Table 1.

To compare a test image to different models, different
distance measures can be used. We tried L1, L2 and χ2 dis-
tance. Though χ2 distance is not a metric (triangle inequal-
ity doesn’t hold), we obtained best results using it. Given
the indexing vector of a test image ht and model view hp,
their χ2 distance is defined as:

χ2(ht, hp) =
∑

k

(ht(k) − hp(k))2

ht(k) + hp(k)
(3)

where k is number of histogram bins (k = 32 in our case).
The small size of the descriptor makes the comparison very
fast, which is especially beneficial when dealing with very
large databases. As the output of the first recognition stage,

Figure 3. Two views of the same building. Be-
cause of the viewpoint change, pixels which
belong to the left principal group in the left
image will be in the right group in the right
image.

we choose a subset of models, which will be further consid-
ered in the second stage. The cardinality of the subset will
depend on how ambiguous the recognition is. The ambigu-
ity is quantified as:

Am =
χ2

1
1

n−1 (
∑

i χ2
i )

(4)

where i = 2, 3, ..., n, and χ2
i is the ith closest distance of

the result. We set n to be 5 in our experiments. The ambi-
guity measure will be very low when the test image is easy
to classify and is close to 1 when it’s hard to identify. Then
the number of results to be listed Nr can be calculated by
Nr = �Nm ∗ Am2�, here Nm is maximum size of the list
we allowed, which we set to be 20. Thus when the closest
candidate is very distinctive, the first recognition stage may
return only single candidate and obviate the second recogni-
tion stage. If more candidates are closely matched, we pro-
vide a list of candidates with correct model included. The
typical size of the list is around 3. When each object model
has multiple views in the database, the smallest χ2 distance
among those views is used to compute the size of the list.
We report the recognition rates obtained in this first recog-
nition stage in Section 5.

3 Local feature based refinement

The purpose of the second recognition stage is to fur-
ther refine the results and identify the correct model. In this
stage we exploit the SIFT keypoints and their associated de-
scriptors introduced by [8]. For each model image, the key-
points are extracted off line and saved in the database along
with the color indexing vectors. After extracting features
from a test image, its descriptors are matched to those of
the models selected in the first recognition stage.

In the original matching scheme suggested in [8] a pair
of keypoints is considered a match if the distance ratio be-
tween the closest match and second closest one is below



a) b) c)

Figure 4. Matches obtained using a) distance
ratio (11 matches); b) cosine measure (15
matches); c) and result using both measures
(24 matches).

some threshold τr. In the context of buildings, which con-
tain many repetitive structures, the criterion will reject many
possible matches, because up to k nearest neighbors may
have very close distances. One option for tackling this is-
sue would be to perform some clustering in the space of
descriptors to capture this repeatability as suggested in the
context of texture analysis [13]. We instead choose to add
another criterion, which considers two features as matched,
when the cosine of the angle between their descriptors is
above some threshold τc. The cosine measure between two
feature fa and fb is:

cos(∠fa, fb) =
fT

a fb

‖fa‖2‖fb‖2

In case multiple features pass τc (this happens because of
repetitive structure), only one with highest cosine value
is kept. Although the matches obtained by this criterion
may not be true correspondences2, they indicate the likely
presents of correct matches (which are likely to pass τc, but
not with highest cosine value). Hence the overall number
of correct matches will increase favorably as Figure 4 show,
which will benefit the later voting scheme.

Denoting the number of matches between each candidate
model image Ij and the test image Q by {C(Q, Ij)}, j =
1, 2, . . . , Nr. the most likely model can be determined us-
ing simple voting strategy. In such case the best model is the
one with the largest number of successfully matched points:

C = max
j

{C(Q, Ij)} for j = 1, 2, . . . , Nr

Figures 6 and 5 show two examples where SIFT based
matching helps to identify the correct model. Each figure
has the test images in the top row. The top four candidates

2The two points are in correspondence, when they are projections of
the same point in 3D world.

Figure 5. The other three models listed as in
top 3 in coarse recognition stage (Figure 8),
have much less matches than the correct
model.

Figure 6. Another example that appearance
based technique helps identify correct model.
The correct model has much more matches,
although it was listed as a third candidate by
the coarse recognition stage (Figure 8).

returned by the first recognition stage are listed from left to
right in the bottom row. Note that the correct models have
many more successful matches than other candidates.

3.1 Model Feature Selection

The number of detected keypoints is often quite differ-
ent for different images, ranging from hundreds to thou-
sands. For every candidate keypoint, even though it’s not
a correct match, it still has a small probability ε of getting
matched. Consequently, for a model image with N key-
points, the probability that none of its keypoints match a
keypoint from a test image will be 1− (1− ε)N . Therefore,
models with more keypoints are likely to get more matches.
To eliminate this bias, we choose approximately same num-
ber of keypoints for each model.

In order to choose the number of features to be approxi-
mately the same in all models, we need to consider a quality
of each feature. This quality can be measured by its repeata-
bility and distinctiveness. A feature which appears in mul-
tiple views of the same model is more repeatable and likely
to appear in a new view. On the other hand, a feature which
appears in multiple models is less characteristic than those
present only in views of single model. The repeatability and



distinctness of each feature f j
i (ith feature of jth model)

can be characterized by the probability P (f j
i |mj). This

probability represents how likely f j
i comes from model mj ,

which can be obtained using Parzen window approach:

P (f j
i |mj) ∝

∑
k

wj
k (5)

where wl
k is the contribution of each feature f l

k located in-
side a local neighborhood ε, ||f l

k − f j
i || < ε. The contribu-

tion depends on the distance between f l
k and f j

i .

wl
k ∝ exp

(
||f l

k − f j
i ||2

2σ2

)
(6)

where σ is set to be ε/3.
The probability would be higher when the feature is

more repeatable and characteristic, and low otherwise. For
each model, we keep only those features with P (f j

i |mi)
higher than certain threshold τp; τp = 0.03 in our experi-
ments. If the number of features is still large, we keep the
top 500 discriminative features. On the average, this pro-
cedure discarded around 50% of features from the original
feature set reducing the storage requirement and matching
computation. Based on our experiments, the feature selec-
tion step didn’t deteriorate recognition.

4 Pose recovery

Once the correct building has been identified, one can
know that he is close to some known landmark. Further
information about relative position to that landmark needs
to be obtained for navigation purpose. We can either de-
termine the relative pose of the camera with respect to the
building or the pose of the camera with respect to the model
view. This can be achieved by a number of standard tech-
niques, exploiting single on two view geometric relation-
ships between the views. In [9] authors recover the pose
using planar homographies between the model and the test
view. We instead recover the pose of the camera, by uti-
lizing rectangular structure based technique proposed ear-
lier [16]. Using robust extraction of dominant rectangular
structure, the camera pose can be recovered with regard to
the dominant structure, from the homography between the
test image and the world structure.

5 Experimental results

The experiments we report on in this section were car-
ried out using the ZuBud database which is described in
detail in [5]. The database is comprised of 201 buildings.
5 images per building were acquired with large variation of

viewpoints, in different seasons, weather and illumination
conditions and by two different cameras. Purposely some
occlusions by trees and other objects were included in some
images. Some of the images in ZuBuD database were taken
with camera rotated 90o, so we pre-rotated them before ex-
periments, because the 90o rotation will change the group
label.

5.1 Building recognition

To demonstrate the benefits of using localized histogram
we compared it with few alternatives: a) form one color
histogram using pixels on the detected straight lines only;
because those pixels are likely to belong to foreground. b)
using all the pixels from the three groups to form one color
histogram. The first views of the 201 buildings are chosen
as models, the second views are chosen as test images. The
results are summarized in Table 1. The first three columns
of the table list the hit rate3 of the top k list, the last column
shows the average size of lists for all the test images.

1st top 5 list average size
Line pixels 65.5% 83.5% 88% 5.5

One histogram 69% 89% 92% 5.0
Our approach 83.5% 93% 95% 5.1

Table 1. Summary of the first experiment

As shown in Table 1 with one view per building, we ob-
tain 83% recognition rate, which clearly outperforms the
alternatives. We also tried color index based on whole im-
age, the result is even worse than the alternatives. Table 1
also shows the benefit of using variable top k list. While
the top 5 list obtains 93% hit rate, an average size of 5.1 list
provides 95% hit rate.

We conducted the second experiment using the query im-
age database of ZuBuD. Same as [3] and [6], all 5 views
are used as reference images for each building. Out of 115
query images, we got 104 (90.4%) correct recognition re-
sult, and 111 (96.5%) of them have correct model in top 5
list. Some results are listed in Figures 7 and 8. The remain-
ing 4 images come from two buildings, as shown in Fig-
ure 9, they are rather difficult to recognize. Three of them
come from one building, they failed because of significant
lighting and viewpoint change between the query and the
model views. The 4-th failure is due to dramatic viewpoint
change, which is difficult to recognize even for human. We
can see that the 32 dimensional indexing vector has very
good discriminating capability. The first stage recognition
alone shows better recognition rate than the results reported

3Hit rate is defined as Nc
Nt

, where Nc is number of lists which include
correct models, Nt is total number of lists.



Figure 7. Example of correct recognized test
images by the first stage. The query image
and top four results are listed from left to
right. Some images are resized for display
purpose.

Figure 8. Not correct recognitions but has
correct models in list.

by [6] and is comparable to the line matching technique de-
scribed in [3]. The ambiguity measure we obtained in this
experiment is typically small. For 64 query images, only
1 candidate is selected. The maximum list size is 9, and
the average size is 2.2087. Therefore, the SIFT based stage
only needs to choose from less than 3 models on average.

It is worth mentioning another experiment which uses
SIFT based matching directly without first stage; the recog-
nition rate is 90.4% and with 94.8% in top5 list. We can
see that the recognition based on the first stage alone is
slightly better than the second stage alone. Though their
recognition rates are same (note that the correctly recog-
nized buildings are different), the hit rates of the two top5
lists are different. The second stage is necessary because it
uses complimentary information which can further improve
recognition. Since the second stage only needs to compare
few models, the speed problem is greatly alleviated. The
combined two stage recognition brings 96.5% recognition
rate.

Figure 9. The two buildings which failed. The
query images are in left, with their corre-
sponding five model views right. Top: One
query view of the building which cause 3 fail-
ure. Bottom: the 4th failure.

Figure 10. Rectangular structure based pose
recovery. Top: the detected structures. The
yellow lines delimitate the largest structure.
Bottom: Camera pose with regard to the
largest structure.

5.2 Pose recovery

Figure 10 shows the pose recovery result for the first test
image in Figure 7. The camera pose is shown with related to
largest (dominant) structure, the camera coordinate system
is depicted by the three arrows. Both the camera orientation
and relative distance to the building are obtained.

5.3 Implementation Issues

In the current implementation, we use general purpose
hardware and do not use any additional information about
approximate position of the user. The overall system we
envision as a navigational aid, is similar to the system pro-
posed in [9]. In their setting the query views are taken by
a cell phone camera and relayed to the server where the
matching and final recognition is done. From the efficiency
standpoint, both the building indexing vector and the hi-
erarchical matching scheme is superior to the previously
proposed methods [9, 3] and applicable to more general
man-made structures. Our approach does not require in the



matching stage any dominant planar structures or repeatable
line segments and their associated descriptors. Our current
implementation mainly uses MATLAB (with two functions
written in C++), where whole processing of a test image
takes less than 2 seconds on a 1.5GHz notebook computer.
If planar motion can be assumed, the processing time can be
improved further, since the vanishing directions are known
a-priori. The first phase of the proposed matching stage
(computation of the indexing vector) is also amenable for
implementation using currently available camera cell-phone
image processing capabilities such as Nokia 3659 TM.

6 Conclusion and future work

In this paper, we proposed a hierarchical scheme for
building recognition which can be used for urban naviga-
tion. Localized color histogram is used in the first recog-
nition stage. Our experiments show that it has rather good
discrimination capability which is comparable to the local
feature based techniques, without the need of finding corre-
spondences. When multiple views of models are available,
the selected candidates are more accurate, often correct re-
sults are obtained in the first stage. Due to its compact size
representation, the methods scales well to large databases.
Extraction of the representation vector is also very efficient.
In the second stage we used local feature based matching.
Candidates selected by the first stage are identified, which
further improves recognition. The bias toward model with
more features is resolved by a feature selection process.

We are currently investigating the robustness of the color
descriptor with respect to large change in illumination and
poor image quality obtained by cell-phone camera or PDA.
We also plan to implement the remaining parts in C++ to
further reduce the processing time.
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