
1

RMI 1

RMI: Design & Implementation

Concurrent & Distributed Software

RMI 2

Middleware layers

Applications, services

Middleware
layers

request-reply protocol

marshalling and external data representation

UDP and TCP

RMI and RPC

2

RMI 3

Design Issues for RMI

r RMI Invocation Semantics
m Invocation semantics depend upon implementation of

Request-Reply protocol used by R MI
m Maybe, At-least-once, At-most-once

r Transparency
m Should remote invocations be transparent to the

programmer?
• Partial failure, higher latency

m Current consensus: remote invocations should be made
transparent in the sense that syntax of a remote
invocation is the same as the syntax of local invocation
(access transparency) but programmers should be able to
distinguish between remote and local objects by looking
at their interfaces, e.g. in Java RMI, remote objects
implement the Remote interface

RMI 4

Request-reply communication

Request

ServerClient

doOperation

(wait)

(continuation)

Reply
message

getRequest

execute
method

message
select object

sendReply

3

RMI 5

Operations of the request-reply
protocol

public byte[] doOperation (RemoteObjectRef o, int methodId, byte[] arguments)
sends a request message to the remote object and returns the reply.
The arguments specify the remote object, the method to be invoked and the
arguments of that method.

public byte[] getRequest ();
acquires a client request via the server port.

public void sendReply (byte[] reply, InetAddress clientHost, int clientPort);
sends the reply message reply to the client at its Internet address and port.

RMI 6

Request-reply message structure

messageType

requestId

objectReference

methodId

arguments

int (0=Request, 1= Reply)

int

RemoteObjectRef

int or Method

array of bytes

4

RMI 7

Request-Reply protocol

r Issues in marshaling of parameters and
results
m Input, output, Inout parameters
m Data representation
m Passing pointers? (e.g., call by reference in C)

rDistributed object references
rHandling failures in request-reply protocol
m Partial failure

• Client, Server, Network

RMI 8

Marshalling

r Pack method arguments and results into a
flat array of bytes

rUse a canonical representation of data
types, e.g. integers, characters, doubles

r Examples
m SUN XDR
m CORBA CDR
m Java serialization

5

RMI 9

CORBA CDR for constructed types

Type Representation

sequence length (unsigned long) followed by elements in order

string length (unsigned long) followed by characters in order (can also

can have wide characters)

array array elements in order (no length specified because it is fixed)

struct in the order of declaration of thecomponents

enumerated unsigned long (the values are specified by theorder declared)

union type tag followed by the selected member

RMI 10

CORBA CDR message

The flattened form represents a Person struct with value: {‘Smith’, ‘London’, 1934}

0–3

4–7

8–11

12–15

16–19

20-23

24–27

5

"Smit"

"h___"

6

"Lond"

"on__"

1934

index in

sequence of bytes 4 bytes

notes
on representation

length of string

‘Smith’

length of string

‘London’

unsigned long

6

RMI 11

Indication of Java serialized form

The true serialized form contains additional type markers; h0 and h1 are handles

Serialized values

Person

3

1934

8-byte version number

int year

5 Smith

java.lang.String
name:

6 London

h0

java.lang.String
place:

h1

Explanation

class name, version number

number, type and name of
instance variables

values of instance variables

RMI 12

Representation of a remote object
reference

Internet address port number time object number interface of
remote object

32 bits 32 bits 32 bits 32 bits

7

RMI 13

CORBA interoperable object
references

IOR format

IDL interface type nameProtocol and address details Object key

interface repository
identifier

IIOP host domain
name

port number adapter name object name

RMI 14

RPC exchange protocols

Name Messages sent by
Client Server Client

R Request

RR Request Reply

RRA Request Reply Acknowledge reply

8

RMI 15

Handling failures

rTypes of failure
m Client unable to locate server
m Request message lost
m Reply message lost
m Server crashes after receiving a request
m Client crashes after sending a request

RMI 16

Handling failures

r Client cannot locate server
m Reasons

• Server has crashed
• Server has moved
• (RPC systems) client compiled using old version of

service interface
m System must report error (remote exception)

to client
• Loss of transparency

9

RMI 17

Handling failures

r Lost request message
m Retransmit a fixed number of times before

throwing an exception
r Lost reply message
m Client resubmits request
m Server choices

• Re-execute procedure è service should be
idempotent so that it can be repeated safely

• Filter duplicates è server should hold on to results
until acknowledged

RMI 18

Invocation semantics

Fault tolerance measures Invocation
semantics

Retransmit request
message

Duplicate
filtering

Re-execute procedure
or retransmit reply

No

Yes

Yes

Not applicable

No

Yes

Not applicable

Re-execute procedure

Retransmit reply At-most-once

At-least-once

Maybe

10

RMI 19

Handling failures

rServer crashes

Recv
Exec
Reply

Recv
Exec
Crash

Recv
Crash

REQ

REP

REQ REQ

NO
REP

NO
REP

Client cannot tell difference

RMI 20

Handling failures

rServer crashes
m At least once (keep trying till server comes up

again)
m At most once (return immediately)
m Exactly once impossible to achieve

rSUN RPC
m At least once semantics on successful call and

maybe semantics if unsuccessful call
r CORBA, Java RMI
m at most once semantics

11

RMI 21

Handling failures

r Implementing the request-reply protocol
on top of TCP
m Does it provide applications with different

invocation semantics?
• NO!

– TCP does not help with server crashes
– If a connection is broken, the end pts do not have any

guarantees about the delivery of messages that may have
been in transit

RMI 22

Handling failures

r Client crashes
m If client crashes before RPC returns, we have

an “orphan” computation at server
• Wastes resources, could also start other

computations
mOrphan detection

• Reincarnation (client broadcasts new “epoch” when it
comes up again)

• Expiration (RPC has fixed amount of time T to do
work)

12

RMI 23

RMI Software Components

r Communication module
m Implements the request-reply protocol

r Remote reference module
m Responsible for translating between local and

remote object references and for creating
remote object references

• Maintains remote object table that maintains a
mapping between local & remote object references

• E.g. Object Adaptor in CORBA

RMI 24

The role of proxy and skeleton in
remote method invocation

object A object Bskeleton
Request

proxy for B

Reply

CommunicationRemote Remote referenceCommunication
modulemodulereference module module

for B’s class
& dispatcher

remote
client server

13

RMI 25

RMI Software Components
r Proxy

m Behaves like remote object to clients (invoker)
m Marshals arguments, forwards message to remote

object, unmarshals results, returns results to client
r Skeleton

m Server side stub;
m Unmarshals arguments, invokes method, marshals results

and sends to sending proxy’s method
r Dispatcher

m Receives the request message from communication
module, passes on the message to the appropriate
method in the skeleton

RMI 26

RMI Software Components
r Binder

m Client programs need a means of obtaining a remote
object reference

m Binder is a service that maintains a mapping from textual
names to remote object references

m Servers need to register the services they are exporting
with the binder

m Java RMIregistry, CORBA Naming service
r Client
r Server

m Threads
• Several choices: thread per object, thread per invocation

m Remote method invocations must allow for concurrent
execution

14

RMI 27

RMI – Object Activation

rActivation of remote objects
m Some applications require that information

survive for long periods of times
mHowever, objects not in use all the time, so

keeping them in running processes is a potential
waste of resources

m Object can be activated on demand
• E.g. standard TCP services such as FTP on UNIX

machines are activated by inetd

RMI 28

Object Activation
r Active and passive objects

m Active object = instantiated in a running process
m Passive object = not currently active but can be made

active
• Implementation of its methods, and marshalled state stored

on disk
r Activator responsible for

m Registering passive objects that are available for
activation

m Starting named server processes and activating remote
objects in them

m Keeping track of locations of servers for remote objects
that it has already activated

r Examples: CORBA implementation repository,
JAVA RMI has one activator on each server
computer

15

RMI 29

RMI – Other topics

r Persistent object stores
m An object that is guaranteed to live between

activations of processes is called a persistent
object

m Stores the state of an object in a marshalled
(serialized) form on disk

r Location service
mObjects can migrate from one system to

another during their lifetime
mMaintains mapping between object references

and the location of an object

RMI 30

RMI – Other topics
rDistributed Garbage Collection
mNeeded for reclaiming space on servers

r Passing “behavior”
m Java allows objects (data + code) to be passed

by value
• If the class for an object passed by value is not

present in a JVM, its code is downloaded
automatically

m See Java RMI tutorial example
rUse of Reflection in Java RMI
m Allows construction of generic dispatcher and

skeleton

16

RMI 31

Distributed Garbage Collection
r Java approach based on reference counting

m Each server process maintains a list of remote processes that
hold remote object references for its remote objects

m When a client first removes a remote reference to an object, it
makes an addRef() invocation to server before creating a proxy

m When a clients local garbage collector notices that a proxy is no
longer reachable, it makes a removeRef() invocation to the
server before deleting the proxy

m When the local garbage collector on the server notices that the
list of client processes that have a remote reference to an
object is empty, it will delete the object (unless there are any
local objects that have a reference to the object)

r Other approaches
m “Evictor” pattern
m Leases

RMI 32

Readings

r Coulouris – Chapters 5, 6, 17
rWWW (see links on class web page)
m Java RMI tutorial on web
m “A Young Persons Guide to SOAP”
m CORBA web documents at OMG web site

