Abstract There is currently tremendous interest in deploying energy harvesting wireless sensor networks. Engineering such systems requires striking a careful balance between sensing performance and energy management. Our work addresses this problem through the design and analysis of a harvesting aware utility-based sensing rate allocation algorithm. Based on a network utility formulation, we show that our algorithm is optimal in terms of assigning rates to individual nodes to maximize overall utility, while ensuring energy-neutral operation. To our knowledge, our work is the first optimal solution that maximizes network utility through rate assignments for tree-structured energy harvesting sensor networks. Our algorithm is fast and efficient with running time O(N3), where N is the number of nodes. We evaluate the performance, scalability, and overhead of our algorithm for various utility functions and network sizes, underlining its significant advantages. Speaker Bio Bo is a PhD student in computer science department of george mason university. He is currently working on energy and performance management for energy harvesting wireless sensor networks. He earned his BS. degree from Huazhong university of science and technology, China; MS. degree from University of cincinnati.