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Hardware Architectures

Uniprocessors
Shared-memory multiprocessors
Distributed-memory multicomputers
Distributed systems
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Concurrent Systems

Essential aspects of any concurrent 
system

Execution context - state of a concurrent 
entity
Scheduling - deciding which context will run 
next
Synchronization - mechanisms that enable 
execution contexts to coordinate their use of 
shared resources
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Application classes
Multi-threaded Programs

Processes/Threads on same computer
Window systems, Operating systems

Distributed computing
Processes/Threads on separate computers
File servers, Web servers

Parallel computing
On same (multiprocessor) or different computers
Goal: solve a problem faster or solve a bigger 
problem in the same time
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Concurrent Programming

Process = Address space + one thread of 
control 
Concurrent program = multiple threads 
of control

Multiple single-threaded processes
Multi-threaded process
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Process Concept
A process includes:

program counter 
code segment
stack segment
data segment

Process = Address Space
+ One thread of

control

Stack

Text

Heap

Auxiliary
regions

0

2N

Address 
space



4

CS 475 - Spring 2003 7

Process States 

Possible process states
running
blocked
ready

Transitions between states shown
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Process Scheduling Queues

Ready queue – set of all processes residing in 
main memory, ready and waiting to execute.
Device queues – set of processes waiting for 
an I/O device.
Processes migrate between the various 
queues during their lifetime.
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The Thread Model (1)

(a) Three processes each with one thread
(b) One process with three threads
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Thread Usage (1)

A word processor with three threads
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Thread Usage (2)

A multithreaded Web server
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Client and server with threads

Server

N threads

Input-output

Client

Thread 2 makes

T1

Thread 1

requests to server

generates 
results

Requests

Receipt &
queuing
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Alternative server threading 
architectures 

a. Thread-per-request b. Thread-per-connection c. Thread-per-object

remote

workers

I/O remoteremote I/O

per-connection threads per-object threads

objects objects objects
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Threads: Motivation

Traditional UNIX processes created and 
managed by the OS kernel 
Process creation expensive - fork system 
call 
Context switching expensive
Cooperating processes - no need for 
protection (separate address spaces)
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Threads

Execute in same address space
separate execution stack, share access to 
code and (global) data

Smaller creation and context-switch time
Can exploit fine-grain concurrency
Easier to write programs that use 
asynchronous I/O or communication
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State associated with processes and 
threads

Process Thread
Address space tables Saved processor registers
Communication interfaces, open files Priority and execution state (such as

BLOCKED)
Semaphores, other synchronization
objects

Software interrupt handling information

List of thread identifiers Execution environment identifier

Pages of address space resident in memory; hardware cache entries
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The Thread Model (2)

Items shared by all threads in a process
Items private to each thread
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The Thread Model (3)

Each thread has its own stack
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Threads cont’d

Less protection against programming 
errors
User-level vs kernel-level threads

kernel not aware of threads created by user-
level thread package (e.g. Pthreads), 
language (e.g. Java)
user-level threads typically multiplexed on 
top of kernel level threads in a user-
transparent fashion 
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User-Level Threads

Thread management (scheduling, thread 
creation) done by user-level threads 
library
Examples
- POSIX Pthreads
- Mach C-threads
- Solaris threads
- Java threads
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Implementing Threads in User Space

A user-level threads package
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Kernel Threads

Supported by the Kernel

Examples
- Windows 95/98/NT/2000
- Solaris
- Tru64 UNIX
- BeOS
- Linux
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Implementing Threads in the Kernel

A threads package managed by the kernel
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Hybrid Implementations

Multiplexing user-level threads onto kernel-
level threads
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Multithreading Models

Many-to-One
One-to-One
Many-to-Many
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Many-to-One

Many user-level threads mapped to single 
kernel thread.

If one user-level thread makes a blocking 
system call, the entire process is blocked 
even though other user-level threads may be 
“ready”

Used on systems that do not support 
kernel threads.
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Many-to-One Model
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One-to-One Model

Each user-level thread maps to kernel 
thread.
Examples
- Windows 95/98/NT/2000
- OS/2
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One-to-one Model
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Many-to-Many Model

Allows many user level threads to be 
mapped to many kernel threads.
Allows the  operating system to create a 
sufficient number of kernel threads.
Solaris 2 
Windows NT/2000 with the ThreadFiber
package
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Many-to-Many Model
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Pthreads

a POSIX standard (IEEE 1003.1c) API for 
thread creation and synchronization.
API specifies behavior of the thread 
library, implementation is up to 
development of the library.
Common in UNIX operating systems.
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Java Threads

Java threads may be created by:
Extending Thread class
Implementing the Runnable interface

Java threads are managed by the JVM.
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Creating and Using threads 

Solaris Multi-threading Library
supports Pthreads API + own Solaris threads API
pthread_create, pthread_join, pthread_self, 
pthread_exit, pthread_detach

Java
provides a Runnable interface and a Thread class 
as part of standard Java libraries
⌧users program threads by  implementing the 

Runnable interface or extending the Thread class
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Java thread constructor and 
management methods

Thread(ThreadGroup group, Runnable target, String name) 
Creates a new thread in the SUSPENDED state, which will belong to group and be 
identified as name; the thread will execute the run() method of target.

setPriority(int newPriority), getPriority()
Set and return the thread’s priority.

run()
A thread executes the run() method of its target object, if it has one, and otherwise 
its own run() method (Thread implements Runnable).

start()
Change the state of the thread from SUSPENDED to RUNNABLE. 

sleep(int millisecs)
Cause the thread to enter the SUSPENDED state for the specified time.

yield()
Enter the READY state and invoke the scheduler.
destroy()

Destroy the thread.
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Creating threads
class Simple implements Runnable {

public void run() {
System.out.println(“this is a thread”);

}
}

Runnable s = new Simple();
Thread t = new Thread(s);
t.start();

Alternative  strategy: Extend Thread class (not recommended
unless you are creating a new type of  Thread) 
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Cooperating concurrent 
processes

Shared Memory
Semaphores, mutex locks, condition 
variables, monitors
Mutual exclusion

Message-passing
Pipes, FIFOs (named pipes)
Message queues
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Synchronization Mechanisms
Pthreads

Semaphores
Mutex locks
Condition Variables
Reader/Writer Locks

Java
Each object has an (implicitly) associated 
lock and condition variable
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Race Conditions

int count = 100;   // global

increment ( ) {
int temp;

temp = count;
temp = temp + 1;
count = temp;

}

Consider two threads T1 and T2 repeatedly executing the code below

We have a race condition if two processes or threads want to access
the same item in shared memory at the same

Thread T1             Thread T2
temp = 100
count = 101

temp = 101
count = 102

temp = 102
temp = 102

count = 103
count = 103

Time
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Assignment 1
Three experiments

All you have to do is compile and run programs
Linux/Solaris

First two experiments illustrate differences 
between processes and threads
Third experiment shows a race condition 
between two threads
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