
1

Network Programming using sockets

2

TCP/IP layers

Messages (UDP) or Streams (TCP)
Application

Transport

Internet
UDP or TCP packets

IP datagrams

Network-specific frames

Message
Layers

Underlying network

Network interface

2

3

The programmer's conceptual view of a TCP/IP
Internet

IP

Application Application

TCP UDP

4

A Programmerʼs View of the Internet

3

5

IP Addresses

/* Internet address structure */
struct in_addr {
 unsigned int s_addr; /* network byte order (big-endian) */
};

Handy network byte-order conversion functions:
htonl: convert uint32_t from host to network byte order.
htons: convert uint16_t from host to network byte order.
ntohl: convert uint32_t from network to host byte order.
ntohs: convert uint16_t from network to host byte order.

6

Dotted Decimal Notation

4

7

IP Address Structure

Class A

Class B

Class C

Class D

Class E

0 1 2 3 8 16 24 31
0 Net ID Host ID

10

110

Host ID

Host IDNet ID

Net ID

110

1111

1 Multicast address

Reserved for experiments

8

Internet Domain Names

.net .edu .gov .com

gmu berkeleymit

cs ece

unnamed root

tigger
129.174.88.167

amazon

www
208.216.181.15

First-level domain names

Second-level domain names

Third-level domain names

markov
129.174.88.235

5

9

Domain Naming System (DNS)

/* DNS host entry structure */
struct hostent {
 char *h_name; /* official domain name of host */
 char **h_aliases; /* null-terminated array of domain names */
 int h_addrtype; /* host address type (AF_INET) */
 int h_length; /* length of an address, in bytes */
 char **h_addr_list; /* null-terminated array of in_addr structs */
};

10

Properties of DNS Host Entries

6

11

A Program That Queries DNS
int main(int argc, char **argv) { /* argv[1] is a domain name */
 char **pp; /* or dotted decimal IP addr */
 struct in_addr addr;
 struct hostent *hostp;

 if (inet_aton(argv[1], &addr) != 0)
 hostp = Gethostbyaddr((const char *)&addr, sizeof(addr),
 AF_INET);
 else
 hostp = Gethostbyname(argv[1]);
 printf("official hostname: %s\n", hostp->h_name);

 for (pp = hostp->h_aliases; *pp != NULL; pp++)
 printf("alias: %s\n", *pp);

 for (pp = hostp->h_addr_list; *pp != NULL; pp++) {
 addr.s_addr = ((struct in_addr *)*pp)->s_addr;
 printf("address: %s\n", inet_ntoa(addr));
 }
}

12

Querying DNS from the Command
Line

linux> dig +short kittyhawk.cmcl.cs.cmu.edu
128.2.194.242
linux> dig +short -x 128.2.194.242
KITTYHAWK.CMCL.CS.CMU.EDU.
linux> dig +short aol.com
205.188.145.215
205.188.160.121
64.12.149.24
64.12.187.25
linux> dig +short -x 64.12.187.25
aol-v5.websys.aol.com.

7

13

Internet Connections

14

Putting it all Together:  
Anatomy of an Internet Connection

Connection socket pair
(128.2.194.242:51213, 208.216.181.15:80)

Server
(port 80)Client

Client socket address
128.2.194.242:51213

Server socket address
208.216.181.15:80

Client host address
128.2.194.242

Server host address
208.216.181.15

8

15

Clients

16

Using Ports to Identify Services

Web server
(port 80)

Client host

Server host 128.2.194.242

Echo server
(port 7)

Service request for
128.2.194.242:80

(i.e., the Web server)

Web server
(port 80)

Echo server
(port 7)

Service request for
128.2.194.242:7

(i.e., the echo server)

Kernel

Kernel

Client

Client

9

17

Servers

18

Server Examples

See /etc/services for a
comprehensive list of the

services available on a Linux
machine.

10

19

Sockets Interface

20

Sockets

11

21

Socket programming

Socket API
  introduced in BSD4.1 UNIX,

1981
  explicitly created, used,

released by apps
  client/server paradigm
  two types of transport

service via socket API:
  unreliable datagram
  reliable, byte stream-

oriented

a host-local, application-
created/owned,

OS-controlled interface
(a “door”) into which

application process can
both send and

receive messages to/from
another (remote or

local) application process

socket

Goal: learn how to build client/server application that
communicate using sockets

22

Sockets and ports

message

agreed portany port socketsocket

Internet address = 138.37.88.249Internet address = 138.37.94.248
other ports

client server

12

23

Berkeley Sockets (1)

Socket primitives for TCP/IP.

Primitive Meaning

Socket Create a new communication endpoint

Bind Attach a local address to a socket

Listen Announce willingness to accept connections

Accept Block caller until a connection request arrives

Connect Actively attempt to establish a connection

Send Send some data over the connection

Receive Receive some data over the connection

Close Release the connection

24

Socket programming with TCP

Client must contact server
  server process must first

be running
  server must have created

socket (door) that
welcomes client’s contact

Client contacts server by:
  creating client-local TCP

socket
  specifying IP address, port

number of server process

  When client creates socket:
client TCP establishes
connection to server TCP

  When contacted by client,
server TCP creates new
socket for server process to
communicate with client
  allows server to talk with

multiple clients

TCP provides reliable, in-order
 transfer of bytes (“pipe”)
between client and server

application viewpoint

13

25

Socket programming with TCP

Example client-server app:
  client reads line from

standard input (inFromUser
stream) , sends to server via
socket (outToServer
stream)

  server reads line from socket
  server converts line to

uppercase, sends back to
client

  client reads, prints modified
line from socket
(inFromServer stream)

Input stream: sequence of
bytes into process

Output stream: sequence of
bytes out of process

client socket

inFromUser ou
tT
oS
er
ve
r

ii
nF
ro
mS
er
ve
r

26

Client/server socket interaction: TCP

wait for incoming
connection request
connectionSocket =
welcomeSocket.accept()

create socket,
port=x, for
incoming request:
welcomeSocket =

ServerSocket()
create socket,
connect to hostid, port=x
clientSocket =

Socket()

close
connectionSocket

read reply from
clientSocket
close
clientSocket

Server (running on hostid) Client

send request using
clientSocket read request from

connectionSocket
write reply to
connectionSocket

TCP
connection setup

14

27

Berkeley Sockets (2)

Connection-oriented communication pattern using sockets.

28

Sockets used for streams

Requesting a connection Listening and accepting a connection

bind(s, ServerAddress);
listen(s,5);

sNew = accept(s, ClientAddress);

n = read(sNew, buffer, amount)

s = socket(AF_INET, SOCK_STREAM,0)

connect(s, ServerAddress)

write(s, "message", length)

s = socket(AF_INET, SOCK_STREAM,0)

ServerAddress and ClientAddress are socket addresses

15

29

Example: Java client (TCP)

import java.io.*;
import java.net.*;
class TCPClient {

 public static void main(String argv[]) throws Exception
 {
 String sentence;
 String modifiedSentence;

 BufferedReader inFromUser =
 new BufferedReader(new InputStreamReader(System.in));

 Socket clientSocket = new Socket("hostname", 6789);

 DataOutputStream outToServer =
 new DataOutputStream(clientSocket.getOutputStream());

Create
input stream

Create
client socket,

connect to server
Create

output stream
attached to socket

30

Example: Java client (TCP), cont.

 BufferedReader inFromServer =
 new BufferedReader(new
 InputStreamReader(clientSocket.getInputStream()));

 sentence = inFromUser.readLine();

 outToServer.writeBytes(sentence + '\n');

 modifiedSentence = inFromServer.readLine();

 System.out.println("FROM SERVER: " + modifiedSentence);

 clientSocket.close();

 }
}

Create
input stream

attached to socket

Send line
to server

Read line
from server

16

31

Example: Java server (TCP)

import java.io.*;
import java.net.*;

class TCPServer {

 public static void main(String argv[]) throws Exception
 {
 String clientSentence;
 String capitalizedSentence;

 ServerSocket welcomeSocket = new ServerSocket(6789);

 while(true) {

 Socket connectionSocket = welcomeSocket.accept();

 BufferedReader inFromClient =
 new BufferedReader(new
 InputStreamReader(connectionSocket.getInputStream()));

Create
welcoming socket

at port 6789

Wait, on welcoming
socket for contact

by client

Create input
stream, attached

to socket

32

Example: Java server (TCP), cont

 DataOutputStream outToClient =
 new DataOutputStream(connectionSocket.getOutputStream());

 clientSentence = inFromClient.readLine();

 capitalizedSentence = clientSentence.toUpperCase() + '\n';

 outToClient.writeBytes(capitalizedSentence);
 }
 }
}

Read in line
from socket

Create output
stream, attached

to socket

Write out line
to socket

End of while loop,
loop back and wait for
another client connection

17

33

Socket programming with UDP

UDP: no “connection” between
client and server

  no handshaking
  sender explicitly attaches

IP address and port of
destination

  server must extract IP
address, port of sender
from received datagram

UDP: transmitted data may be
received out of order, or
lost

application viewpoint

UDP provides unreliable transfer
 of groups of bytes (“datagrams”)

 between client and server

34

Client/server socket interaction: UDP

close
clientSocket

Server (running on hostid)

read reply from
clientSocket

create socket,
clientSocket =
DatagramSocket()

Client

Create, address (hostid, port=x,
send datagram request
using clientSocket

create socket,
port=x, for
incoming request:
serverSocket =
DatagramSocket()

read request from
serverSocket

write reply to
serverSocket
specifying client
host address,
port umber

18

35

Sockets used for datagrams

ServerAddress and ClientAddress are socket addresses

Sending a message Receiving a message

bind(s, ClientAddress)

sendto(s, "message", ServerAddress)

bind(s, ServerAddress)

amount = recvfrom(s, buffer, from)

s = socket(AF_INET, SOCK_DGRAM, 0) s = socket(AF_INET, SOCK_DGRAM, 0)

36

Example: Java client (UDP)

import java.io.*;
import java.net.*;

class UDPClient {
 public static void main(String args[]) throws Exception
 {

 BufferedReader inFromUser =
 new BufferedReader(new InputStreamReader(System.in));

 DatagramSocket clientSocket = new DatagramSocket();

 InetAddress IPAddress = InetAddress.getByName("hostname");

 byte[] sendData = new byte[1024];
 byte[] receiveData = new byte[1024];

 String sentence = inFromUser.readLine();

 sendData = sentence.getBytes();

Create
input stream

Create
client socket

Translate
 hostname to IP

address using DNS

19

37

Example: Java client (UDP), cont.

 DatagramPacket sendPacket =
 new DatagramPacket(sendData, sendData.length, IPAddress, 9876);

 clientSocket.send(sendPacket);

 DatagramPacket receivePacket =
 new DatagramPacket(receiveData, receiveData.length);

 clientSocket.receive(receivePacket);

 String modifiedSentence =
 new String(receivePacket.getData());

 System.out.println("FROM SERVER:" + modifiedSentence);
 clientSocket.close();
 }

}

Create datagram
with data-to-send,

length, IP addr, port

Send datagram
to server

Read datagram
from server

38

Example: Java server (UDP)

import java.io.*;
import java.net.*;

class UDPServer {
 public static void main(String args[]) throws Exception
 {

 DatagramSocket serverSocket = new DatagramSocket(9876);

 byte[] receiveData = new byte[1024];
 byte[] sendData = new byte[1024];

 while(true)
 {

 DatagramPacket receivePacket =
 new DatagramPacket(receiveData, receiveData.length);

 serverSocket.receive(receivePacket);

Create
datagram socket

at port 9876

Create space for
received datagram

Receive
datagram

20

39

Example: Java server (UDP), cont

 String sentence = new String(receivePacket.getData());

 InetAddress IPAddress = receivePacket.getAddress();

 int port = receivePacket.getPort();

 String capitalizedSentence = sentence.toUpperCase();

 sendData = capitalizedSentence.getBytes();

 DatagramPacket sendPacket =
 new DatagramPacket(sendData, sendData.length, IPAddress,
 port);

 serverSocket.send(sendPacket);
 }
 }

}

Get IP addr
port #, of

sender

Write out
datagram
to socket

End of while loop,
loop back and wait for
another datagram

Create datagram
to send to client

Next Class

 Using sockets in C programs
 Follow approach described in Bryant &

O’Halloran

40

