
1

RMI 1

RPC & RMI

Concurrent & Distributed Software

RMI 2

Motivation

rSockets API ≡ send & recv calls ≡ I/O
r Remote Procedure Calls (RPC)
m Goal: to provide a procedural interface for

distributed (i.e., remote) services
m To make distributed nature of service

transparent to the programmer
• No longer considered a good thing

r Remote Method Invocation (RMI)
m RPC + Object Orientation
m Allows objects living in one process to invoke

methods of an object living in another process

2

RMI 3

Middleware layers

Applications, services

Middleware
layers

request-reply protocol

marshalling and external data representation

UDP and TCP

RMI and RPC

RMI 4

Request-reply communication

Request

ServerClient

doOperation

(wait)

(continuation)

Reply
message

getRequest

execute
method

message
select object

sendReply

3

RMI 5

Conventional Procedure Call
a) Parameter passing in a local procedure call: the stack

before the call to read(fd,buf,bytes)
b) The stack while the called procedure is active

RMI 6

Remote Procedure Call
r Principle of RPC between a client and server program.

4

RMI 7

Remote Procedure Calls
r Remote procedure call (RPC) abstracts

procedure calls between processes on
networked systems.

rStubs – client-side proxy for the actual
procedure on the server.

rThe client-side stub locates the server and
marshalls the parameters.

rThe server-side stub receives this
message, unpacks the marshalled
parameters, and peforms the procedure on
the server.

RMI 8

Steps of a Remote Procedure Call
1. Client procedure calls client stub in normal way
2. Client stub builds message, calls local OS
3. Client's OS sends message to remote OS
4. Remote OS gives message to server stub
5. Server stub unpacks parameters, calls server
6. Server does work, returns result to the stub
7. Server stub packs it in message, calls local OS
8. Server's OS sends message to client's OS
9. Client's OS gives message to client stub
10. Stub unpacks result, returns to client

5

RMI 9

Passing Value Parameters (1)

2-8

RMI 10

Passing Value Parameters (2)

a) Original message on the Pentium
b) The message after receipt on the SPARC
c) The message after being inverted. The little numbers in boxes

indicate the address of each byte

6

RMI 11

Parameter Specification and Stub Generation

a) A procedure
b) The corresponding message.

RMI 12

Request-reply communication

Request

ServerClient

doOperation

(wait)

(continuation)

Reply
message

getRequest

Execute procedure

message
select procedure

sendReply

7

RMI 13

Writing a Client and a Server
The steps in writing a client and a server in DCE RPC

(SUN RPC is similar)

RMI 14

Files interface in Sun XDR
const MAX = 1000;
typedef int FileIdentifier;
typedef int FilePointer;
typedef int Length;
struct Data {

int length;
char buffer[MAX];

};
struct writeargs {

FileIdentifier f;
FilePointer position;
Data data;

};

struct readargs {
FileIdentifier f;
FilePointer position;
Length length;

};

program FILEREADWRITE {
version VERSION {

void WRITE(writeargs)=1; 1
Data READ(readargs)=2; 2

}=2;
} = 9999;

8

RMI 15

Binding a Client to a Server

r Client-to-server binding in DCE.

2-15

RMI 16

RMI

r RMI = RPC + Object-orientation
m Java RMI
m CORBA

• Middleware that is language-independent
mMicrosoft DCOM/COM+
m SOAP

• RMI on top of HTTP

9

RMI 17

Interfaces in distributed systems
r Programs organized as a set of modules that

communicate with one another via procedure
calls/method invocations

r Explicit interfaces defined for each module in
order to control interactions between modules

r In distributed systems, modules can be in
different processes

r A remote interface specifies the methods of an
object that are available for invocation by objects
in other processes defining the types of the input
and output arguments of each of them

RMI 18

CORBA IDL example

// In file Person.idl
struct Person {

string name;
string place;
long year;

} ;
interface PersonList {

readonly attribute string listname;
void addPerson(in Person p) ;
void getPerson(in string name, out Person p);
long number();

};

10

RMI 19

Object model
rObject references
mObjects accessed via object references
mObject references can be assigned to variables,

passed as arguments and returned as results
r Interfaces
m Provides a signature of a set of methods (types

of arguments, return values and exceptions)
without specifying their implementations

rActions (invocations)
r Exceptions
rGarbage Collection

RMI 20

Distributed Objects
r Remote object references

m An identifier that can be used throughout a distributed
system to refer to a particular remote object

r Remote interfaces
m CORBA provides an interface definition language (IDL)

for specifying a remote interface
m JAVA RMI: Java interface that extends Remote

interface
r Actions: remote invocations
r Remote Exceptions may arise for reasons such as

partial failure or message loss
r Distributed Garbage Collection: cooperation

between local garbage collectors needed

11

RMI 21

Remote and local method invocations

invocation invocation
remote

invocation
remote

local
local

local
invocation

invocation
A B

C

D

E

F

RMI 22

A remote object and its remote
interface

interface
remote

m1
m2
m3

m4
m5
m6

Data

implementation

remoteobject

{ of methods

12

RMI 23

RMI Programming
r RMI software

m Generated by IDL compiler
m Proxy

• Behaves like remote object to clients (invoker)
• Marshals arguments, forwards message to remote object,

unmarshals results, returns results to client
m Skeleton

• Server side stub;
• Unmarshals arguments, invokes method, marshals results

and sends to sending proxy’s method
m Dispatcher

• Receives the request message from communication module,
passes on the message to the appropriate method in the
skeleton

r Server and Client programs

RMI 24

The role of proxy and skeleton in
remote method invocation

object A object Bskeleton
Request

proxy for B

Reply

CommunicationRemote Remote referenceCommunication
modulemodulereference module module

for B’s class
& dispatcher

remote
client server

13

RMI 25

RMI Programming
r Binder

m Client programs need a means of obtaining a remote
object reference

m Binder is a service that maintains a mapping from textual
names to remote object references

m Servers need to register the services they are exporting
with the binder

m Java RMIregistry, CORBA Naming service
r Server threads

m Several choices: thread per object, thread per invocation
m Remote method invocations must allow for concurrent

execution

RMI 26

RMI systems

r CORBA – language independent
rDCOM - Microsoft
rJava RMI
rSOAP (Simple Object Access Protocol)
mHTTP is request-reply protocol
m XML for data representation

14

RMI 27

Java RMI
r Features
m Integrated with Java language + libraries

• Security, write once run anywhere, multithreaded
• Object orientation

m Can pass “behavior”
• Mobile code
• Not possible in CORBA, traditional RPC systems

m Distributed Garbage Collection
m Remoteness of objects intentionally not

transparent

RMI 28

Remote Interfaces, Objects, and
Methods
rObjects become remote by implementing a

remote interface
m A remote interface extends the interface

java.rmi.Remote
m Each method of the interface declares

java.rmi.RemoteException in its throws clause
in addition to any application-specific clauses

15

RMI 29

Creating distributed applications using RMI
1. Define the remote interfaces
2. Implement the remote objects
3. Implement the client (can be done anytime after

remote interfaces have been defined)
4. Register the remote object in the name server

registry
5. Generate the stub and client using rmic
6. Start the registry
7. Start the server
8. Run the client

RMI 30

Java Remote interfaces Shape and
ShapeList

import java.rmi.*;
import java.util.Vector;
public interface Shape extends Remote {

int getVersion() throws RemoteException;
GraphicalObject getAllState() throws RemoteException; 1

}
public interface ShapeList extends Remote {

Shape newShape(GraphicalObject g) throws RemoteException; 2
Vector allShapes() throws RemoteException;
int getVersion() throws RemoteException;

}

16

RMI 31

The Naming class of Java RMIregistry

void rebind (String name, Remote obj)
This method is used by a server to register the identifier of a remote
object by name, as shown in Figure 15.13, line 3.

void bind (String name, Remote obj)
This method can alternatively be used by a server to register a remote
object by name, but if the name is already bound to a remote object
reference an exception is thrown.

void unbind (String name, Remote obj)
This method removes a binding.

Remote lookup(String name)
This method is used by clients to look up a remote object by name, as
shown in Figure 15.15 line 1. A remote object reference is returned.

String [] list()
This method returns an array of Strings containing the names bound in
the registry.

RMI 32

Java class ShapeListServer with main
method

import java.rmi.*;
public class ShapeListServer{

public static void main(String args[]){
System.setSecurityManager(new RMISecurityManager());
try{

ShapeList aShapeList = new ShapeListServant(); 1
Naming.rebind("Shape List", aShapeList); 2

System.out.println("ShapeList server ready");
}catch(Exception e) {
System.out.println("ShapeList server main " + e.getMessage());}

}
}

17

RMI 33

Java class ShapeListServant
implements interface ShapeList

import java.rmi.*;
import java.rmi.server.UnicastRemoteObject;
import java.util.Vector;
public class ShapeListServant extends UnicastRemoteObject implements ShapeList {

private Vector theList; // contains the list of Shapes 1
private int version;
public ShapeListServant()throws RemoteException{...}
public Shape newShape(GraphicalObject g) throws RemoteException { 2

version++;
Shape s = new ShapeServant(g, version); 3
theList.addElement(s);
return s;

}
public Vector allShapes()throws RemoteException{...}
public int getVersion() throws RemoteException { ... }

}

RMI 34

Java client of ShapeList

import java.rmi.*;
import java.rmi.server.*;
import java.util.Vector;
public class ShapeListClient{

public static void main(String args[]){
System.setSecurityManager(new RMISecurityManager());
ShapeList aShapeList = null;
try{

aShapeList = (ShapeList) Naming.lookup("//bruno.ShapeList") ; 1
Vector sList = aShapeList.allShapes(); 2

} catch(RemoteException e) {System.out.println(e.getMessage());
}catch(Exception e) {System.out.println("Client: " + e.getMessage());}

}
}

18

RMI 35

Classes supporting Java RMI

RemoteServer

UnicastRemoteObject

<servant class>

Activatable

RemoteObject

RMI 36

Advanced Techniques

r Passing behavior
m See Java RMI tutorial track example

r Callbacks
rActivation

19

RMI 37

CORBA

RMI 38

The main components of the CORBA
architecture

client server

proxy

or dynamic invocation

implementation
repository object

adapter

ORBORB

skeleton

or dynamic skeleton

client
program

interface
repository

Request

Reply
corecorefor A

Servant
A

20

RMI 39

IDL interfaces Shape and ShapeList

struct Rectangle{ 1
long width;
long height;
long x;
long y;

} ;

struct GraphicalObject{ 2
string type;
Rectangle enclosing;
boolean isFilled;

};

interface Shape { 3
long getVersion() ;
GraphicalObject getAllState() ; // returns state of the GraphicalObject

};

typedef sequence <Shape, 100> All; 4
interface ShapeList { 5

exception FullException{ }; 6
Shape newShape(in GraphicalObject g) raises (FullException); 7
All allShapes(); // returns sequence of remote object references 8
long getVersion() ;

};

RMI 40

Java interface ShapeList generated by
idltojava from CORBA interface ShapeList

public interface ShapeList extends org.omg.CORBA.Object {
Shape newShape(GraphicalObject g) throws ShapeListPackage.FullException;
Shape[] allShapes();
int getVersion();

}

21

RMI 41

ShapeListServant class of the Java server program
for CORBA interface ShapeList

import org.omg.CORBA.*;
class ShapeListServantextends _ShapeListImplBase {

ORB theOrb;
private Shape theList[];
private int version;
private static intn=0;
public ShapeListServant(ORB orb){

theOrb = orb;
// initialize the other instance variables

}
public Shape newShape(GraphicalObject g) throws ShapeListPackage.FullException { 1

version++;
Shape s = new ShapeServant(g, version);
if(n >=100) throw new ShapeListPackage.FullException();
theList[n++] = s; 2

theOrb .connect(s);
return s;

}
public Shape[] allShapes(){ ... }
public int getVersion() { ... }

}

RMI 42

Java class ShapeListServer

import org.omg.CosNaming.*;
import org.omg.CosNaming.NamingContextPackage.*;
import org.omg.CORBA.*;
public class ShapeListServer {

public static void main(String args[]) {
try{

ORB orb = ORB.init(args, null); 1
ShapeListServant shapeRef = new ShapeListServant(orb); 2
orb.connect(shapeRef); 3
org.omg.CORBA.Object objRef =

orb.resolve_initial_references("NameService"); 4
NamingContext ncRef = NamingContextHelper.narrow(objRef);
NameComponent nc = new NameComponent("ShapeList", ""); 5
NameComponent path[] = {nc}; 6
ncRef.rebind(path, shapeRef); 7
java.lang.Object sync = new java.lang.Object();
synchronized (sync) { sync.wait();}

} catch (Exception e) { ... }
}

}

22

RMI 43

Java client program for CORBA interfaces
Shape and ShapeList
import org.omg.CosNaming.*;
import org.omg.CosNaming.NamingContextPackage.*;
import org.omg.CORBA.*;
public class ShapeListClient{

public static void main(String args[]) {
try{

ORB orb = ORB.init(args, null); 1
org.omg.CORBA.Object objRef =

orb.resolve_initial_references("NameService");
NamingContext ncRef = NamingContextHelper.narrow(objRef);
NameComponent nc = new NameComponent("ShapeList", "");
NameComponent path [] = { nc };
ShapeList shapeListRef =

ShapeListHelper.narrow(ncRef.resolve(path)); 2
Shape[] sList = shapeListRef.allShapes(); 3
GraphicalObject g = sList[0].getAllState(); 4

} catch(org.omg.CORBA.SystemException e) {...}
}

RMI 44

IDL module Whiteboard

module Whiteboard {
struct Rectangle{
...} ;
struct GraphicalObject {
...};
interface Shape {
...};
typedef sequence <Shape, 100> All;
interface ShapeList {
...};

};

23

RMI 45

IDL constructed types

Type Examples Use

sequence typedef sequence <Shape, 100> All;
typedef sequence <Shape> All
bounded and unbounded sequences
of Shapes

Defines a type for a variable-length
sequence of elements of a specified
IDL type. An upper bound on the
length may be specified.

string String name;
typedef string<8> SmallString;
unbounded and bounded
sequences of characters

Defines a sequences of characters,
terminated by the null character. An
upper bound on the length may be
specified.

array typedef octet uniqueId[12];
typedef GraphicalObject GO[10][8]

Defines a type for a multi-dimensional
fixed-length sequence of elements of a
specified IDL type.

RMI 46

IDL constructed types cont’d

Type Examples Use

record struct GraphicalObject {
string type;
Rectangle enclosing;
boolean isFilled;

};

Defines a type for a record containing a
group of related entities. Structs are
passed by value in arguments and
results.

enumerated enum Rand
(Exp, Number, Name);

The enumerated type in IDL maps a
type name onto a small set of integer
values.

union union Exp switch (Rand) {
case Exp: string vote;
case Number: long n;
case Name: string s;

The IDL discriminated union allows
one of a given set of types to be passed
as an argument. The header is
parameterized by an enum, which
specifies which member is in use.};

24

RMI 47

CORBA interoperable object references

IOR format

IDL interface type nameProtocol and address details Object key

interface repository
identifier

IIOP host domain
name

port number adapter name object name

RMI 48

Naming graph in CORBA Naming Service

initial naming context

ShapeList

C
D E

B

initial naming context

P

R S T

V

Q U

initial naming context

XX

25

RMI 49

Part of the CORBA Naming Service NamingContext
interface in IDL
struct NameComponent { string id; string kind; };

typedef sequence <NameComponent> Name;

interface NamingContext {
void bind (in Name n, in Object obj);

binds the given name and remote object reference in my context.
void unbind (in Name n);

removes an existing binding with the given name.
void bind_new_context(in Name n);

creates a new naming context and binds it to a given name in my context.
Object resolve (in Name n);

looks up the name in my context and returns its remote object reference.
void list (in unsigned long how_many, out BindingList bl, out BindingIterator bi);

returns the names in the bindings in my context.
};

RMI 50

Readings

r Coulouris – Chapters 5, 6, 17
rWWW (see links on class web page)
m Java RMI tutorial on web
m “A Young Persons Guide to SOAP”
m CORBA web documents at OMG web site

