RMI: Design & Implementation

Concurrent & Distributed Software

RMI
Middleware layers
Applications, services
RMI and RPC
request-reply protocol Middleware
layers

marshalling and external data representation

UDP and TCP

RMI




Design Issues for RMI

0 RMI Invocation Semantics

o Invocation semantics depend upon implementation of
used by R Ml

O]
O Transparency

O Should remote invocations be transparent to the
programmer?

O Current consensus: remote invocations should be made
transparent in the sense that syntax of a remote
invocation is the same as the syntax of local invocation
(access transparency) but

, €.0. in Java RMI, remote objects
implement the Remote interface

RMI

Request-reply communication

Client Server

doOperation Reguesi—
. message getRequest
select object
execute
=EpYy method
message sendReply

RMI




Operations of the request-reply

protocol

public byte[] doOperation (RemoteObjectRef o, int methodld, byte[] arguments)
sends a request message to the remote object and returns the reply.
The arguments specify the remote object, the method to be invoked and the

arguments of that method.
public byte[] getRequest ();

acquires a client request viathe server port.
public void sendReply (byte[] reply, InetAddress clientHost, int clientPort);
sends the reply message reply to the client at its Internet address and port.

RMI 5

Request-reply message structure

messagelvpe

requestid

nhj ectReference.

methodld

arguments

int (O=Request, 1= Reply)
int

RemoteObjectRef

int or Method

array of bytes

RMI 6




Request-Reply protocol

O Issues in marshaling of parameters and
results
o Input, output, Inout parameters
o Data representation
O Passing pointers? (e.g., call by reference in C)
O Distributed object references

0 Handling failures in request-reply protocol

o Partial failure
e Client, Server, Network

RMI

Marshalling

0 Pack method arguments and results into a
flat array of bytes

0 Use a canonical representation of data
types, e.g. integers, characters, doubles
0 Examples
O SUN XDR
o CORBA CDR
0 Java serialization

RMI




CORBA CDR for constructed types

Type Representation

sequence length (unsignedlong) fdlowed by elementsin order

sring length (unsignedlong) fdlowed by charad@sin order (can aso
can havewide chaatt&'s)

array arrayelements in order (no length specified becauseit isfixed)

struct intheorder d declaration of thecamponents

enumerated unsgned long (thevdues are Pedified by theorder dedared)

union typetay followed by the selectel member

RMI 9
indexin notes
socueRca-al-uias Abtos > on representation
a2 5 length of string
4 7 NC it ‘S,nlthx
Q ALY
12=10 A length of string
EW-SETe) “lond" ‘London’
[Averae] "f\l’\_
242 1934 unsigned long
The flattened form represents a  Person struct with value: {"Smith’, ‘London’, 1934}
RMI 10




Indication of Java serialized form

Serialized values Explanation
Person 8-byte version number hO class name, version number
3 int year javalang.String| javalang.String number, type and name of
name: place: instance variables
1934 5 Smith 6 London hl values of instance variables

The true serialized form contains additional type markers; hO and h1 are handles

RMI 11

Representation of a remote object
reference

32Dbits 32Dbits 32Dbits 32bits

Internet addresg port number | time object number Lrﬂgfh?;f

RMI 12




CORBA interoperable object
references

IOR format
IDL interface type namgProtocol and address details Object key.
interface repository [1OPJhost domain  port number| adapter name | object name
identifier name

RMI 13

RPC exchange protocols

Name Messages sent by
Client Server Client
R Request
RR Request Reply
RRA Request Reply Acknowledee reply

RMI 14




Handling failures

O Types of failure
O Client unable to locate server
O Request message lost
O Reply message lost
O Server crashes after receiving a request
O Client crashes after sending a request

RMI

15

Handling failures

0 Client cannot locate server

O Reasons
e Server has crashed
* Server has moved

e (RPC systems) client compiled using old version of
service interface

O System must report error (remote exception)
to client
e Loss of transparency

RMI

16




Handling failures

7 Lost request message

O Retransmit a fixed number of times before
throwing an exception

O Lost reply message
O Client resubmits request

O Server choices

* Re-execute procedure = service should be
idempotent so that it can be repeated safely

 Filter duplicates = server should hold on to results
until acknowledged

RMI 17
Invocation semantics
Fault tolerance measures Isg\r/r?acr%tii é)sn

Retransmit request Duplicate Re-execute procedure
L iord .

No Not applicable Not applicable Maybe
Yes No Re-execute procedure At-least-once
Yes Yes Retransmit reply At-most-once

RMI 18




Handling failures

0 Server crashes

REQ ~ REQ ~ REQ ~
Recv Recv Recv
Exec Exec Crash
Reply Crash
REP NO red NO
REP

\ REP
'

Client cannot tell difference

RMI

19

Handling failures

0 Server crashes

O At least once (keep trying till server comes up
again)

O At most once (return immediately)

O Exactly once impossible to achieve

O SUN RPC

O At least once semantics on successful call and
maybe semantics if unsuccessful call

0 CORBA, Java RMI
O at most once semantics

RMI

20

10



Handling failures

O Implementing the request-reply protocol
on top of TCP
o Does it provide applications with different
invocation semantics?
+ NO!
— TCP does not help with server crashes

— If aconnection is broken, the end pts do not have any
guarantees about the delivery of messages that may have
been in transit

RMI

21

Handling failures

0 Client crashes

o If client crashes before RPC returns, we have
an “orphan” computation at server
» Wastes resources, could also start other
computations
O Orphan detection
e Reincarnation (client broadcasts new “epoch” when it
comes up again)
» Expiration (RPC has fixed amount of time T to do
work)

RMI

22

11



RMI Software Components

0 Communication module
o Implements the request-reply protocol

0 Remote reference module

O Responsible for translating between local and
remote object references and for creating
remote object references

e Maintains remote object table that maintains a
mapping between local & remote object references

e E.g. Object Adaptor in CORBA

RMI

23

The role of proxy and skeleton in
remote method invocation

client

remote
O‘Apro «for _ | i S_keleton ol
negtest S dISpatCher
- Q B’s clas
Reply
Remote Communication Communication Remote reference
reference module module module module

RMI

24

12



RMI Software Components

O Proxy
O Behaves like remote object to clients (invoker)

O Marshals arguments, forwards message to remote
object, unmarshals results, returns results to client

0 Skeleton

O Server side stub;

O Unmarshals arguments, invokes method, marshals results
and sends to sending proxy’'s method

O Dispatcher

O Receives the request message from communication
module, passes on the message to the appropriate
method in the skeleton

RMI

25

RMI1 Software Components

O Binder

O Client programs need a means of obtaining a remote
object reference

O Binder is a service that maintains a mapping from textual
names to remote object references

O Servers need to register the services they are exporting
with the binder

O Java RMIregistry, CORBA Naming service
O Client

0 Server

O Threads
« Several choices: thread per object, thread per invocation

o Remote method invocations must allow for concurrent
execution

RMI

26

13



RMI - Object Activation

0 Activation of remote objects
O Some applications require that information
survive for long periods of times

O However, objects not in use all the time, so
keeping them in running processes is a potential
waste of resources

O Object can be activated on demand

e E.g. standard TCP services such as FTP on UNIX
machines are activated by inetd

RMI 27

Object Activation
O Active and passive objects

O Active object = instantiated in a running process

O Passive object = not currently active but can be made

active
e Implementation of its methods, and marshalled state stored
on disk

A Activator responsible for
O Registering passive objects that are available for
activation
O Starting named server processes and activating remote
objects in them
O Keeping track of locations of servers for remote objects
that it has already activated
0 Examples: CORBA implementation repository,
JAVA RMI has one activator on each server
computer

RMI 28

14



RMI - Other topics

3 Persistent object stores

O An object that is guaranteed to live between
activations of processes is called a persistent
object

O Stores the state of an object in a marshalled
(serialized) form on disk

7 Location service

O Objects can migrate from one system to
another during their lifetime

O Maintains mapping between object references
and the location of an object

RMI 29

RMI - Other topics

0 Distributed Garbage Collection
O Needed for reclaiming space on servers

0 Passing “behavior”
0 Java allows objects (data + code) to be passed
by value

e If the class for an object passed by value is not
present in a JVM, its code is downloaded
automatically

O See Java RMI tutorial example
0 Use of Reflection in Java RMI

O Allows construction of generic dispatcher and
skeleton

RMI 30

15



Distributed Garbage Collection

0 Java approach based on reference counting
O Each server process maintains a list of remote processes that
hold remote object references for its remote objects
O When a client first removes a remote reference to an object, it
makes an addRef () invocation to server before creating a proxy

O When a clients local garbage collector notices that a proxy is no
longer reachable, it makes a removeRef() invocation to the
server before deleting the proxy

O When the local garbage collector on the server notices that the
list of client processes that have a remote reference to an
object is empty, it will delete the object (unless there are any
local objects that have a reference to the object)

3 Other approaches
O “Evictor” pattern

O Leases
RMI 31
Readings
3 Coulouris - Chapters 5, 6, 17
O WWW (see links on class web page)
o Java RMI tutorial on web
O “A Young Persons Guide to SOAP”
O CORBA web documents at OMG web site
RMI 32

16



