Network Programming using sockets

TCP/IP layers

Message
Layers
Application
[Messages (UDP) or Streams (TCP)
Transport
UDP or TCP packets
Internet

IP datagrams

Network interface

Network-specific frames

Underlying network O >

The programmer's conceptual view of a TCP/IP
Internet

Application Application

TCP UDP

A Programmer’s View of the Internet

1. Hosts are mapped to a set of 32-bit /P addresses.
= 128.2.203.179

2. The set of IP addresses is mapped to a set of
identifiers called Internet domain names.

m 128.2.203.179 is mapped to www.cs.cmu.edu

3. A process on one Internet host can communicate
with a process on another Internet host over a
connection.

IP Addresses

32-bit IP addresses are stored in an /P address struct

m IP addresses are always stored in memory in network byte
order (big-endian byte order)
m True in general for any integer transferred in a packet header
from one machine to another.
e E.g., the port number used to identify an Internet connection.

/* Internet address structure */
struct in_addr {
unsigned int s_addr; /* network byte order (big-endian) */

}i

Handy network byte-order conversion functions:
htonl: convert uint32_t from host to network byte order.
htons: convert uint16_t from host to network byte order.
ntohl: convert uint32_t from network to host byte order.
ntohs: convert uint16_t from network to host byte order.

Dotted Decimal Notation

By convention, each byte in a 32-bit IP address is
represented by its decimal value and separated by a
period

o [P address 0x8002C2F2 = 128.2.194.242

Functions for converting between binary IP addresses
and dotted decimal strings:
m inet_aton: converts a dotted decimal string to an IP
address in network byte order.
® inet ntoa: converts an IP address in network byte order to
its corresponding dotted decimal string.

= “n” denotes network representation. “a” denotes application
representation.

IP Address Structure

IP (V4) Address space divided into classes:

0123 8 16 24 31
ClassA [0| Netb | Host ID |
ClassB 1P| Net ID | Host ID |
ClassC [1[1]o] Net ID HostID |
Class D IEI Multicast address
Class E II Reserved for experiments

Network ID Written in form w.x.y.z/n
= n = number of bits in host address

m E.g., GMU written as 129.174.0.0/16
e Class B address

Unrouted (private) IP addresses:
10.0.0.0/8 172.16.0.0/12 192.168.0.0/16

Internet Domain Names

unnamed root
.net .edu .gov .com First-level domain names
mit gmu berkeley amazon Second-level domain names
cs ece WWW Third-level domain names
/\ 208.216.181.15
markov tigger

129.174.88.235 129.174.88.167

Domain Naming System (DNS)

The Internet maintains a mapping between IP addresses
and domain names in a huge worldwide distributed
database called DNS.

= Conceptually, programmers can view the DNS database as a
collection of millions of host entry structures:

/* DNS host entry structure */
struct hostent {

char *h_name; /* official domain name of host */

char **h aliases; /* null-terminated array of domain names */
int h_addrtype; /* host address type (AF_INET) */

int h_length; /* length of an address, in bytes */

char **h_addr_list; /* null-terminated array of in_addr structs */

}i

Functions for retrieving host entries from DNS:
m gethostbyname: query key is a DNS domain name.
m gethostbyaddr: query key is an IP address.

Properties of DNS Host Entries

Each host entry is an equivalence class of domain names
and IP addresses.

Each host has a locally defined domain name localhost
which always maps to the loopback address
127.0.0.1

Different kinds of mappings are possible:
= Simple case: 1-1 mapping between domain name and IP addr:
® kittyhawk.cmcl.cs.cmu.edu maps to 128.2.194.242
m Multiple domain names mapped to the same IP address:
® cecs.mit.edu and cs.mit.edu bothmapto 18.62.1.6
= Multiple domain names mapped to multiple IP addresses:
® aol.com and www.aol.com map to multiple IP addrs.

= Some valid domain names don’t map to any IP address:
o for example: cmcl.cs.cmu.edu

A Program That Queries DNS

struct in_addr addr;
struct hostent *hostp;

if (inet_aton(argv[1l], &addr) != 0)

AF_INET);
else
hostp = Gethostbyname(argv[1l]);
printf("official hostname: %s\n", hostp->h_name);

for (pp = hostp->h_aliases; *pp != NULL; pp++)
printf("alias: %s\n", *pp);

for (pp = hostp->h_addr_list; *pp != NULL; pp++) {
addr.s_addr = ((struct in_addr *)*pp)->s_addr;
printf("address: %s\n", inet_ntoa(addr));

int main(int argc, char **argv) { /* argv[l] is a domain name */
char **pp; /* or dotted decimal IP addr */

hostp = Gethostbyaddr((const char *)&addr, sizeof(addr),

Querying DNS from the Command

Line

Domain Information Groper (dig) provides a scriptable

command line interface to DNS.

linux> dig +short kittyhawk.cmcl.cs.cmu.edu
128.2.194.242

linux> dig +short -x 128.2.194.242
KITTYHAWK.CMCL.CS.CMU.EDU.
linux> dig +short aol.com
205.188.145.215

205.188.160.121

64.12.149.24

64.12.187.25

linux> dig +short -x 64.12.187.25
aol-v5.websys.aol.com.

Internet Connections

Clients and servers communicate by sending streams
of bytes over connections:

m Point-to-point, full-duplex (2-way communication), and
reliable.
A socket is an endpoint of a connection
m Socket address is an IPaddress:port pair

A portis a 16-bit integer that identifies a process:

m Ephemeral port: Assigned automatically on client when
client makes a connection request

m Well-known port: Associated with some service provided by
a server (e.g., port 80 is associated with Web servers)

A connection is uniquely identified by the socket
addresses of its endpoints (socket pair)

B (cliaddr:cliport, servaddr:servport)

Putting it all Together:
Anatomy of an Internet Connection

Client socket address Server socket address
128.2.194.242:51213 :

@ Connection socket pair
(128.2.194.242:51213, :80)

Client host address Server host address
128.2.194.242

Server
(port 80)

Clients

Examples of client programs
m Web browsers, £ftp, telnet, ssh

How does a client find the server?

m The IP address in the server socket address identifies the
host (more precisely, an adapter on the host)

m The (well-known) port in the server socket address identifies
the service, and thus implicitly identifies the server process
that performs that service.

= Examples of well known ports

® Port 7: Echo server
® Port 23: Telnet server
e Port 25: Mail server
e Port 80: Web server

Using Ports to Identify Services

Server host 128.2.194.242

Client host Service request for Web server

128.2.194.242:80

(i.e., the Web server)

(port 80)

Kernel

Echo server

(port 7)

Service request for Web server

128.2.194.242:7 (port 80)

(i.e., the echo server)

Kernel

Echo server

(port 7)

Servers

Servers are long-running processes (daemons).
m Created at boot-time (typically) by the init process (process 1)
= Run continuously until the machine is turned off.

Each server waits for requests to arrive on a well-known
port associated with a particular service.
m Port 7: echo server
m Port 23: telnet server
m Port 25: mail server
m Port 80: HTTP server

A machine that runs a server process is also often
referred to as a “server.”

Server Examples

Web server (port 80)
m Resource: files/compute cycles (CGl programs)

m Service: retrieves files and runs CGI programs on behalf of
the client

FTP server (20, 21)
= Resource: fil See /etc/services fora
.u ce: Tiles . comprehensive list of the
m Service: stores and retrieve files services available on a Linux
machine.

Telnet server (23)
m Resource: terminal
m Service: proxies a terminal on the server machine

Mail server (25)
= Resource: email “spool” file
m Service: stores mail messages in spool file

Sockets Interface

Created in the early 80’s as part of the original Berkeley
distribution of Unix that contained an early version of
the Internet protocols.

Provides a user-level interface to the network.
Underlying basis for all Internet applications.

Based on client/server programming model.

Sockets

What is a socket?
m To the kernel, a socket is an endpoint of communication.

m To an application, a socket is a file descriptor that lets the
application read/write from/to the network.
@ All Unix I/O devices, including networks, are modeled as files.

Clients and servers communicate with each other by
reading from and writing to socket descriptors.

The main distinction between regular file I/O and socket
I/O is how the application “opens” the socket
descriptors.

20

10

Socket programming

Goal: learn how to build client/server application that
communicate using sockets

SOCkeT API — socke'f
0 introduced in BSD4.1 UNIX, L.
1981 a host-local, application-
created/owned,

0 explicitly created, used,

released by apps “door™) i ek
2 client/server paradigm (a. oor) into whic
application process can

2 two types of transport both send and

service via socket APT: .
> unreliable dataaram receive messages to/from
) 9 another (remote or

O reliable, byte stream- PR
oriented local) application process

OS-controlled interface

21

Sockets and ports

D
socket I?/ any port

message

agreed

(
%(l spcket
clien D | server
< Dl other ports<<(I

Internet address = 138.37.94.248 Internet address = 138.37.88.249

22

11

Berkeley Sockets (1)

Socket primitives for TCP/IP.

Primitive Meaning

Socket Create a new communication endpoint

Bind Attach a local address to a socket

Listen Announce willingness to accept connections
Accept Block caller until a connection request arrives
Connect Actively attempt to establish a connection
Send Send some data over the connection

Receive Receive some data over the connection
Close Release the connection

23

Socket programming with TCP

Client must contact server

0 server process must first
be running

0 server must have created
socket (door) that
welcomes client's contact

Client contacts server by:

0 creating client-local TCP
socket

0 specifying IP address, port
number of server process

When client creates socket:
client TCP establishes
connection to server TCP
When contacted by client,
server TCP creates new
socket for server process to
communicate with client

o allows server to talk with

multiple clients

application viewpoint

TCP provides reliable, in-order
transfer of bytes ("pipe”)
between client and server

24

12

Socket programming with TCP

Example client-server app: Input stream: sequence of
2 client reads line from bytes into process
standard input (inFromUser Output stream: sequence of
stream) , sends to server via bytes out of process
socket (outToServer
stream)

0 server reads line from socket

O server converts line to
uppercase, sends back to
client l

2 client reads, prints modified

line from socket
(inFromServer stream)

outToServer
inFromServer

client socket

25

Client/server socket interaction: TCP

Server (running on hostid) Client

create socket,
port=x, for
incoming request:
welcomeSocket =

ServerSocket()
—
TCP
wait for incoming €= = = = = = = =) Create socket,
connection request connection sefup — connect to hostid, port=x
connectionSocket = clientSocket =

welcomeSocket.accept() Socket()

l send request using
read request from / clientSocket
connectionSocket
write reply to
connectionSocket \ read reply from

1 clientSocket
close

connectionSocket close
clientSocket

26

13

Berkeley Sockets (2)

Server /_—hﬁ\)
[socket | bind ¥ listen] accAept}—Kﬁ riad > write F—» close |

]

| i \

: : . | ' i R
Synchronization point —» ! Communication
| !

\

h J ! Y
socket Prconnect» write |——» read close |
Client

Connection-oriented communication pattern using sockets.

27
Sockets used for streams
Requesting a connection Listening and accepting a connection
s = socket(AF_INET, SOCK_STREAM,0 s = socket(AF_INET, SOCK_STREAM,0)
[)
: t_)ind(s, ServerAddress);
connect(s, ServerAddress) I.|sten(s,5);
. sNew = accept(s, ClientAddress);
L]
. " " i
write(s, "message”, length) n = read(sNew, buffer, amount)
ServerAddress and ClientAddress are socket addresses
28

14

Example: Java client (TCP)

import java.io.*;
import java.net.*;
class TCPClient {

public static void main(String argv[]) throws Exception
{

String sentence;

String modifiedSentence;

Create]

input stream| BufferedReader inFromUser =

- new BufferedReader(new InputStreamReader(System.in));

Create

client socket, — Socket clientSocket = new Socket("hostname", 6789);

connect to server|
Create — DataOutputStream outToServer =

output stream new DataOutputStream(clientSocket.getOutputStream());

attached to socke’r_

29

Example: Java client (TCP), cont.

input stream new BufferedReader(new

Create BufferedReader inFromServer =
attached to socket | InputStreamReader(clientSocket.getinputStream()));

sentence = inFromUser.readLine();

Send line)
to server outToServer.writeBytes(sentence + '\n');

Read Iine]——' modifiedSentence = inFromServer.readLine();
from server,
System.out.printin("FROM SERVER: " + modifiedSentence);

clientSocket.close();

30

15

Example: Java server (TCP)

import java.io.*;
import java.net.*;

class TCPServer {
public static void main(String argv[]) throws Exception

String clientSentence;

Create String capitalizedSentence;

welcoming socket —> ServerSocket welcomeSocket = new ServerSocket(6789);
at port 6789

Wait, on welcoming | while(true) {

socket for ConTGCT — > Socket connectionSocket = welcomeSocket.accept();
by client |
. — BufferedReader inFromClient =
Createinput] _, ey BufferedReader(new
stream, attached InputStreamReader(connectionSocket.getinputStream()));
to socket_]

31

Example: Java server (TCP), cont

Create oquuT_

stream, attached DataOutputStream outToClient =
to socket}— new DataOutputStream(connectionSocket.getOutputStream());

Read in line]

from sockef__’ clientSentence = inFromClient.readLine();

capitalizedSentence = clientSentence.toUpperCase() + "\n';

Write out line} | outToClient.writeBytes(capitalizedSentence);
to socket | }

}
} End of while loop,
loop back and wait for
another client connection

32

16

Socket programming with UDP

UDP: no “connection” between
client and server

0 no handshaking
0 sender explicitly attaches

IP address and port of application viewpoint

destination UDP provides unreliable transfer
0 server must extract IP of groups of bytes (“datagrams”)

address, port of sender between client and server

from received datagram

UDP: transmitted data may be
received out of order, or
lost

33

Client/server socket interaction: UDP

Server (running on hostid) Client

create socket, create socket,

port=x, for clientSocket =

incoming request: DatagramSocket()

serverSocket =

DatagramSocket() l

> Create, address (hostid, port=x,
/ send datagram request

read request from using clientSocket
serverSocket

write reply to

serverSocket \ read reply from
ifyi lient
ﬁnggﬁggegéen clientSocket

port umber close

] clientSocket

34

17

Sockets used for datagrams

Sending a message Receiving a message

s = socket(AF_INET, SOCK_DGRAM, §) s = socket(AF_INET, SOCK_DGRAM, §)
o

. .

bind(s, ClientAddress) bind(s, ServerAddress)
o

. .

sendto(s, "message", ServerAddress)- amount = recvfrom(s, buffer, from)

ServerAddress and ClientAddress are socket addresses

35

Example: Java client (UDP)

import java.io.”;
import java.net.*;

class UDPClient {
public static void main(String args[]) throws Exception

Create] {

input stream — BufferedReader inFromUser =

Create] new BufferedReader(new InputStreamReader(System.in));

client socketf™ patagramSocket clientSocket = new DatagramSocket();

Translate]

hostname to IP
address using DNS |

" InetAddress IPAddress = InetAddress.getByName("hostname");

byte[] sendData = new byte[1024];
byte[] receiveData = new byte[1024];
String sentence = inFromUser.readLine();

sendData = sentence.getBytes();
36

18

Example: Java client (UDP), cont.

Create datagram
with data-to-send,| DatagramPacket sendPacket =
length, IP addr, port new DatagramPacket(sendData, sendData.length, IPAddress, 9876);

Send datagram|— clientSocket.send(sendPacket);
to server

DatagramPacket receivePacket =
new DatagramPacket(receiveData, receiveData.length);
Read datagram

from ser'ver]—' clientSocket.receive(receivePacket);

String modifiedSentence =
new String(receivePacket.getData());

System.out.printin("FROM SERVER:" + modifiedSentence);
clientSocket.close();

}
}
37
Example: Java server (UDP)

import java.io.*;

import java.net.*;

class UDPServer {

public static void main(String args[]) throws Exception
Create {
datagram socket
— - .
at port 9876 DatagramSocket serverSocket = new DatagramSocket(9876);
byte[] receiveData = new byte[1024];
byte[] sendData = new byte[1024];
while(true)
{
Create space for‘] Dat Packet oPacket
. —— DatagramPacket receivePacket =
received damgmm new DatagramPacket(receiveData, receiveData.length);
Receive serverSocket.receive(receivePacket);
datagram
38

19

Example: Java server (UDP), cont

String sentence = new String(receivePacket.getData());

Get IP addr
port #, of

sender|—int port = receivePacket.getPort():

InetAddress IPAddress = receivePacket.getAddress();

String capitalizedSentence = sentence.toUpperCase();

sendData = capitalizedSentence.getBytes();

Create datagram

. —> DatagramPacket sendPacket =
to send to client g

new DatagramPacket(sendData, sendData.length, IPAddress,
. port);

Write out

da‘ragr‘am —> serverSocket.send(sendPacket);

to socket| }

}
} End of while loop,
loop back and wait for
another datagram
39
Next Class
0 Using sockets in C programs
o Follow approach described in Bryant &
O'Halloran
40

20

