
1

CS 475 1

Application Level Protocol
Design

Concurrent & Distributed
Software Systems

CS 475 2

Application Layer Protocol
Design

Steps in design
Services
Protocol Data Unit (PDU) structure and
encoding
Protocol
Client, Server, interaction with environment
(DNS, NFS, etc.)

2

CS 475 3

Trivial FTP (TFTP)

RFC 1350
a simple file transfer protocol, often used
for booting from a remote file system
no access control, directory manipulation,
etc.
UDP transport
files are netascii or binary

CS 475 4

Services & PDU design

Services
Read, write a file

PDUs
RRQ, read request: read a file
WRQ, write request: write a file
DATA
ACK
ERROR

3

CS 475 5

0(1)Errcode (2)

Block # (2)

Block # (2)

PDU structure and
encoding

RRQ

WRQ

DATA

ACK

ERROR

Opcode String EOS

01 (2) Filename (n) 0(1) Mode (n) 0(1)

0(1)Mode (n)0(1)Filename (n)02 (2)

03 (2)

04 (2)

05 (2)

String EOS

Data (0-512)

Errstring (n)

String EOS

CS 475 6

TFTP Protcol

Client Server
WRQ

ACK, block # 0
Data, block #1

ACK, block #1
Data, block #2

Writing a file

Client Server
RRQ

Data, block #1
ACK, block #1

Data, block #2
ACK, block #2

Reading a file

4

CS 475 7

Sorcerer’s apprentice
syndrome

Send DATA (n)
Recv DATA (n)
Send ACK (n)

(time out)
Retransmit Data (n)

Recv DATA(n) Duplicate
Send ACK (n) DuplicateRecv ACK(n)

Send DATA(n+1)
Recv DATA(n+1)
Send ACK(n+1)

Recv DATA(n+1) Duplicate
Send ACK (n+1) DuplicateRecv ACK(n+1)

Send DATA(n+2)

Recv ACK (n)
Send DATA(n+1)

Duplicate
Duplicate

Recv ACK (n+1)
Send DATA(n+2)

Duplicate
Duplicate

Recv DATA(n+2)
Send ACK(n+2)

CS 475 8

Correction
Send DATA (n)

Recv DATA (n)
Send ACK (n)

(time out)
Retransmit Data (n)

Recv DATA(n) Duplicate
Send ACK (n) DuplicateRecv ACK(n)

Send DATA(n+1)
Recv DATA(n+1)
Send ACK(n+1)

Recv ACK(n+1)
Send DATA(n+2)

Recv ACK (n)
don’t send anything

Duplicate

Recv DATA(n+2)
Send ACK(n+2)

5

CS 475 9

Implementation Issues

How does server keep track of client
address?

New socket created by child process on
server side
Child process binds socket to a local address
All subsequent messages from client sent to
new address

CS 475 10

Implementation cont’d

Data formats
netascii -responsibility of the client & server
to convert from netascii to local
representation (and vice versa)

Protocol processing
Finite state machine

Security

6

CS 475 11

HTTP 1.0

Services
read web pages, append to web pages, write
pages, etc.
GET, HEAD, POST, PUT, DELETE, etc.

PDU design and encoding
ASCII request followed by MIME-like
response
format specified in BNF

CS 475 12

HTTP 1.0 cont’d

Protocol
TCP used as transport
new connection for every file retrieved
⌧poor performance

Other issues
active content, caching, proxy servers,
security

7

CS 475 13

CS 475 14

HTTP 1.1
Several changes

Persistent connections - default behavior
Host header field in request
Connection header
See also link on class web page for a more detailed
discussion

Assignment
GETLIST method (not part of HTTP 1.1)
⌧server can supply a list of embedded files as an optional

header in the response to a GET request
⌧you have to design the request/response formats

8

CS 475 15

CS 475 16

Application-level Protocols

Session-layer
communication between processes (as
opposed to hosts)
Example:
⌧ error-recovery and check-pointing for long-lived

connections
⌧ creation and management of synchronized

streams for audio and video

9

CS 475 17

Presentation Layer
Handle issues related to different data
representations on communicating hosts

big endian vs little endian, 32 bit vs 64 bit, different
formats for characters, etc.
Usually handled in one of two ways
⌧Canonical representation of data

• XDR, ASN.1, netascii (TFTP), CORBA CDR
• ASCII (HTTP)
• Java object serialization

⌧“receiver makes right”

Also handles encryption and decryption

CS 475 18

CORBA CDR for constructed
types

Type Representation

sequence length (unsigned long) followed by elements in order

string length (unsigned long) followed by characters in order (can also

can have wide characters)

array array elements in order (no length specified because it is fixed)

struct in the order of declaration of the components

enumerated unsigned long (the values are specified by the order declared)

union type tag followed by the selected member

10

CS 475 19

CORBA CDR message

The flattened form represents a Person struct with value: {‘Smith’, ‘London’, 1934}

0–3

4–7

8–11

12–15

16–19

20-23

24–27

5

"Smit"

"h___"

6

"Lond"

"on__"

1934

index in
sequence of bytes 4 bytes

notes
on representation

length of string

‘Smith’

length of string

‘London’

unsigned long

CS 475 20

Indication of Java serialized form

The true serialized form contains additional type markers; h0 and h1 are handles

Serialized values

Person

3

1934

8-byte version number

int year

5 Smith

java.lang.String
name:

6 London

h0

java.lang.String
place:

h1

Explanation

class name, version number

number, type and name of
instance variables

values of instance variables

11

CS 475 21

MIME

Internet email standard (RFC 822)
specifies ASCII message format
Multipurpose Internet Mail Extensions

continue to use the RFC 822 format but allow
non-ASCII messages
New message headers
binary messages encoded using base64

encoding or quoted-printable encoding

	Application Level Protocol Design
	Application Layer Protocol Design
	Trivial FTP (TFTP)
	Services & PDU design
	PDU structure and encoding
	TFTP Protcol
	Sorcerer’s apprentice syndrome
	Correction
	Implementation Issues
	Implementation cont’d
	HTTP 1.0
	HTTP 1.0 cont’d
	HTTP 1.1
	Application-level Protocols
	Presentation Layer
	CORBA CDR for constructed types
	CORBA CDR message
	Indication of Java serialized form
	MIME

