
1

CS 475 - Spring 2003 1

Concurrent Programming

Prof. Sanjeev Setia
Concurrent & Distributed Software
Systems
CS 475

CS 475 - Spring 2003 2

Hardware Architectures

Uniprocessors
Shared-memory multiprocessors
Distributed-memory multicomputers
Distributed systems

2

CS 475 - Spring 2003 3

Concurrent Systems

Essential aspects of any concurrent
system

Execution context - state of a concurrent
entity
Scheduling - deciding which context will run
next
Synchronization - mechanisms that enable
execution contexts to coordinate their use of
shared resources

CS 475 - Spring 2003 4

Application classes
Multi-threaded Programs

Processes/Threads on same computer
Window systems, Operating systems

Distributed computing
Processes/Threads on separate computers
File servers, Web servers

Parallel computing
On same (multiprocessor) or different computers
Goal: solve a problem faster or solve a bigger
problem in the same time

3

CS 475 - Spring 2003 5

Concurrent Programming

Process = Address space + one thread of
control
Concurrent program = multiple threads
of control

Multiple single-threaded processes
Multi-threaded process

CS 475 - Spring 2003 6

Process Concept
A process includes:

program counter
code segment
stack segment
data segment

Process = Address Space
+ One thread of

control

Stack

Text

Heap

Auxiliary
regions

0

2N

Address
space

4

CS 475 - Spring 2003 7

Process States

Possible process states
running
blocked
ready

Transitions between states shown

CS 475 - Spring 2003 8

Process Scheduling Queues

Ready queue – set of all processes residing in
main memory, ready and waiting to execute.
Device queues – set of processes waiting for
an I/O device.
Processes migrate between the various
queues during their lifetime.

5

CS 475 - Spring 2003 9

The Thread Model (1)

(a) Three processes each with one thread
(b) One process with three threads

CS 475 - Spring 2003 10

Thread Usage (1)

A word processor with three threads

6

CS 475 - Spring 2003 11

Thread Usage (2)

A multithreaded Web server

CS 475 - Spring 2003 12

Client and server with threads

Server

N threads

Input-output

Client

Thread 2 makes

T1

Thread 1

requests to server

generates
results

Requests

Receipt &
queuing

7

CS 475 - Spring 2003 13

Alternative server threading
architectures

a. Thread-per-request b. Thread-per-connection c. Thread-per-object

remote

workers

I/O remoteremote I/O

per-connection threads per-object threads

objects objects objects

CS 475 - Spring 2003 14

Threads: Motivation

Traditional UNIX processes created and
managed by the OS kernel
Process creation expensive - fork system
call
Context switching expensive
Cooperating processes - no need for
protection (separate address spaces)

8

CS 475 - Spring 2003 15

Threads

Execute in same address space
separate execution stack, share access to
code and (global) data

Smaller creation and context-switch time
Can exploit fine-grain concurrency
Easier to write programs that use
asynchronous I/O or communication

CS 475 - Spring 2003 16

State associated with processes and
threads

Process Thread
Address space tables Saved processor registers
Communication interfaces, open files Priority and execution state (such as

BLOCKED)
Semaphores, other synchronization
objects

Software interrupt handling information

List of thread identifiers Execution environment identifier

Pages of address space resident in memory; hardware cache entries

9

CS 475 - Spring 2003 17

The Thread Model (2)

Items shared by all threads in a process
Items private to each thread

CS 475 - Spring 2003 18

The Thread Model (3)

Each thread has its own stack

10

CS 475 - Spring 2003 19

Threads cont’d

Less protection against programming
errors
User-level vs kernel-level threads

kernel not aware of threads created by user-
level thread package (e.g. Pthreads),
language (e.g. Java)
user-level threads typically multiplexed on
top of kernel level threads in a user-
transparent fashion

CS 475 - Spring 2003 20

User-Level Threads

Thread management (scheduling, thread
creation) done by user-level threads
library
Examples
- POSIX Pthreads
- Mach C-threads
- Solaris threads
- Java threads

11

CS 475 - Spring 2003 21

Implementing Threads in User Space

A user-level threads package

CS 475 - Spring 2003 22

Kernel Threads

Supported by the Kernel

Examples
- Windows 95/98/NT/2000
- Solaris
- Tru64 UNIX
- BeOS
- Linux

12

CS 475 - Spring 2003 23

Implementing Threads in the Kernel

A threads package managed by the kernel

CS 475 - Spring 2003 24

Hybrid Implementations

Multiplexing user-level threads onto kernel-
level threads

13

CS 475 - Spring 2003 25

Multithreading Models

Many-to-One
One-to-One
Many-to-Many

CS 475 - Spring 2003 26

Many-to-One

Many user-level threads mapped to single
kernel thread.

If one user-level thread makes a blocking
system call, the entire process is blocked
even though other user-level threads may be
“ready”

Used on systems that do not support
kernel threads.

14

CS 475 - Spring 2003 27

Many-to-One Model

CS 475 - Spring 2003 28

One-to-One Model

Each user-level thread maps to kernel
thread.
Examples
- Windows 95/98/NT/2000
- OS/2

15

CS 475 - Spring 2003 29

One-to-one Model

CS 475 - Spring 2003 30

Many-to-Many Model

Allows many user level threads to be
mapped to many kernel threads.
Allows the operating system to create a
sufficient number of kernel threads.
Solaris 2
Windows NT/2000 with the ThreadFiber
package

16

CS 475 - Spring 2003 31

Many-to-Many Model

CS 475 - Spring 2003 32

Pthreads

a POSIX standard (IEEE 1003.1c) API for
thread creation and synchronization.
API specifies behavior of the thread
library, implementation is up to
development of the library.
Common in UNIX operating systems.

17

CS 475 - Spring 2003 33

Java Threads

Java threads may be created by:
Extending Thread class
Implementing the Runnable interface

Java threads are managed by the JVM.

CS 475 - Spring 2003 34

Creating and Using threads

Solaris Multi-threading Library
supports Pthreads API + own Solaris threads API
pthread_create, pthread_join, pthread_self,
pthread_exit, pthread_detach

Java
provides a Runnable interface and a Thread class
as part of standard Java libraries
⌧users program threads by implementing the

Runnable interface or extending the Thread class

18

CS 475 - Spring 2003 35

Java thread constructor and
management methods

Thread(ThreadGroup group, Runnable target, String name)
Creates a new thread in the SUSPENDED state, which will belong to group and be
identified as name; the thread will execute the run() method of target.

setPriority(int newPriority), getPriority()
Set and return the thread’s priority.

run()
A thread executes the run() method of its target object, if it has one, and otherwise
its own run() method (Thread implements Runnable).

start()
Change the state of the thread from SUSPENDED to RUNNABLE.

sleep(int millisecs)
Cause the thread to enter the SUSPENDED state for the specified time.

yield()
Enter the READY state and invoke the scheduler.
destroy()

Destroy the thread.

CS 475 - Spring 2003 36

Creating threads
class Simple implements Runnable {

public void run() {
System.out.println(“this is a thread”);

}
}

Runnable s = new Simple();
Thread t = new Thread(s);
t.start();

Alternative strategy: Extend Thread class (not recommended
unless you are creating a new type of Thread)

19

CS 475 - Spring 2003 37

Cooperating concurrent
processes

Shared Memory
Semaphores, mutex locks, condition
variables, monitors
Mutual exclusion

Message-passing
Pipes, FIFOs (named pipes)
Message queues

CS 475 - Spring 2003 38

Synchronization Mechanisms
Pthreads

Semaphores
Mutex locks
Condition Variables
Reader/Writer Locks

Java
Each object has an (implicitly) associated
lock and condition variable

20

CS 475 - Spring 2003 39

Race Conditions

int count = 100; // global

increment () {
int temp;

temp = count;
temp = temp + 1;
count = temp;

}

Consider two threads T1 and T2 repeatedly executing the code below

We have a race condition if two processes or threads want to access
the same item in shared memory at the same

Thread T1 Thread T2
temp = 100
count = 101

temp = 101
count = 102

temp = 102
temp = 102

count = 103
count = 103

Time

CS 475 - Spring 2003 40

Assignment 1
Three experiments

All you have to do is compile and run programs
Linux/Solaris

First two experiments illustrate differences
between processes and threads
Third experiment shows a race condition
between two threads

	Concurrent Programming
	Hardware Architectures
	Concurrent Systems
	Application classes
	Concurrent Programming
	Process Concept
	Process States
	Process Scheduling Queues
	The Thread Model (1)
	Thread Usage (1)
	Thread Usage (2)
	Client and server with threads
	Alternative server threading architectures
	Threads: Motivation
	Threads
	State associated with processes and threads
	The Thread Model (2)
	The Thread Model (3)
	Threadscont’d
	User-Level Threads
	Implementing Threads in User Space
	Kernel Threads
	Implementing Threads in the Kernel
	Hybrid Implementations
	Multithreading Models
	Many-to-One
	Many-to-One Model
	One-to-One Model
	One-to-one Model
	Many-to-Many Model
	Many-to-Many Model
	Pthreads
	Java Threads
	Creating and Using threads
	Java thread constructor and management methods
	Creating threads
	Cooperating concurrent processes
	Synchronization Mechanisms
	Race Conditions
	Assignment 1

