Security and
 Privacy-Preserving Communication in Hybrid Ad Hoc Networks

Srdjan Capkun, Jean-Pierre Hubaux and Markus Jakobsson

Paper Outline

- Introduction
- System Model
- Privacy Goals and Challenges
- Overview of the Solution
- Privacy Preserving Routing
- Security and Performance
- Related Work / Conclusion

Introduction

- Objective is to provide both routing security and privacy preservation for hybrid ad hoc networks
- Hybrid ad hoc network
owireless ad hoc network + dual-homed (wireless/ wired) access points
- Access points provide connection to wired infrastructure (therefore reach \& scalability)
- E.g. multi-hop Wi-Fi or cellular networks

Introduction (cont'd)

- Privacy features
- Anonymity
- "the state of being not identifiable within a set of subjects called the anonymity set"
- Location Privacy
- "ability to prevent other parties from learning one's current and past locations"
- Goal is to keep a node's identifier and location private from other network nodes

Introduction (cont'd)

- Approach

Use node pseudonyms and change frequently

- Nodes should avoid being identified by:
- the locations they visit
- the type of traffic they generate
. Enforce user accountability via dynamic, but verifiable, cryptographic keys
- Same keys that provide confidentiality, integrity, and authentication

Introduction (cont'd)

- Contents of the Paper
- Present an overview of privacy threats
- Propose a scheme for secure and privacypreserving communication
. Present a quantitative analysis of privacy

System Model

- Network Model
- Security and Trust

Network Model

- System consists of:
- A set of access points (APs), mutually connected via a high-speed backbone
- Each AP controls a bounded geographic area called a control area
」 A set of mobile nodes

Network Model (cont ${ }^{\text {t }}$ d)

- Assumptions

- All comms between nodes, and between a node and an $A P$, are wireless
- APs and mobile nodes have the same power range
- All links are bi-directional, i.e. any two communicating nodes must be in each others' power range
- Some nodes will need to user other nodes as relays to reach an AP

Network Model (cont'd)

- All communicating nodes access the backbone in a multi-hop fashion
- Source node (S) transmits message (m) to destination node (D) via an access point (BS)
, $S \rightarrow B S_{S}$: uplink
, $B S_{S} \rightarrow B S_{D}$: inter-station
- $B S_{D} \rightarrow D$: downlink

Network Model (cont'd)

- Both uplink and downlink protocols are multi-hop, i.e. they require the participation of nodes on the route
- These nodes are typically peers of the source and destination nodes
- All nodes in the control area are loosely time synchronized

Security and Trust

- Each mobile node has
- A unique identifier
- A secret key
- Both are known by the operator(s) of the BSs, but not by the other mobile nodes
- Contractual agreement between nodes and network operator
- Access points monitor node behavior
- Misbehavior can lead to service/network exclusion

Security and Trust (cont'd)

- Network membership includes:
- Certificate of membership
- In order to provide proof of membership to other nodes
- Ability to uniquely sign a message
- Other nodes can verify a legitimate node signed it
- But only the network operator can identify who signed it
This allows protocols to be secure and anonymous while holding users accountable for their behavior

Security and Trust (cont'd)

- However, the users do not need/want to trust each other
- No mutual contract agreements between nodes
- Not willing to trust each other with their identities and locations
. Do not want to trust other nodes to correctly execute networking functions
- E.g. forwarding packets, providing accurate routing information

Privacy Goals and Challenges

- Design Goals
- Privacy Challenges

Design Goals

- Enable user-anonymous and locationprivate communication
- Source (S) and Destination (D) Anonymity
- Source anonymity means that a message is not linkable to any source, and vice-versa
- Destination anonymity has similar definition
- The process of sending/receiving messages does not reveal any additional info about S or D than was already known by an attacker prior to transmission

Design Goals (cont'd)

- Strictly a need-tio-know basis
- S needs to know the identity of D, but not its location
- The BSs need to know who S and D are (to verify membership) and their location (to route messages successfully)
- Nobody else (incl. the nodes on the route between S/D) should be able to infer identity or location of S/D

Design Goals (cont'd)

- Location is compromised if attacker can infer the BS-relative (\# of hops) or absolute (physical) location of a node
It is assumed that no sophisticated positioning mechanism is used (e.g. GPS)

Design Goals (cont'd)

- Anonymity metrics

- Anonymity set
- Max. degree of anonymity is proportional to the size of the list of registered nodes
- Assume a sufficiently large anonymity set
- Entropy
- Computed based on probabilities assigned to each identity
- E.g. the probability that a given user is the message source
. Both metrics are used in the analysis

Privacy Challenges

- Threats
- Malicious/Compromised Users
- Proper network operation requires nodes to share identifiers, topology info and/or locations
- Facilities passive internal (compromised) and external (malicious) collection/analysis attacks
- Active attacks against routing protocol
- Periodically asking for routes to other nodes to determine topology
- Advertising shortest route to BS in order to collect/ analyze traffic

Privacy Challenges (cont'd)

- Threats (cont'd)
- Untrusted network operators
- Can easily trace users and/or reveal their true identity
- Unique network/interface addresses \& cryptographic keys
-Use of static/unique addresses (e.g. MAC, IP) or crypto Keys/certificates (e.g. Public Key) can facilitate user tracking

Privacy Challenges (cont'd)

- Threats (cont'd)
- Radio fingerprinting
- Radio transceivers emit signals with unique fingerprints that could be used for tracking
- Also, static S/N can facilitate pseudonym mapping

Overview of the Solution

- Node Pseudonyms
- Dynamic Keys

Node Pseudonyms

- Each node shares a secret key with the BS
- Only the central authority (and the node itself) knows this key and the true identity of the node
- Node identity is protected via a pseudonym which changes over time:

$$
P_{S}(t)=H M A C_{K_{S}}\left(I D_{S}, t\right)
$$

Note that t is a time step design parameter, and different than a device timestamp

Dynamic Keys

- A privacy-preserving key management scheme is proposed
- Control area-wide secret key schemes can protect identity but completely fail if a single node is compromised
- Misbehavior is hard to isolate as well

Dynamic Keys

- Dynamic public key scheme
- Each node holds a set of key pairs

$$
\left(\mathrm{PK}_{A}^{1} / \operatorname{PrK}_{A}^{1}, \ldots, \mathrm{PK}_{A}^{n} / \operatorname{PrK}_{A}^{n}\right)
$$

」... and certificates

$$
\operatorname{Cert}_{A}=\left[P K^{k}, S_{A} / G_{\text {PrKAuth }}\left(P K_{A}^{k}\right)\right]
$$

- Nodes use key pairs to establish symmetric secret keys with neighbors.
- Each time node changes pseudonym, it changes key pairs and symmetric keys.

Dynamic Keys

- Update frequency
. Frequency of pseudonym and key changes is a design parameter (arbitrary)
- Can be temporal or event-driven (e.g. start of new session)
- Other factors that determine degree of privacy include node mobility and attacker strength
- Authors conclude that $1 / \mathrm{min}$ is sufficient for their scenario

Privacy Preserving Routing

- Protocol Overview
- Uplink
- Downlink
- Inter-station Protocol
- Book-keeping

Protocol Overview

- Four sub-protocols are described
- Uplink
- Routing from S to BS_{S}
- Downlink
- Routing from $B S_{D}$ to D
- Inter-station Protocol
- Routing between BSs
- Book-keeping
- Used by BSs to track node locations, pseudonyms, and network topology

Uplink

- S does not know all of the pseudonyms of the nodes on the path to $B S_{S}$ - only neighbor nodes
- Nor are routing tables relevant due to frequent pseudonym changes and mobility of nodes
- Therefore a distance vector protocol is used
」 Nodes know (depending on age of latest update) their distance from BS_{s} as well as neighbor node closest to BS_{s}

Uplink (cont'd)

```
            S: MHand - [PS(t), PA (t),tS, UP, B\mp@subsup{S}{S}{}]
            : Ess}=\mp@subsup{E}{Kg}{}(D,m
            : MSA -MACK SAA (MHasd, ES )
    S->A: [\underline{PS(t)},\underline{\mp@subsup{P}{A}{}(t),}\mp@subsup{U}{P}{\prime},\underline{ts,},B\mp@subsup{S}{S}{}]|\underline{\mp@subsup{E}{S}{}}|\underline{MSA}
    A : chock the validity of MSA
        : MHand - [PA(t), PB(t),\mp@subsup{t}{A}{},up,B\mp@subsup{S}{S}{}]
        E EA
        : M
    A->B: [\underline{\mp@subsup{P}{A}{}(t)},\underline{\mp@subsup{P}{B}{}(t)},UP,\underline{\mp@subsup{t}{A}{}},\underline{BS}|}|\underline{\mp@subsup{E}{A}{}}|\underline{\mp@subsup{M}{AB}{}
        B: chock the validity of MAB
        : MHadd=[\mp@subsup{P}{B}{\prime}(t),B\mp@subsup{S}{S}{\prime,\mp@subsup{t}{B}{},\mp@subsup{U}{P}{},B\mp@subsup{S}{S}{}]}]
        E
        : MB-MAC\mp@subsup{K}{p}{}(MHadd, EB)
B->B\mp@subsup{S}{s}{}:}[\underline{P
    B\mp@subsup{S}{S}{}: decrypt E}\mp@subsup{E}{B}{},\mp@subsup{E}{A}{}\mathrm{ , and }\mp@subsup{E}{S}{}\mathrm{ , check
        the validity of M}\mp@subsup{M}{B}{}\mathrm{ ;
        : update the distances of S,A
        and B in the distance database
```


Uplink (cont'd)

- S's identity and location is only revealed to the BS_{S}. Neighbors only see S as a neighbor routing traffic.
- Encryption of $m \&$ D by S guarantees that no one but $B S_{S}$ can infer identity of D
- Per-hop re-encryption of m
- allows the BS to verify the hop count and identities of the nodes along the route
- guarantees that m cannot be tracked by an attacker
om is effectively altered with each hop

Downlink

- $B S_{D}$ knows the optimal route to D hence a source routing protocol is used
$B S_{D}$ performs the following:
- computes the current pseudonyms of the nodes on the route
- includes them in the packet
- sends the packet to the first node on the route

Downlink (cont'd)

```
            BSD: MHand = [BS R, PC (t),tBS,Dowm,BSD]
            E}\mp@subsup{E}{Bs}{}=\mp@subsup{E}{\mp@subsup{K}{C}{}}{}(\mp@subsup{P}{E}{}(t),\mp@subsup{E}{\mp@subsup{K}{E}{}}{}(\mp@subsup{P}{D}{}(t),\mp@subsup{E}{\mp@subsup{K}{D}{}}{}(S,m))
            : MBS =MAC\mp@subsup{K}{C}{}(\mp@subsup{E}{BS}{},MHasd)
B\mp@subsup{S}{D}{}->C: [BS绿
            C: check the validity of MBS
            :MHand = [PC(t), PE (t),tC, Down,BSD]
            : E}\mp@subsup{E}{C}{}=\mp@subsup{E}{\mp@subsup{K}{E}{}}{(PD(t),\mp@subsup{E}{\mp@subsup{K}{D}{}}{}(S,m))
            : M
            C->E: [\underline{\mp@subsup{P}{C}{}(t)},\underline{\mp@subsup{P}{E}{}(t)},\mp@subsup{t}{C}{},D\mp@subsup{D}{0}{}
            E : chock the validity of M}\mp@subsup{M}{CE}{}\mathrm{ , docrypt E E N
                        MHadd - [PE (t), PD(t), tE, Down, BS D]
                        E}\mp@subsup{E}{E}{}-\mp@subsup{E}{\mp@subsup{K}{D}{}}{(S,m)
                            : MED MACNK
            E->D: [\underline{\mp@subsup{P}{E}{}(t)},\underline{\mp@subsup{P}{D}{}(t)},\mp@subsup{t}{E}{\prime},Down,B\mp@subsup{S}{D}{}||\underline{\mp@subsup{E}{E}{}}|\underline{\mp@subsup{M}{ED}{}}
            D: check the validity of MACO}\mp@subsup{K}{DR}{}\mathrm{ , decrypt EE
```


Downlink (cont'd)

- Similar to Uplink
- D's identity and location is not revealed. Neighbors only see D as a neighbor routing traffic.
- Encryption of S \& m by $B S_{D}$ guarantees that no one but D can infer identity of S
- Per-hop packet content changes guarantees that m cannot be tracked by an attacker
- If the route is broken and delivery fails, it is reported to the BS - which updates route info and re-sends

Inter-station Protocol

- If $B S_{S}$ and $B S_{D}$ are owned by same authority and S and D trusts them respectively, the process is straightforward
- Uplink packet is forwarded to $B S_{D}$ where MACs are verified, message decrypted, and downlink packet created and sent.
- If S / D does not trust $B S_{S} / B S_{D}$, they will use their home networks, $H N_{S}$ and $H N_{D}$ respectively, to protect their identities

Inter-station Protocol (cont'd)

- If D does not trust $B S_{D}$
- S's message will be first sent to $H \mathbb{N}_{D}$ (by $B S_{S}$?)
- HN N_{D} computes D's pseudonym and sends packet to the appropriate, but untrusted, BS_{D}
- $B S_{D}$ than creates and routes the downlink packet to D, using D's pseudonym as the destination address

Inter-station Protocol (cont'd)

- If S does not trust $B S_{S}$

Issue: How does S prove to BS_{s} and neighbor nodes that it is a legitimate node without revealing it's true identity?
-S uses existing dynamic public keys that are certified by HN_{s}
$-H \mathrm{~N}_{\mathrm{s}}$'s public key needs to be certified by the untrusted network, NU

- Since NU trusts HN_{S} (at least for charging purposes), S can be considered a legitimate node without revealing its identity
-Alternatively, NU can issue a shortterm cert to S

Book-keeping

- BSs keep records of the time, distances, identities, and pseudonyms of the nodes in their control areas
- Associated key topics:
- Secure and Private Topology Discovery
- Topology Update
- Secure Time Synchronization

Book-keeping (cont'd)

- Secure and Private Topology Discovery
- Topology discovery is initiated by the BS via a discovery request

```
BS->*:TREQ, rid, BS,t | SIGprK ms (TREQ,BS,t)
```

- Each receiving node forwards it to its neighbors if it has not seen the same request previously

Book-keeping (cont'd)

- Secure and Private Topology Discovery (cont'd)
- Receiving nodes then perform:
- neighborhood discovery/update
- neighbor authentication and key establishment
- generates an encrypted neighbor list (pseudos, PKs) and sends it back to the node that forwarded the request
- Intermediate nodes merge the received information with their own and pass it on

Book-keeping (cont'd)

- Secure and Private Topology Discovery (cont'd)
- BSs then perform the following: - Verify the signatures of the nodes - Match the PKs to users' real identities - Reconstruct network topology
- Note that only BS can decrypt neighbor lists successfully. Therefore intermediate notes can not observe or modify the topology information
- Compromised node attacks must be mitigated by the BSs detecting topology inconsistencies, ${ }_{2}$

Book-keeping (cont'd)

- Topology Update
- Maintenance
- Nodes determine their distances from BS by collecting distance information from neighbors
- Protected by timestamps and shared secret keys
- Uplink
- When BSs receive uplink packets, it will note the route taken and can update topology accordingly.
- Downlink
- When nodes receive downlink packets, they can update their topology if the BS piggy-backs believed distances for the nodes on the route.

Book-keeping (cont'd)

- Secure Time Synchronization
- The protocols assume only loose time synchronization
- Reference time is provided by BSs
- When a node is in range of a BS, it can perform clock synchronization
- Node sends challenge encrypted with shared key
- BS provides response which includes challenge and current/processing time, all encrypted with shared key
- Node updates its clock using BS time values and $1 / 2$ round-trip time of the challenge/response

Book-keeping (cont'd)

- Secure Time Synchronization

- Nodes can use neighbors to update clock as well
- Node sends similar challenge to all of its neighbors
- False time info can be detected unless majority of neighbors are compromised
- Node can complain about other nodes providing false time info to $B S$
- Since pseudos and PKs do not need to be changed very frequently, node clock differences can be as high as several seconds

Security and Performance

- Now to analyze the privacy-preserving scheme for performance and resistance to various attacks
- Topics include:
- Attacker Model
- Anonymity
- Location Privacy
- Security of Routing
- Performance Analysis

Attacker Model

- Malicious node
- node controlled by a malicious adversary and cannot authenticate to a BS (\& other nodes ?)
- Compromised node
- Node controlled by a malicious adversary and can authenticate to a BS
- Undistinguishable from an honest node until misbehavior is detected
- Notation: Attacker-C-M

Attacker Model (cont'd)

- Attacker-0-1 (single malicious node) can:
- observe if nodes (pseudonyms) in its neighborhood sends/receives messages
. observe which nodes (pseudonyms) in its neighborhood are neighbors to each other
- observe signal-to-noise (S / N) ratios of the devices in its neighborhood and try to link each S / N ratio with a given node pseudonym
- detect signal watermarks of the devices in its neighborhood and link them with node pseudonyms

Attacker Model (cont'd)

- Attacker-0-1 can also:
- estimate how distant nodes in its neighborhood are from the access point (in term of number of hops), based on its physical distance to the access point.
- Attacker-1-0 (compromised) can also:
- observe accurate pseudonym distances to the access point of the nodes (pseudonyms) in its neighborhood
- modify network traffic or generate traffic to infer nodes' locations or real identities.

Attacker Model (cont'd ${ }^{\prime}$)

- Attacker-c-m can also:
- observe/generate intelligence-gathering traffic on a wider network area
owould further facilitate inference of users' real identities and locations
. May be able to send a message to D and track the message to find D's location
- However if $B S_{S} \& B S_{D}$ this is pretty hard

Anonymity

- Analyze the level of source and destination anonymity achieved by the scheme based on entropy

$$
H(X)=-\sum_{i=1}^{N} p_{t} \log _{2} p_{t}
$$

$H(x)=$ the entropy of the system after attack
$p_{i}=\operatorname{Pr}(X=\mathrm{i}), X$ is a discrete random variable
$\mathrm{j}=$ an element of the anonymity set (a node)
$\mathrm{N}=$ size of the node set

Anonymity (cont'd)

- Maximum system entropy

$$
H_{\max }=\log _{2} N
$$

Degree of anonymity provided by system

- Quantifies the amount of information the system is leaking

$$
d=\frac{H(X)}{H_{\max }}
$$

Anonymity (cont'd)

- Recall S/D anonymity as the property that a particular message is not linkable to any S/D, and vice-versa
- Two important aspects to be analyzed
- Anonymity of node pseudonyms
- linkability of messages to pseudonyms and their PKs
- Mutual linkability of node pseudonyms
- ability for an attacker to link two or more pseudonyms to a particular node

Anonymity (cont'd)

- Anonymity of node pseudonyms
- Attacker-0-1 can observe behavior of a transmitting neighbor node, $P_{A}(t)$-> $P_{B}(t)$, and determine:
$-P_{A}(t)$ is either the source or just a forwarding node $-P_{B}(t)$ is not the source
Other neighbor nodes are probably not the source

Anonymity (cont'd)

Denoting $p\left(X=P_{A}(t)\right)=p_{A}$, an attacker could assign source probabilities as follows:
. $p_{A}=1 / s, s<=N, N=$ the \# of possible sources

- $\mathrm{p}_{\mathrm{B}}=0$
- $p_{1}=\ldots=p_{k-1}=0, k=\#$ of attacker's neighbors
- $p_{i}=\left(1-p_{A}\right) /(N-k-1)$

Anonymity (cont'd)

- If $P_{A}(t)$ is located close to $B S$, almost any node in the control area could be source
- If $P_{A}(t)$ is located on the edge, only a few nodes could be source
- For Attacker-0-1,

$$
H(X)=\frac{1}{s} \log _{2}(s)+\left(1-\frac{1}{s}\right) \log _{2} \frac{s(N-k-1)}{s-1}
$$

Anonymity (cont'd)

For Attacker-0-M (M malicious nodes),

$$
H(X)=\frac{1}{s^{\prime}} \log _{2}\left(s^{\prime}\right)+\left(1-\frac{1}{s^{\prime}}\right) \log _{2} \frac{s^{\prime}\left(N-M^{\prime}-1\right)}{s^{\prime}-1}
$$

」 where $M^{\prime}=\#$ of neighbors of $M\left(M^{\prime}=M \times k\right)$ and $s^{\prime}<=s, s^{\prime}$ being \# of possible sources that are not neighbors of M

- For Attacker-C-0 (C compromised nodes),

$$
H(X)=\frac{1}{s^{\prime}} \log _{2}\left(s^{\prime}\right)+\left(1-\frac{1}{s^{\prime}}\right) \log _{2} \frac{s^{\prime}\left(N-C^{\prime}-C-1\right)}{s^{\prime}-1}
$$

- where $C^{\prime}=\#$ of neighbors of $C\left(C^{\prime}=C \times k\right)$

Anonymity (cont'd)

- Note that the maximum entropy for Attacker-0-M and Attacker-C-0 differs
- The size of the anonymity set for the former is N, and $N-C$ for the latter
- Attacker- $0-\mathrm{M}, \mathrm{H}_{\max }(\mathrm{X})=\log _{2}(\mathrm{~N})$
- Attacker-C-0, $H_{\max }(X)=\log _{2}(N-C)$

Anonymity (cont'd)

Figure 4: Pseudonym anonymity degree with
Attacker-0-M and Attacker-C-0, for a control area with 80 nodes and for two sizes of the set of possible sources ($s=10$ and $s=80$).

- Note that as the set of possible sources (s) gets smaller and C/M increases, d decreases

Anonymity (cont'd)

- Also note that d does not decrease significantly with a smaller s
- Even if the attacker knows the size of the set, it does not know which pseudos belong othus any pseudo has an equal chance of being in the set
, Anonymity only decreases with increased M/C
- This demonstrates the scheme's effectiveness

Anonymity (cont'd)

- Mutual linkability of node pseudonyms
, Observing S/N of devices
-Attacker detects the same S/N for two (or more) pseudonyms
- Concludes the two pseudos are used by same node
-Assuming that the node does not move during observation
- Signal watermarking (fingerprinting)
-Attacker detects the same fingerprint from a node that has changed pseudonyms
- Concludes the pseudos are linked to the same node - In this case, node mobility is not a mitigator

Locetion Privecy

- Both S/N and fingerprinting can also be used to track node locations
- Once attackers can map node movements to pseudonyms
- Signal watermark randomization can mitigate fingerprinting
- By installing a large \# of nodes across the control area, the attacker can track pseudos and correlate them by location

Location Privacy (cont'd)

- Mix zones
- A connected spatial region of a maximum size in which none of the nodes are in the power range of any of the nodes controlled by the attacker
- For each pseudo pair $P_{X}\left(t_{1}\right)$ and $P_{Y}\left(t_{2}\right)$, the probability $X=Y$ is:
$\operatorname{Pr}\left(P_{X}\left(t_{1}\right), P_{Y}\left(t_{2}\right): X=Y\right)=1 / M i x S i z e$
- If the attacker can divide control area into smaller mix zones, the entropy drops and it is easier to correlate pseudonyms

Location Privecy (cont'd)

Figure 5: An example of a scenario in which the attacloer divides the access point control area into four mix zones of equal size.

- In this case, the attacker divides the control area into four mix zones, lowering the entropy

Location Privecy (cont'd)

- Maximum entropy decreases with the number of attacker nodes and size/number of mix zones

Location Privecy (cont'd)

Attacker can create a tracking matrix M[i,j]

- Records frequencies with which nodes go from zone i to zone j through a mix zone z. - zones i and j are controlled by the attacker
- Used to compute the probabilities that the pseudonyms belong to the same node, thus reducing entropy
- Pseudonym correlation success
- Depends more on the \# of nodes controlled by the attacker
- Less on the frequency of pseudonym change

Location Privacy (cont'd)

- Frequency of pseudonym change
- Needs to be only $2 x$ higher than the average frequency a node moves from an attackercontrolled zone to a mix zone
- Estimated to be $1 / \mathrm{t}(\mathrm{r})$
owhere $t(r)$ is the average time that it takes a node to cross the distance equivalent to the power range.

Security of Routing

- How resistant is the protocols to various attacks?
- False distance information dissemination
- Attacker claims it is closer to or further from BS than it really is
- Cannot be performed by Attacker-0-M
- Attacker-1-M will be easily detected as nonneighbor nodes will report different distances
- Attacker-C-M could be successful if C is sufficiently large to fake the whole topology without being detected by the BS

Security of Routing (cont'd)

Black Hole attack
. Attacker advertises close proximity to BS, then gathers/drops packets

- Can be detected similarly to false distance
- Can also be mitigated by nodes randomizing their choice of next uplink hop
- Black hole can't paralyze an entire hybrid network as it can for MANETs
- Only a fraction of its neighboring nodes in its control area

Security of Routing (cont'd)

- Wormhole attiack
- Attacker tunnels and retransmits packets in a remote part of the network
- Similar to Black Hole, this attack can be mitigated by:
- Topology control by BS
- Temporal packet leashes
- Power drain attack
- Attacker-1-M inserts random packets into network in order to drain node batteries
- BS controls all traffic, hence can mitigate

Performance Analysis

- Analyze the cryptographic and communication costs associated with the scheme
- Cryptographic cost
. Routing is secured by symmetric key (SK)
- Dynamic key establishment is by public key (PK)
- SK establishment between 2 nodes
-1 PK signature \& 1 PK signature verification per node -1 PK signature verification of authority's certificate
- SK updates are of minimal impact
-Fixed cost, seldom performed ($1 / \mathrm{min}$ or less)

Performance Analysis (cont'd)

- Cryptographic cost (cont'd)
- Forwarded packet
- 3 SK operations
- Verify MAC, Re-encrypt message, Create new MAC
- It would be possible to replace PK operations with SK-based TESLA keys (future work)

Performance Analysis (cont'd)

Communication cost

- Dynamic Key Update cost
-PK update cost depends on frequency
- Low, for this scheme
- BS sends one certificate to each node at the same frequency at which keys/pseudos are updated
- Secure and Private Routing cost
- Low, a single MAC is added to each message on its way to and from BS

Related Work

- Existing research efforts related to:
- Hybrid ad hoc networks
- Secure Routing
- Anonymity and Location Privacy
- Anonymous Credentials
- See paper for details

Conclusion

- Proposed a scheme to secure and protect the privacy of communication in hybrid ad hoc networks
. Both security and privacy preservation can be integrated in the same protocol
- Privacy preservation provided by the use of pseudonyms and dynamic key renewal
- Detailed description of the Privacy Preserving Routing protocol and associated overhead/ robustness

Discussion

- Performance analysis is high-level and theoretical.
- Simulation would provide harder data
- No discussion of how nodes determine destination node identity (D)
- Perhaps a service database is available that uses pseudos instead of true identity

Discussion (cont'd)

- All message traffic must go through BSs
- No trust mechanism is provided between S \& D
- S \& D do not need to share a key
- All trust is provided via BS/HN

Questions ? Comments ?

