Network Programming using
sockets

Distributed Software Systems
Prof. Sanjeev Setia

APIs for TCP/IP

TCP/IP is a protocol designed to operate in multi-
vendor environment

interface between TCP/IP and applications loosely
specified

application interfaces

— BSD UNIX: socket interface
— AT&T: TLI interface

TCP/IP software inside kernel invoked by system
calls

UNIX /0O facilities extended with TCP/IP specific
calls

The Socket Interface

provides functions that support network
communication using many possible protocols

— PF_INET is one protocol family supported by
sockets
— TCP and UDP are protocols in PF_INET family

socket is the abstraction for network communication
a socket is identified by socket descriptor

system data structure for socket

— family (e.g., PF_INET)

— service (e.g., SOCK_STREAM)
— Local IP address, Local Port

— Remote |IP address, Remote Port

passive socket: socket used by a server to wait for
incoming connections ; active socket: socket used
by client to initiate a connection

10

Endpoint Addresses

TCP/IP protocols define a communication endpoint
to consist of an IP address and a protocol port
number

other protocol families have other definitions

socket abstractions supports the concept of address
family which allows different protocols to have their
own address representations

TCP/IP protocols use a single address

representation with address family denoted by
AF_INET

11

¢l

9ZIS SWES 3y} dABY SISS24PpE ||e 1ou
90UIS |nJjo4ed 3q isnw Jowwes3oid ‘sjod0304d Jo ainixiw Juisn wessoud jI e

{
(0I9Zz 07 238S) pesnun x/ {[g]oxozTUTS IBYD
ssoxppe dI x/ ‘Ippe UIS JIppe UT 23O5NI3S
zequnu 3xod Tooo30xd x/ ‘qxod uTrs aIxoys™m
ssexppe jo odLa x/ ‘ATTURITUTS qI0US™ M
ya3usT Te303 x/ ‘U9 T UTS JIeYO N

sseIppe uUe PTOY 03 3ONIAS x/ } UT”IpPpexd0s 3O0MI3S

sassaJppe | IN|"4V 40} 24n3onJ3s e

p,3u0d sassalppy juiodpu]

System Calls

e socket

— used to create new socket

— arguments: protocol family (e.g. PF_INET),
protocol or service (i.e., stream or datagram)

— returns socket descriptor

® connect:

— client calls connect to establish an active
connection to the server
— argument to connect specifies remote endpoint

® write

— servers and clients use write to send data across
a TCP connection

— arguments: socket descriptor, address of data,
length of data

13

System Calls cont’d

read

— used to receive data from a TCP connection

— arguments: socket, buffer, length of buffer

— read blocks if no data: if more data than fits in
buffer, it only extracts enough to fill the buffer;
if less than buffer length, it extracts all the data
and returns number of bytes read

read and write can also be used with UDP but
different behavior

close: used to deallocate socket; deleted when last
process that is using socket does a close

bind

— used to specify a local endpoint address for a
socket
— uses sockaddr_in structure

14

System Calls cont’d

e listen

— used by connection-oriented servers to put socket
in passive mode
— arguments: socket, size of queue for socket

connection requests

® accept

— creates a new socket for each connection request
— returns descriptor of new socket to its calller

e UDP calls:

— send, sendto, sendmsg
— recv, recvfrom, recvmsg

15

Integer Conversion

standard representation for binary integers used in
TCP/IP protocol headers: network byte order, MSB
first

e.g. the protocol port field in struct sockaddr_in
uses network byte order

host's integer representation maybe different

conversion routines: htons, htonl, ntohl, ntohs
should be used for portability

16

Client Software

conceptually simpler than servers because

do not have to handle concurrent interactions with
multiple servers

usually not privileged software = don’t have to be
as careful

no authentication, protection, etc.

17

Locating the server

server’'s |IP address and port number needed

can be specified as a constant in the program

have the user specify it as an argument when
invoking client

read from a file on disk

use a protocol to find the server (e.g. a broadcast
message to which servers respond)

18

Parsing address argument

e address argument typically is a hostname like

cs.gmu.edu or IP address in dotted decimal notation
like 129.174.29.34

e need to specify address using structure sockaddr_in

e library routines inet_addr and gethostbyname used
for conversions

struct hostent {

char *xhname;
char *xh_aliases;
int h_addrtype;
int h_length;
char *xh_addr_list;

s

#define h_addr h_addr_list[0];

19

EXAMPLE:
struct hostent *hptr;
char *name = ‘‘cs.gmu.edu’’;

if (hptr = gethostbyname(name)) {
/* IP address is in hptr->h_addr */
} else {
/* handle error */

¥

e inet_addr converts dotted decimal IP address into
binary

20

Client Software cont’d

e |looking up a well known port by name

e struct servent defined in netdb.h in the same way as struct
hostent

struct servent *sptr;

if (sptr = getservbyname(‘‘smtp’’,‘‘tcp’’)){
/* port number is now in sptr->s_port */
} else {

/* handle error */

e NOTE: getservbyname returns protocol port in
network byte order

21

Client Software cont’d

e |looking up a protocol by name
e struct protoent defined in netdb.h

struct protoent *pptr;

if (pptr = getprotobyname(‘‘udp’’)){

/* official protocol number is in pptr->p_proto */
} else {

/* handle error */

+

22

TCP client algorithm

. Find IP address and protocol number of server
. allocate a socket

. specify that the connection needs an arbitrary,
unused protocol port on local machine and allow
TCP to select one

. Connect the socket to the server

. Communicate with the server using application-level
protocol

. Close the connection

23

TCP client cont’d

e Allocating a socket

#include <sys/types.h>
#include <sys/socket.h>

int s; /* socket descripto */

s = socket (PF_INET,SOCK_STREAM, 0);

e Choosing a local port number

— conflicts have to be avoided
— happens as a side-effect to connect call

e choosing a local IP address

— a problem for hosts connected to multiple
networks

— chosen automatically by TCP/IP at time of
connection

24

Connecting a TCP socket to a server

retcode = connect(s,remaddr,remaddrlen)

e connect performs four tasks

1.

tests specified socket is valid and not already
connected

. fills in remote address in socket from second

argument

chooses a local endpoint address for socket (if it
does not have one)

initiates a connection and returns value to the
caller

25

Communicating with the server using
TCP: Example

#define BLEN 120

char *req = ‘‘request of some sort’’;
char buf [BLEN] ;

char *bptr;

int n;

int buflen;

bptr = buf;
buflen = BLEN;

/* send request */
write(s,req,strlen(req);
/* read response (may come in several pieces) */

while ((n = read(s,bptr,buflen) > 0) {
bptr += n;

buflen -= n;

26

Closing a TCP connection

e partial close needed because client may not know
when all the data from the server has arrived and
server may not know if client will send another
request

e shutdown call
errcode = shutdown(s,direction);

e direction = 0: no further input, 1: no further
output, 2: shutdown in both directions

27

Programming a UDP client

. Find IP address and protocol number of server
. Allocate a socket

. Specify that the connection needs an arbitrary,
unused protocol port on local machine and allow
UDP to select one

. Specify the server to which messages must be sent

. Communicate with the server using application-level
protocol

. Close the socket

28

Connected and Unconnected UDP
sockets

with UDP, connected sockets do not mean a
“connection” was established

connected sockets = server specified once
unconnected sockets = server specified each time
read and write: message transfer NOT streams

close does not inform remote endpoint of any actions

UDP is unreliable

29

Examples

e TCP and UDP clients for services

— DAY TIME
- TIME
— ECHO

e connectTCP and connectUDP procedures invoke
connectsock

30

Issues in Server Design

e Concurrent vs iterative servers: handle multiple
requests concurrently or one after the other?

e Connection-oriented vs connection-less servers:
TCP or UDP?

e Stateful vs stateless servers

Iterative, connection-oriented server

e Algorithm

1.

Create a socket and bind to the well-known
address for the service being offered

Place the socket in passive mode

Accept the next connection request from the
socket, and obtain a new socket for the
connection

Repeatedly read a request from the client,
formulate a response, and send a reply back to
the client according to the application protocol

. When finished with a particular client, close the

connection and return to step 3 to accept a new
connection

e servers should specify INADDR_ANY as internet
address while binding

e needed for hosts with multiple IP addresses

Iterative, connection-less servers

e Algorithm

1. Create a socket and bind to the well-known
address for the service being offered

2. Repeatedly read the next request from a client,
formulate a response, and send a reply back to
the client according to the application protocol

e cannot use connect (unlike clients)

e use sendto and recvfrom

Concurrent, Connection-less servers

Algorithm

Master 1. Create a socket and bind to the well-
known address for the service being offered.
Leave the socket unconnected.

Master 2. Repeatedly call recvfrom to receive the
next request from a client, and create a new slave
thread /process to handle the response

Slave 1. Receive a specific request upon creation
as well as access to the socket

Slave 2. Form a reply according to the application
protocol and send it back to the client using
sendto

Slave 3. Exit

cost of process/thread creation for each client
request

while using threads, use thread-safe functions and
be careful while passing arguments to threads

Concurrent, Connection-oriented servers

e Algorithm

Master 1. Create a socket and bind to the well-
known address for the service being offered.
Leave the socket unconnected.

Master 2. Place the socket in passive mode.

Master 3. Repeatedly call accept to receive the
next request from a client, and create a new
slave process/thread to handle the response

Slave 1. Receive a connection request (i.e., socket
for connection) upon creation

Slave 2. Interact with the client using the
connection: read request(s) and send back
response(s)

Slave 3. Close the connection and exit

e processes created using fork; can also use execve

Apparent concurrency using a single
process

multiple processes = need to use shared memory
IPC facilities if data structures shared among
processes

creating processes can be expensive
threads make this easier

can also achieve the same goal using a single process
and asynchronous |/O using select

Apparent concurrency using a single
process

e Algorithm

1. Create a socket and bind to the well-known port
for the service. Add the socket to the list of those
on which 1/O is possible

2. Use select to wait for 1/O on existing sockets

3. If original socket is ready, use accept to obtain
the next connection, and add the new socket to
the list of those on which /O is possible

4. If some socket other than the original is ready, use
read to obtain the next request, form a response,
and use write to send the response back to the
client

5. Continue processing with step 2.

The Problem of Server Deadlock

e iterative server: suppose client creates a connection
but does not send any requests

e suppose client does not consume responses

e connection-oriented servers will block on write if
local buffer full = deadlock in single process servers

Multi-protocol Server Design

multiprotocol server handles service requests over
both UDP and TCP

Motivation: allows the use of shared code for service
asynchronous |/O needed (select system call)

design can be iterative or concurrent (multi-process
or single-process)

Multi-service Server Design

single server for multiple services

Motivation: conserve system resources and make
maintenance easier

Design: lterative, concurrent, or single process
concurrent

Connection-less or Connection-oriented

Multi-service, Multi-protocol “super servers’, e.g.
UNIX inetd

Static or dynamic server configuration

10

UNIX inetd super server

e configuration file /etc/inetd.conf

e entries: service name (from /etc/services),
socket type, protocol, wait status, userid, server
program, arguments

11

Java sockets API

e TCP socket classes
— Socket
— ServerSocket
— InetAddress

 UDP classes
— DatagramPacket
— DatagramsSocket

Java Examples

A TCP Client for the Echo service
import java.io.*;
import java.net.*;

public class EchoClient {
public static void main(String[] args) throws IOException {

Socket echoSocket = null;
PrintWriter out = null;
BufferedReader in = null;

try {
echoSocket = new Socket("taranis", 7);

out = new PrintWriter(echoSocket.getOutputStream(), true);
in = new BufferedReader(new InputStreamReader(
echoSocket.getinputStream()));

} catch (UnknownHostException e) {
System.err.printin("Don't know about host: taranis.");
System.exit(1);

} catch (IOException e) {

System.err.printin("Couldn't get I/0 for "
+ 'the connection to: taranis.");
System.exit(1);
}

BufferedReader stdin = new BufferedReader(
new InputStreamReader(System.in));

String userinput;

while ((userinput = stdin.readLine()) != null) {
out.printin(userinput);
System.out.printin("echo: " + in.readLine());

}

out.close();

in.close();

stdin.close();

echoSocket.close();

A TCP Client for the Daytime service

import java.net.”*;
import java.io.*;

public class DayClient1 {
public static final int DAYTIME_PORT = 13;
String host;
Socket s;

public static void main(String args[]) throws
|OException {
DayClientl that = new DayClient1(args[O]);
that.go();

}

public DayClient1(String host) {
this.host = host;

}

public void go() throws IOException {
s = new Socket(host, DAYTIME_PORT);
BufferedReader i = new BufferedReader(
new InputStreamReader(s.getinputStream()));
System.out.printin(i.readLine());
I.close();
s.close();

A TCP Server for the Daytime service

import java.io.*;
import java.net.”*;
import java.util.*;

public class DayServerl {
private ServerSocket ss;
public static final int DAYTIME_PORT = 13;

public static void main(String args[]) throws
|OException {
DayServerl d = new DayServerl();
} d.go();

public void go() throws IOException {
Socket s = null;
ss = new ServerSocket(DAYTIME_PORT, 5);
for (;;) {
s = ss.accept();
BufferedWriter out = new BufferedWriter(
new OutputStreamWriter(s.getOutputStream(),"8859 1");
out.write("Java Daytime server: " +
(new Date()).toString() + "\n");
out.close();
s.close();

}
}
}

A Multithreaded TCP server

public class MultiServe implements Runnable {
private ServerSocket ss;

public static void main(String args[]) throws Exception {
MultiServe m = new MultiServe ();
m.go();

}

public void go() throws Exception {
ss = new ServerSocket(DayClient2.DAYTIME_PORT, 5);
Thread t1 = new Thread(this, "1");
Thread t2 = new Thread(this, "2");
Thread t3 = new Thread(this, "3");
tl.start(); t2.start(); t3.start();

}

public void run() {
Socket s = null;
BufferedWriter out = null;
String myname = Thread.currentThread().getName();

for (;;) {

try {
System.out.printin("thread " + myname + " about to accept..");
s = ss.accept();
System.out.printin("thread " + myname +

"accepted a connection");
out = new BufferedWriter(
new OutputStreamWriter(s.getOutputStream()));

out.write(myname + " " + new Date());
Thread.sleep(10000);
out.write("\n");
out.close();

}

catch (Exception e) {
e.printStackTrace();

}
}

Another Multi-threaded Server Example

import java.net.*;
import java.io.*;

public class KKMultiServer {
public static void main(String[] args) throws IOException {
ServerSocket serverSocket = null,
boolean listening = true;

try {
serverSocket = new ServerSocket(4444);

} catch (IOException e) {
System.err.println("Could not listen on port: 4444."),
System.exit(-1);

}

while (listening)
new KKMultiServerThread(serverSocket.accept()).start();

serverSocket.close();

import java.net.*;
import java.io.*;

public class KKMultiServerThread extends Thread {
private Socket socket = null;

public KKMultiServerThread(Socket socket) {
super("KKMultiServerThread");
this.socket = socket;

}

public void run() {

try {
PrintWriter out = new PrintWriter (socket.getOutputStream(), true);

BufferedReader in = new BufferedReader(
new InputStreamReader(
socket.getinputStream()));

String inputLine, outputLine;

KnockKnockProtocol kkp = new KnockKnockProtocol ();
outputLine = kkp.processinput(null);
out.printin(outputLine);

while ((inputLine = in.readLine()) != null) {
outputLine = kkp.processinput(inputLine);
out.printin(outputLine);
iIf (outputLine.equals("Bye"))

break;

}

out.close();

in.close();

socket.close();

} catch (IOException e) {
e.printStackTrace();

}
}
}

A UDP Client

import java.io.*;
import java.net.*;
import java.util.*;

public class QuoteClient {
public static void main(String[] args) throws IOException {

if (args.length 1= 1) {
System.out.printin("Usage: java QuoteClient <hostname>");
return;

}

// get a datagram socket
DatagramSocket socket = new DatagramSocket();

// send request
byte[] buf = new byte[256];
InetAddress address = InetAddress.getByName (args[O]);
DatagramPacket packet =

new DatagramPacket(buf, buf.length, address, 4445
socket.send(packet);

// get response
packet = new DatagramPacket(buf, buf.length);
socket.receive(packet);

// display response
String received = new String(packet.getData(), 0);
System.out.printin("Quote of the Moment: " + received);

socket.close();

A UDP Quote Server

import java.io.*;
public class QuoteServer {

public static void main(String[] args) throws IOException {
new QuoteServerThread().start();
}

}

import java.io.*;
import java.net.*;
import java.util.*;

public class QuoteServerThread extends Thread {

protected DatagramSocket socket = null;
protected BufferedReader in = null;
protected boolean moreQuotes = true;

public QuoteServerThread() throws IOException {
this("QuoteServerThread");

}

public QuoteServerThread(String name) throws I0OException {
super(name);
socket = new DatagramSocket(4445);

try {
in = new BufferedReader(new FileReader("one-liners.txt"));

} catch (FileNotFoundException e) {
System.err.printin("Could not open quote file. Serving time
instead.");

}
}

public void run() {

while (moreQuotes) {

try {
byte[] buf = new byte[256];

// receive request
DatagramPacket packet = new DatagramPacket(buf, buf.length);
socket.receive(packet);

// figure out response
String dString = null;
if (in == null)
dString = new Date(). toString();
else
dString = getNextQuote();
buf = dString.getBytes();

// send the response to the client at "address" and "port"
InetAddress address = packet.getAddress|();
int port = packet.getPort();
packet = new DatagramPacket(buf, buf.length, address, port);
socket.send(packet);
} catch (IOException e) {
e.printStackTrace();
moreQuotes = false;

}
}

socket.close();

}

protected String getNextQuote() {
String returnValue = null;
try {
if ((returnValue = in.readLine()) == null) {
in.close();
moreQuotes = false;
returnValue = "No more quotes. Goodbye.";
}
} catch (IOException e) {
returnValue = "IOException occurred in server.";

}

return returnValue;

}

