
A new inlier identification scheme for robust
estimation problems

Abstract— Common goal of many computer vision and robotics
algorithms is to extract geometric information from the sensory
data. Due to the presence of the sensor noise and errors in
matching or segmentation, the available data are often corrupted
with outliers. In such instances, the problem of estimationof
parametric models needs to be tackled by robust estimation
methods. In the presence of large fraction of outliers sampling
based methods are often employed to tackle the task. When the
fraction of the outliers is significant and the parametric model
is complex, the traditionally used RANSAC algorithm requires
large number of samples, prior knowledge of the outlier ratio
and additional, difficult to obtain, inlier threshold for hy pothesis
evaluation.

To tackle these problems we propose a novel and efficient sam-
pling based method for robust estimation of model parameters
from redundant data. The method is based on the observation
that for each data point, the properties of the distribution of the
residuals with respect to the generated hypotheses reveal whether
the point is an outlier or inlier. The problem of inlier/outl ier
identification can then be formulated as a classification problem.
The proposed method is demonstrated on motion estimation
problems from with large percentage of outliers (70%) on both
synthetic and real data and estimation of planar models from
range data. The method is shown to be of an order of magnitude
more efficient than currently existing methods and does not
require prior knowledge of an outlier ratio and inlier thres hold.

I. I NTRODUCTION

Many computer vision and robotics algorithms strive to
extract geometric information from the sensory data. The
sensory data range from images, laser range data, or ultrasound
and the geometric information is typically represented by a
parametric model. Different models include planar surfaces to
be estimated and segmented from the range data, motion/pose
estimation problems from image correspondences or range
scans. In most scenarios the data, in addition to sensor noise,
are corrupted with significant fraction of outliers, due to either
measurements errors, mismatches in correspondences or errors
in segmentation. This rules out the applications of traditional
least squares methods for estimation. The need for robust
estimation methods has been widely acknowledged in both
computer vision and robotics communities.

Many efforts have been made to obtain provably robust
estimators. However their breakdown points1 are usually low
and they are very costly to implement in practice. Estimators
such as LMedS and LTS [9] can tolerate only 50% of outliers.
Although it is desirable to design estimators with a solid
theoretical footing and provable breakdown points, they often
have small bearing on practical problems, which can be

1Breakdown point of an estimator corresponds to a smallest percentage of
outliers, which can cause arbitrarily large values of the estimator.

tackled reliably. Many of the practical problems have been
successfully approached either by sampling based methods
(e.g. RANSAC) or Hough Transform, which can empirically
tolerate high fractions of outliers.

Our work is motivated by the class of sampling based meth-
ods, similar in the spirit to RANSAC2 algorithm introduced
by Fishler and Bolles [1] , which is widely adopted for various
robust estimation problems in computer vision. When the
fraction of the outliers is significant and the parametric model
is complex, the traditional RANSAC algorithm requires large
number of samples and additional, difficult to obtain, inlier
threshold for hypothesis evaluation. In the basic algorithm,
individual hypotheses generated by the sampling process are
evaluated with respect to all data points and ranked based on
the number of their inliers, searching for the best hypothesis.
The number of needed samples is related to the fraction of
outliers which is often not known a-priori. Although RANSAC
can handle more then 50% of outliers, as the fraction of
outliers increases it becomes prohibitively expensive.

The main contribution of this paper is a novel inlier identi-
fication scheme, where we propose to classify the data points
directly based on the generated hypotheses. The proposed
approach is very efficient, especially for data sets contaminated
with large fractions of outliers and eliminates the need of
predefined inlier scale (threshold) and prior knowledge of the
outlier ratio which determines the number of needed samples
.

In our work we are motivated and focus on the problem
of the estimation of camera motion from correspondences
between two widely separated views. This problem is of
great relevance for vision based localization problems in large
scale environments. In particular in the context of relative
positioning and location recognition tasks, where the camera
pose with respect to a known landmark or reference view
has to be computed. As Figure 9 demonstrates, in large scale
urban environments, the matching stage and search for cor-
respondences, usually yields large number of incorrect corre-
spondences. The need for robust estimation methods has been
previously explored in this context by several authors [10],
[8], [5], [7].

The rest of the paper is organized as follows. In Section 2
we briefly review the basic RANSAC algorithm and discuss
its drawbacks. Related work and partial improvements over
traditional RANSAC are discussed in Section 3. The proposed
hypothesis evaluation and inlier/outlier identification scheme
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is described in Section 4 and demonstrated on synthetic data.
In Section 5 we present experiments on real data and Section
6 concludes the paper.

II. RANSAC ALGORITHM

The essence of the RANSAC algorithm is the generation of
multiple hypotheses by means of sampling of the data. Given
the minimal number of data pointsp needed to estimate the
model and the fraction of the outliersǫ, we can compute the
probabilityρ that givenm samples, at least one of the samples
is outlier free:

ρ = 1 − (1 − (1 − ǫ)p)m. (1)

In order to achieve a desired probability (confidence)ρ of an
outlier free hypothesis and provided that the outliers fraction
ǫ is known, we can compute from the above equation the
required number of samples:

M =

⌈

ln(1 − ρ)

ln(1 − (1 − ǫ)p)

⌉

. (2)

Given the determined number of samplesM (calculated based
on Equation 2), hypothesis model parameters are estimated for
each sample, followed by finding the support (typically num-
ber of inliers) for each hypothesis. Alternatively, a stopping
criterion can be used to terminate the sampling if sufficient
percentage of inliers has been encountered. It has been shown
in [5] that the stopping times for the two strategies mentioned
above differ only by a multiplicative factor. In the second stage
the hypothesis with the largest support is chosen, and all its
inliers are used to refine the model parameters. More detailed
description of the RANSAC algorithm can be found in many
papers such as [13].

The larger the sample sizep, it is likely that the sample is
outlier free and more samples are needed to achieve a target
confidence. For illustration we show the number of samples
needed to estimate fundamental matrix model for displacement
between two views. The fundamental matrix has 9 elements,
but only 7 degrees of freedom. When data set contains
50% of outliers, to estimate the fundamental matrix using
linear 8-point algorithm, 766 samples are needed to assure
95% confidence that one outlier free sample is obtained. The
number of required samples goes to 1177 for99% confidence.
As pointed out by [11], the theoretical number of samples is
wildly optimistic. In practice, the number of samples required
to reach a good hypothesis is around an order of magnitude
more. The experiments in [5] also validated this rule. The
actual number of samples needed for 99% confidence is on
the order of 5000 (our simulations confirm this), which means
around 5000 hypotheses need to be evaluated. As shown in
Table I, when ǫ = 0.7, the number of required samples
is 45658. Consequently, the number of hypotheses to be
evaluated will be on the order of105. For each hypothesis,
standard RANSAC algorithm computes the residual for every
data point. Hence the computation increases linearly with
the number of data points. Most of the related work tries
to alleviate the efficiency problems related to large number

Outlier percentageǫ 30% 40% 50% 60% 70%

7-point algorithm 35 106 382 1827 13696
8-point algorithm 51 177 766 4570 45658

TABLE I

THE THEORETICAL NUMBER OF SAMPLES REQUIRED TO ENSURE95%

CONFIDENCE THAT AT LEAST ONE OUTLIER FREE SAMPLE IS OBTAINED.

of samples, expensive hypothesis evaluation stage and inlier
threshold selection in various ways.

III. R ELATED WORK

Chum and Matas [5] suggested to improve the efficiency of
the standard RANSAC by a pre-evaluation, calledTd,d test. It
exploits the fact that for erroneous model, only a small number
of data points needs to be evaluated. Ifd randomly selected
points pass theTd,d, test the hypothesis is not considered
further. This enables the authors to increase the efficiencyof
the hypothesis evaluation stage, but the number of samples
remains still large. In [6], the authors proposed to select sample
sets of adjacent points based on the assumption that inliers
will tend to be closer to one another than outliers and there-
fore increasing the probability of an outlier free hypothesis.
Guided sampling by quality of matches was proposed by [11]
increased the chance of sampling ’good’ correspondences
more often and hence generate good hypotheses. Torr and
Zisserman [12] have noticed that simple evaluation of the
hypotheses by their inlier count is faulty, since it treats all
the inliers equally (error terms for the inliers are constant).
Consequently, if the thresholdT on the residual errors which is
used for classifying the data points as inliers and outliersis not
set appropriately, the final model estimate will be poor. They
suggested using log likelihood of the solution as the support
instead of number of inliers. Nister [7] has demonstrated a
preemptive RANSAC scheme which can run in real time.
The preemptive score was used to sequentially remove bad
hypotheses, until only the best hypothesis is left or time budget
is used out. The scheme was tested on synthetic data with
20% outliers. In real experiments the points were tracked
between individual frame of the video sequence and contained
small fraction of outliers. Additional speed up was obtained
by the use of the 5-point algorithm method assuming that
the camera is calibrated in advance. The issue of threshold
selection for inlier identification have been addressed recently
by [14]. They proposed an automatic scale selection methods
for estimation of the scale of inlier noise by analyzing the
distribution of residuals of each hypothesis and hence avoiding
the threshold selection stage. The inlier scale was estimated,
using iterative mean shift algorithm for locating the modesin
the residual distribution. Although the approach was capable of
handling large percentage of outliers (≈ 85% ) on simple line
fitting examples, the efficiency related to the required number
of samples and additional overhead caused by iterative scale
estimation have not been addressed.



IV. T HE PROPOSED SCHEME

We are motivated by motion estimation problem from two
widely separated views, given image correspondences. In this
problem the model to be estimated is complex and the data
often contain significant fraction of outliers. The presence of
the outliers is particularly pervasive in large scale outdoor
urban environments and it is due to the often significant
viewpoint change, illumination changes and ambiguities due
to the repetitive structures inherent to buildings. The sets of
correspondences often contain more than50% outliers. As
the Table 1 indicates using the traditional RANSAC sampling
techniques would be prohibitively time consuming, in addition
to the issues of inlier threshold selection. Even though the
automated threshold selection methods [14] can overcome
some of the difficulties, they introduce an additional overhead
and do not affect the number of samples favorably, nor is the
number of samples known ahead of time.

Note that inlier identification is at the core of RANSAC al-
gorithm. The final model parameters are then estimated based
on the identified inliers. The basic premise of the sampling
based algorithms, is the generation of many hypothesis which
would guarantee with some confidence that an outlier free
hypothesis is encountered in the set. As shown in Table 1,
this depends on the complexity of the model and fraction of
the outliers, which is not known ahead of time. The preemptive
RANSAC [7] is the only exception which uses a fixed number
of samples (500-800), assuming outlier percentage is around
20% and calibrated setting with 5-point algorithm. The essence
of the preemptive RANSAC scheme is to still try to find the
good hypotheses. Although this method has been show to work
well with video sequence (and hence low outlier ratios), it has
not been extended to data containing more outliers.

In the presented approach, we instead of evaluating the
goodness of individual hypothesis generated by the sampling
process, we evaluate the residuals of each data point with
respect to all hypotheses. The proposed method is based on
the observation, that for each data point the properties (higher
order statistics) of the distribution of the residuals withrespect
to the generated hypotheses reveal whether the point is an
outlier or inlier. The problem of inlier/outlier identification can
then be formulated as a classification problem. The presented
approach relies on the continuity of the hypothesis space
populated by hypotheses generated by sampling and does not
require per se a presence of an outlier free hypothesis. Hence
the large number of samples is not necessary. The approach
in addition to its efficiency does not require prior knowledge
of the outliers percentage and doesn’t need any threshold
for identification of inlier’s support of the hypothesis. We
demonstrate the performance of the proposed method on the
problem of motion estimation, with varying outlier percentages
(up to 70%) and show that we can correctly identify the
inliers over varying fractions of outliers with fixed number
of samples. In the next section we will describe the approach
and justify it on a simple example. Extensive simulations and
experiments on real images are presented in Section 4.

A. Inlier identification procedure

We will describe the proposed method on an example of
estimation of the epipolar geometry between two views. Given
a set of correspondences{xi,x

′

i}
C
i=1

between two views of the
same scene, our goal is to estimate the fundamental matrixF .
Similarly as in the standard RANSAC scheme we first use
sampling to generate a set of hypotheses, (i.e. fundamental
matrices). This is achieved by sampling the set of correspon-
dences by selecting 8-point samples and estimatingF using
8-point algorithm with normalization. At this stage our method
dramatically departs from the previously proposed approaches.
Instead of evaluating/scoring each hypothesis, we look at the
data points directly. For each data point (e.g. correspondence)
we study the distribution of the errors with respect to all
hypotheses. For a hypothesisFj instead of considering residual
error (ri

j)
2 = (xT

i Fjx
′

i)
2 we use the so called Sampson

distance which approximates the geometric distance [3] of the
point to the epipolar line and is defined as:

(ri
j)

2 =
(xT

i Fjx
′

i)
2

(Fjxi)21 + (Fjxi)22 + (FT
j x

′

i)
2
1

+ (F t
j x

′

i)
2
2

(3)

where (Fx)2k represents the square of thek-th entry of the
vector Fx. Figure 1(a) and Figure 1(b) shows typical error
distributions with respect to all generated hypotheses fora
data containing20% outliers. The data was generated using
a total of 200 3D points projected into two views related
by general motion. Note that the residual histograms of the
inliers and outliers are very different. The inliers typically
have strong peaks close to 0, while the outliers don’t. We will
use this observation for classification of the points to inliers
and outliers based on nth order statistics of their residual
distribution. The outliers histogram of residuals, can also have
high count in the first bin, because some hypotheses are
generated using the samples which contain the outlier itself.
For this reason the1st bin was set to 0 prior to computation of
the statistics. The strong peak of the inlier’s error distribution
comes from two sources: the inlier can be included in several
samples and it can be expected that several good hypotheses
yielding a low residual error are included in the hypotheses
set. In this example the probability that an 8-point sample is
outlier free is 0.88 ≈ 0.168, the expect number of outlier
free samples is approximately0.168 × 500 = 84. 3 The
number of samples used to generate the hypotheses is set
to be N = 500. Based on our experiments, 500 samples
approximate sufficiently the residual histogram, which is the
foundation for inlier identification. Considering the sizeof
the image plane is400 × 600, the error histogram has 150
bins, representing the Sampson error ranging from 0 to 149
(large enough to capture the detail of the error distribution).
We disregard errors greater than 149.

1) Features for characterizing the distributions:In order to
characterize the qualitative differences between the distribu-

3The number of outlier free samples obeys a binomial distribution with N

trials and the probability of success is the probability that a sample is outlier
free.
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Fig. 1. Error distribution for a true inlier (a) and a true outlier (b), ǫ = 0.2.
(c): plot of skewness vs. kurtosis computed for all residualdistributions of the
200 data points (red ’+’ represents inliers, while blue ’x’ represents outliers.)

tions of inliers and outliers depicted in Figure 1, several order
statistics can be used. Most commonly used are the lower
order statistics such as mean, standard deviation, skewness
and kurtosis. Our experiments show that the skewness and
kurtosis are very discriminative for the two kinds of residual
histograms. Skewnessγ measures the asymmetry of the data
around the sample meanµ

γ =
E(x − µ)3

σ3
. (4)

Skewness of the normal distribution (or any perfectly symmet-
ric distribution) is zero. If the value of skewness is positive, the
data are spread out more to the right of the mean than to the
left. Kurtosisβ is the degree of peakedness of a distribution,
which in our case measures how outlier prone a distribution
is. Kurtosis is defined as:

β =
E(x − µ)4

σ4
. (5)

For the two histograms shown in Figure 1, the kurtosis and
skewness for the inlier are 24.4 and 4.6, while for the outlier
they are much smaller: 7.6 and 1.7, respectively. These char-
acteristics capture the fact that inlier’s histogram of residuals
has much stronger peak than that of an outlier and can be used
as feature for further classification.

We can plot the values of skewness and kurtosis for each
data point in 2D, as Figure 1(c) shows. Note that the kurtosis
and skewness are correlated, thus it’s not necessary to use
the two statistics together. In our case only kurtosis is used for
identifying the inliers, making the classification more efficient.
From the plot, we can see that the inliers and outliers have
different values of skewness and kurtosis. Hence they can be
easily separated, either by k-means clustering algorithm or we
can simply rank the points in the order of decreasing kurtosis
and consider the topk to be inliers. Notice that the true
inliers have kurtosis with much larger variance than that oftrue
outliers. Consequently, some true inliers will be misclassified
as outliers after the grouping. This however will not cause a
problem for the model estimation, because enough true inliers
are identified. Also, a small number of true outliers might be
included in the identified inliers set. The standard RANSAC
can be applied for this inliers set. The computational demands
are very low, since the outlier percentage small in this case4

4This step is not used in our inlier identification scheme, we emphasize in
the inlier identification scheme.

with no more than10% outliers as our experiments show.
The inlier identification procedure for the case of funda-

mental matrix estimation is summarized below.

Algorithm 1 Inliers identifications procedure
1) Randomly selectN 8-point samples and generateN

fundamental matrix hypotheses{Fj}, j = 1, 2 . . . , N .
2) For each correspondence (data point), compute its Samp-

son error [3]rj
i with regard to each hypothesis.

3) For each correspondence, estimate its residual distribu-
tion by constructing histogram ofN residuals associated
with it. The histogram is used to evaluate whether the
correspondence is an inlier.

4) For theC histograms, of residuals compute the value of
kurtosisβk to characterize each of them. In this stage
each correspondence is represented by a point in the 1D
kurtosis space.

5) Use k-means clustering algorithm to cluster the data into
two groups, which are identified inliers and outliers or
simply rank the points by their kurtosis value.

Note that the proposed scheme doesn’t need a predefined
threshold for inliers. The RANSAC schemes require a thresh-
old T to determine whether a data is inlier. As mentioned
in [12], the choice of the threshold is a sensitive parameter
and can affect the performance dramatically. Without the need
for the predefinedT makes the proposed scheme very flexible
to handle different data, which shows clear advantage over
standard RANSAC scheme.

B. Asymptotic running time analysis

Note the steps 3, 4, and 5 of Algorithm 1 require extra
computation compared to standard RANSAC. GivenN sam-
ples andC correspondences, constructing the histograms takes
O(N×C) and computing the value of kurtosis takesO(N×C)
multiplications; k-means clustering in one dimension is very
efficient. Together, the computation time they require are
less than the second hypothesis evaluation stage of standard
RANSAC which requiresO(N × C) matrix multiplication.
In our experiments the number of samplesN was set to be
500. We have also evaluated the sensitivity of our methods
with respect to the number of samples and obtained repeatable
performance for varying outlier ratio when the number of
samples varied between (400 - 1000). Note that this is an
improvement of an order of magnitude compared to the
works [5]. Just for comparison, the standard RANSAC requires
O(M×C) matrix multiplication to evaluate all the hypotheses.
Without knowing outlier percentage a-priori,M has to be set
conservatively, e.g.M = 30000 to handle60% outliers [15].
Hence the presented approach is much more efficient than
standard RANSAC, especially when the outlier percentage is
high.

C. Justification based on synthetic data

We have shown in Section IV-A conceptual example that
inliers can be identified directly. In the following section



we will demonstrate the feasibility of our approach based
on a synthetic experiments. Set of 200 correspondences was
generated by projecting 200 random cloud of 3D points,
placed 1000 units of focal length in front of the camera,
with the depth variation of 2000. The two views were related
by general motion of translation around x-axis and rotation
around y-axis of the camera frame. All the correspondences are
corrupted by Gaussian noise (standard deviation was 1 pixel).
200 random correspondences were uniformly distributed in the
image plane, yielding an outlier ratio ofǫ = 0.5.

As Figure 2(a) and Figure 2(b) show, error distribution for
inlier and outliers are rather different in this case (ǫ = 50%).
This can be explained as follow: the residual distribution of
each point is a mixture of two distributions. Residuals of
wrong hypotheses are approximately random because wrong
hypotheses are computed based on combination of inliers and
outliers; while residuals of correct hypotheses are coherent
and close together, because correct hypotheses are computed
based on inliers only. Thus residual distributions of inliers are
well peaked unimodal distribution, where the mode is close to
0. On the other hand, for the outliers the distribution is more
spread out and has multiple modes.
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Fig. 2. Error distribution for a true inlier (a) and a true outlier (b), ǫ = 0.5.

Figure 3 shows kurtosis of all the 400 data points (corre-
spondences). For better visibility, the data are organizedas
200 inliers followed by 200 outliers. Note that the inliers
and outliers have quite different kurtosis. Inlier identification
by k-means clustering is shown in Figure 4, depicting the
actual projections of points on simulated image plane. The
true inliers are represented by ”x”, the 138 identified inliers
are circled and 2 false positives (outliers identified as inliers)
are included and colored red. Other outliers are not shown for
better visibility. With the true positive rate of138/200 = 68%
and false positive rate2/200 = 1%, the inlier identification
performs fairly well with this heavily contaminated data set.

As the percentage of outliers increases, it can be expected
that peak of inliers’ error histogram becomes lower and even-
tually undistinguishable from the outlier. It’s interesting to see
to what extent our approach can tolerate outliers. We tried to
study the separability of inliers from data containing different
percentage of outliers. The number of inliers is fixed to be 200
obtained by projecting 200 random 3D points into two widely
separated views, while the number of outliers varies for desired
percentage. Figure 5 illustrates the changing of kurtosis.The

0 50 100 150 200 250 300 350 400 450
0

5

10

15

20

25
kurtosis

Fig. 3. The kurtosis of the 400 error
distributions.
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Fig. 4. The classification result based
on kurtosis.

motion and 3D structure are set the same as in Figure 1.
We can see that kurtosis value of outliers is always small,
because they have no significant peaks. The kurtosis of inliers
is much larger at first, meaning their error distributions dohave
strong peaks. Then it decreases as more outliers are added,
because outliers would disperse the peaks. When fraction of
outliers ǫ is less than0.6, the mean of kurtosis computed
based on inliers is above the95% confidence interval of that of
outliers. Therefore, the kurtosis of error histogram associated
with inliers and outliers are statistically different, andinlier
group obtained through k-means clustering is very unlikelyto
contain true outliers. When the outlier percentage increases
further but no more than0.7, the mean of inliers’ kurtosis
is close to the upper bound of that of outliers’. In this case,
the inlier cluster obtained from k-means may contain some
true outliers, but the percentage will be much lower than in
the original data. As we mentioned before, an additional step
of standard RANSAC on this inlier group can obtain model
parameter with a small number of samples. When outlier
percentage goes further to0.75, inliers and outliers become
indistinguishable. Figure 6 depicts the separation of inliers
and outliers in the skewness/kurtosis space as the outlier ratio
increases. The settings for the experiment were the same as
in Figure 1. This indicates that the proposed approach can
not tolerate more than75% outliers. In theory the standard
RANSAC does not have such limitation as long as enough
samples are evaluated. When the outlier ratioǫ is too high, the
required number of samples is so large that it’s impracticalto
work in practice. As mentioned in Section 2, whenǫ = 0.7, the
required number of samples is on the order of a half million,
which is already too huge to work. So the proposed method has
the same working range as standard RANSAC in practice, only
that its much more efficient. Note that the limitation is obtained
based on the estimation of fundamental matrix, which requires
at least 7 data points. If the model to be estimated is simpler,
for instance affine model which requires only 3 data points
to estimate, more outliers can be tolerated. The reason is that
the required number of samples would decrease dramatically
in this case based on the relationship in Equation 2. We will
demonstrate this using example of plane fitting.

1) Plane fitting in 3D space:Figure 7 shows 3D data
with 500 points, 100 points lie in a plane and are corrupted
by Gaussian noise (σ = 1) and 400 outliers are uniformly
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(b) ǫ = 0.6.

Fig. 6. Plots of kurtosis vs. skewness for different outlierpercentage.

distributed in the space. 108 points are identified as inliers
only 10% of which are false positives.

V. EXPERIMENTS WITH REAL DATA

The proposed scheme was tested with real correspondences
sets obtained from wide baseline matching. The putative
correspondences were initiated based on matching of SIFT
keypoints [4]. Two keypoints are set to be correspondence
when the distance between the two SIFT keypoint descriptor
is less than some thresholdτ . We ran extensive experiments
with correspondences sets containing different portion ofout-
liers. We tested the methods in the domain of wide baseline
matching between two views of urban scenes and/or buildings.
In addition to large change of viewpoint between the views,
these scene contain many repetitive structures, making the
problem of finding correspondences by means of matching
local feature descriptors highly ambiguous. Our focus is on
the inlier identification capability of the proposed scheme. The
identified inliers are not refined with additional RANSAC,
so they might still contain few true outliers for severely
contaminated data sets.

When percentage of outliers is low, our approach can iden-
tify inliers and outliers directly almost without mistake.The
low percentage of outliers can also be handled by RANSAC
without excessive computational overhead. We emphasize our
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(c) Plot of skewness vs. kurtosis com-
puted for all residual distributions.
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(d) Inlier/Outlier identification result.

Fig. 7. Fitting 3D plane with80% outliers.

approach on correspondences sets with significant portion of
outliers of more than40%. Three examples are shown in
Figures 9, 8 and 10. The identified inlier sets include most
true inliers with very few outliers.

(a) identified inliers. (b) identified outliers.

Fig. 8. 750 correspondences are initiated with around50% outliers. 364
inliers are identified without false positive.

It is known that the distance thresholdτ used for matching
the SIFT keypoint descriptors affects the number of matches.
Loose threshold results in many false correspondences. If
the threshold is set too tight, hardly any matches could be
found. Our work suggest a straightforward way to handle
this: set a relatively loose threshold to obtain initial setof
correspondences, and apply the proposed scheme to identify
the true inliers.



(a) identified inliers. (b) identified outliers.

Fig. 9. 383 correspondences are initiated with approximately 60% outliers.
93 inliers are identified with only 1 false positive. Note thefirst left door in
the left image corresponds to second left door in the right image.

(a) Pair of images. (b) identified inliers.

Fig. 10. Two frames of the widely used Corridor sequence (bt.001 and
bt.006), obtained from http://www.robots.ox.ac.uk/ vgg/data/. Outlier percent-
age is over50%. 134 inliers are identified with no false positive.

VI. CONCLUSION AND FUTURE WORK

In this paper we proposed a new inlier identification scheme
for robust estimation problems. We have demonstrated that it
can efficiently handle data sets containing significant level of
outliers. Inliers can be identified directly without looking for
good hypothesis, thus avoiding the need for large number of
samples, which is required for standard RANSAC algorithm.
In addition to the efficiency of the proposed approach, we
have also eliminated the need for sensitive threshold selection

for outlier identification as well as need for prior knowledge
about the percentage of outliers (which is needed when fixed
number of samples is used in standard RANSAC). We would
like to emphasize that the proposed method is especially
suitable for data with large number of outliers as motivated
and demonstrated in our application and often encountered
in wide baseline matching. The proposed scheme is tested
extensively with both synthetic and real data. We plan to refine
the inlier identification step in future, by replacing the k-means
clustering by its probabilistic version and hence obtaining the
probability of being an inlier for each data point. We are also
in the process of carrying out more extensive experiments
with different distributions of outliers, in order to assesthe
generality of the presented method.
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