
The Modern Multithreading Library

This document describes how to use the testing and debugging features of the Java

synchronization library that is described in the textbook “Modern Multithreading” by Richard

Carver and Kuo-Chung Tai. Details about the library classes and the testing and debugging

features they provide are given in the book. Here we describe how to write multithreaded Java

programs that use the library and how to turn the testing and debugging features on and off.

Several example programs and instructions for how to run them have been included in this

distribution. The files for each program are in a separate directory:

 BoundedBufferMonitorSC: An SC monitor solution to the bounded buffer problem.

 BoundedBufferMonitorSU: An SU monitor solution to the bounded buffer problem.

 BoundedBufferSelect: A solution to the bounded buffer problem that uses a selective
 wait.

 BoundedBufferSemaphores: A semaphore solution to the bounded buffer problem.

 CyclicScheduler: An implementation of Milner’s Cyclic Scheduler.

 DiningPhilosophers: A semaphore solution to the dining philosophers problem that contains

a deadlock.

 DistributedDiningPhilosophers: A solution to the distributed dining philosophers problem.

 DistributedMutualExclusion: A distributed mutual exclusion algorithm using message
passing and monitors.

 DistributedMutualExclusion2: Same distributed mutual exclusion algorithm using message

passing only.

 DistributedReachabilityTesting: Illustrates the use of running reachability testing with
multiple processes, on a multi-core machine or on a compute cluster.

 DistributedSpanningTree: An implementation of a distributed spanning tree algorithm.

 ReadersWritersMonitorSC: An SC monitor solution to the readers and writers problem.

 ReadersWritersMonitorSU: An SU monitor solution to the readers and writers problem.

 ReadersWritersSelect: An solution to the readers and writers problem that uses a selective
 wait.

 ReadersWritersSemaphores: A semaphore solution to the readers and writers problem.

 SharedVariables: Illustrates the use of the shared object classes for detecting data races

during reachability testing.

 StatefulReachabilityTesting: A demonstration of stateful reachability testing applied to the
same distributed mutual exclusion algorithm as above.

1. Class TDThread

User threads should extend class TDThread.

 class Producer extends TDThread { … }

Class TDThead automatically generates names and unique integer identifiers for each thread.

The identifiers are used in the execution. Only TDThread threads can use the testing and

debugging features in the library, which means that main thread should not call any

synchronization functions. Instead, it should create TDThread threads that do all the work.

The TDThread identifiers that are generated for testing and debugging are saved in file

ThreadID.txt whenever the testing and debugging functions are used. Here is the TDThread.txt

file created for the BoundedBufferMonitorSU example program that is included with the library:

main_innerThread1 1

main_innerThread2 2

main_innerThread3 3

main_innerThread4 4

main_innerThread5 5

main_innerThread6 6

Each line gives the name of a thread and its ID. The thread names are generated internally. Users

can supply more meaningful names by invoking the appropriate constructor in class TDThread:

 class Producer extends TDThread { class Consumer extends TDThread {

 public Producer(int ID) { public Consumer (int ID) {

 super(“Producer”+ID); super(“Consumer”+ID);

 } }

 … …

 } }

In the program’s main() method we would write:

 Producer p1 = new Producer(1);

 Producer p2 = new Producer(2);

 Consumer c1 = new Consumer(1);

 Consumer c2 = new Consumer(2);

The ThreadID.txt file that is created from these user-supplied names is:

Producer1 1

Producer2 2

Producer3 3

Consumer1 4

Consumer2 5

Consumer3 6

Note that the IDs supplied by the user are used to generate unique names, but class TDThread

generates its own internal IDs. User-supplied thread names must be unique or they will be

rejected.

If you are planning to use reachability testing, the main() method must not return before the

program’s TDTheads have completed. To enforce this rule, use a try-catch block at the end of

your main() method to join() all the threads:

 public static void main (String args[])

 Producer p1 = new Producer(1);

 Producer p2 = new Producer(2);

 Consumer c1 = new Consumer (1);

 Consumer c2 = new Consumer (2);

 p1.start(); p2.start(); c1.start(); c2.start();

 try {

 p1.join(); p2.join(); c1.join(); c2.join();

 }

 catch(Exception e) {}

 }

In general, the main() methods in your programs should look as follows:

 public static void main (String args[])

 create and start TDThreads

 try {

 join all the threads

 }

 catch (Exception e) {}

 }

2. Tracing executions

Executions are traced by running them in “trace” mode. Here is the command for tracing an

execution of example program BoundedBufferSemaphores:

 java -Dmode=trace BoundedBufferSemaphores

This will produce 3 files:

- ThreadID.txt: Thread IDs that were generated

- semaphoreID.txt: semaphore names that were generated

- semaphore-replay.txt: simple PV-sequence that can be used to replay the program

(Eclipse Users: In your Run configuration for a Java Application:

- under Main, the main class is BoundedBufferSemaphores

- the VM argument is -Dmode=trace

)

Here are the contents of these three files for an execution of BoundedBufferSemaphores.

ThreadID.txt:

Producer1 1

Producer2 2

Producer3 3

Consumer1 4

Consumer2 5

Consumer3 6

semaphoreID.txt:

notFull

notEmpty

mutexD

mutexW

As with thread names, semaphore names can be supplied by the user. Here is how we specified

the names generated in semaphoreID.txt:

 notFull = new countingSemaphore(capacity,"notFull");

 notEmpty = new countingSemaphore(0,"notEmpty");

 mutexD = new countingSemaphore(1,"mutexD");

 mutexW = new countingSemaphore(1,"mutexW");

User-supplied names must be unique or they will be rejected.

semaphore-replay.txt:

1

1

1

1

4

4

4

4

5

2

…

File semaphore-replay.txt contains a sequence of thread IDs, called a simple PV-sequence. A

PV-sequence represents the sequence in which threads completed (not started) P and V

operations during the execution. PV-sequences are described in Chapter 3 of the text.

To execute random delays during trace mode, set property –DrandomDelay=on. Random delays

will be executed at the beginning of each thread’s execution, and at the start of P, V, lock,

unlock, send, and monitor entry operations.

3. Deadlock Detection

Deadlocks can be detected by setting property deadlockDetection=on in trace mode:

 java -Dmode=trace -DdeadlockDetection=on BoundedBufferSemaphores

Here is the output generated for a version of program BoundedBufferSemaphores that contains a

deadlock:

Monitoring for Deadlock.

Deadlock detected:

- Consumer2 blocked on P operation of mutexW

- Consumer1 blocked on P operation of notEmpty

- Consumer3 blocked on P operation of mutexW

- Producer3 blocked on P operation of notFull

Execution trace:

Thread Producer2 completed mutexD.P()

Thread Producer2 completed notFull.P()

Thread Producer2 completed mutexD.V()

Thread Consumer1 completed mutexW.P()

Thread Consumer1 blocking on notEmpty.P()

Thread Producer1 completed mutexD.P()

Thread Producer1 completed notFull.P()

Thread Producer1 completed mutexD.V()

Thread Consumer2 blocking on mutexW.P()

Thread Consumer3 blocking on mutexW.P()

Thread Producer3 completed mutexD.P()

Thread Producer3 blocking on notFull.P()

To use the deadlock detection function, all the threads in your program should be expected to

complete. When all the threads that are not completed are blocked, a deadlock is assumed to

occur.

3. Execution Replay

Executions that have been traced can be replayed by running the program in “replay” mode:

 java -Dmode=replay BoundedBufferSemaphores

Here we assume the program BoundedBufferSemaphores was previously executed in “trace“

mode so that the PV-sequence of the execution was recorded in file semaphore-replay.txt. When

the sequence in semaphore-replay.txt has been replayed, you will see the message:

 Sequence Completed

If you modify the program before you replay an execution, the replay might fail. If you want to

determine whether or not a particular sequence can be exercised by your program, use “test”

mode instead of “replay” mode. Test mode is described next.

4. Checking Feasibility

The feasibility of user-selected sequences can be checked in “test” mode. A test sequence is

feasible if it can be exercised by the program (with a specified input); otherwise, it is infeasible.

Test mode is not available for semaphore-based programs, but it is available for monitor-based

programs and programs that use message passing. (Monitor-based programs are easier to write

and test than semaphore-based programs so the library focuses on monitors. It is not difficult to

implement test mode for semaphores.)

Here we show how to use test mode on an SU monitor version of bounded buffer. Program

BoundedBufferMonitorSU is one of the example programs. Test mode assumes that file monitor-

test.txt contains an M-sequence of the program under test. Here is an M-sequence of

BoundedBufferMonitorSU:

(entry,4,Buffer:withdraw,NA)

(wait,4,Buffer:withdraw,notEmpty)

(entry,1,Buffer:deposit,NA)

(signalandexit,1,Buffer:deposit,notEmpty)

(signalandexit,4,Buffer:withdraw,notFull)

(entry,5,Buffer:withdraw,NA)

(wait,5,Buffer:withdraw,notEmpty)

(entry,2,Buffer:deposit,NA)

(signalandexit,2,Buffer:deposit,notEmpty)

(signalandexit,5,Buffer:withdraw,notFull)

(entry,6,Buffer:withdraw,NA)

(wait,6,Buffer:withdraw,notEmpty)

(entry,3,Buffer:deposit,NA)

(signalandexit,3,Buffer:deposit,notEmpty)

(signalandexit,6,Buffer:withdraw,notFull)

Running program BoundedBufferMonitorSU in test mode will determine whether the sequence

in monitor-test.txt is feasible:

 java -Dmode=test BoundedBufferMonitorSU

Since the sequence in monitor-test.txt is feasible, you will see:

 Sequence Completed

A small change in the sequence makes it infeasible. Here is a sequence in which the consumer

enters the monitor first and then exits the monitor instead of waiting for the first item to be

deposited:

(entry,4,Buffer:withdraw,NA)

 (signalandexit,4,Buffer:withdraw,notFull)

When we run BoundedBufferMonitorSU in test mode with this sequence, we’ll see the following

message:

 Infeasible sequence - timeout waiting for event 2: (signalandexit,4,Buffer:withdraw,notFull).

This indicates that the sequence is infeasible and specifically that it was not possible for the

program to exercise the second event. Since this sequence is invalid, it is expected to be

infeasible. If this sequence was found to be feasible, it would mean that the program had a bug.

5. Running Programs in spectest Mode

M-sequences specify exactly what is happening inside the monitor, but they are a little awkward

to use. They contain four types of events and require detailed information such as the names of

the condition variables. Communication-sequences are more abstract and easier to generate. A

Communication-sequence consists of events generated by calls to method exerciseEvent(). For

example, here are methods deposit() and withdraw() from program BoundedBufferMonitorSU:

 public void deposit(int value) {

 enterMonitor("deposit");

 if (fullSlots == capacity)

 notFull.waitC();

 buffer[in] = value;

 in = (in + 1) % capacity;

 ++fullSlots;

 exerciseEvent("deposit");

 notEmpty.signalC_and_exitMonitor();

 }

 public int withdraw() {

 enterMonitor("withdraw");

 int value;

 if (fullSlots == 0)

 notEmpty.waitC();

 value = buffer[out];

 out = (out + 1) % capacity;

 --fullSlots;

 exerciseEvent("withdraw");

 notFull.signalC_and_exitMonitor();

 return value;

 }

And here is a feasible Communication-sequence for BoundedBufferMonitorSU with 1 Producer

and 1 Consumer thread:

(1,deposit)

(4,withdraw)

(2,deposit)

(5,withdraw)

(3,deposit)

(6,withdraw)

Mode spectest assumes that file monitor-spectest.txt contains a Communication-sequence of the

program under test. Running program BoundedBufferMonitorSU in spectest mode will

determine whether sequence in monitor-spectest.txt is feasible:

 java -Dmode=spectest BoundedBufferMonitorSU

Assuming that the feasible sequence above is in montor-spectest.txt, you will see:

 Sequence Completed

A small change in the sequence makes it infeasible. For example, change the first event in

monitor-spectest.txt to be:

 (4,withdraw)

and run the program in spectest mode again. Since no sequence can start with a withdrawal by a

consumer, this sequence is infeasible, and you will see:

 Infeasible sequence - timeout waiting for event 1: (4, withdraw).

Be careful where you place the calls to exerciseEvent() as this affects the feasibility of the

sequence. Also, every monitor method must have at least one call to exerciseEvent().

6. Reachability Testing

Reachability testing exercises every feasible SYN-sequence of the program one time. (This

requires that every execution of a program with a given input terminates, and the total number of

possible SYN-sequences is finite.) To perform reachability testing (RT) you must use the RT

driver. The RT driver calls the main() method of your program.

 Reachability testing is performed in “rt” mode:

 java -Dmode=rt RTDriver BoundedBufferMonitorSU

Here we specified the name of the program to be tested as a command-line parameter for

RTDriver.

(Eclipse Users: In your Run configuration for a Java Application:

- under Main, the main class is RTDriver

- the Program Argument is BoundedBufferMonitorSU

- the VM argument is -Dmode=rt

)

The program to be tested, in this case class BoundedBufferMonitorSU must have a null constructor.

(If class BoundedBufferMonitorSU has no user-defined constructor, the system will supply a null

constructor.) To avoid problems, class BoundedBufferMonitorSU should not extend class TDThread

or implement the Runnable interface.

The output of reachability testing for the BoundedBufferMonitorSU example program is as

follows (there are 3 producers and 3 consumers in this program):

start:Fri Nov 18 13:29:30 GMT-05:00 2005

1/1

25/25

50/50

75/75

100/100

125/125

150/150

175/175

200/200

225/225

250/250

275/275

300/300

325/325

350/350

375/375

400/400

425/425

450/450

475/475

500/500

525/525

550/550

575/575

600/600

625/625

650/650

675/675

700/700

Reachability Testing completed.

 Executions:720 / Sequences Collected:720

 Elapsed time in minutes: 0.2

 Elapsed time in seconds: 12.0

 Elapsed time in milliseconds: 12000

After displaying the start time, the number of executions is displayed, every 25 executions, until

RT terminates. (The hash value 25 can be changed using property –Dhash, e.g., -Dhash=1.) Then

the number of exercised sequences and the elapsed time for RT is displayed. The actual elapsed

time may be 4 seconds more or less than shown.

You can also run RT mode with -DdeadlockDetection=on.

During reachability testing, statistics are generated and written to file “stats.txt”. One line is

written for each program execution. Each line contains three numbers:

- Number of executions so far

- Number of variants groups remaining to be processed. For each sequence that is collected,

zero or more variants are generated. The variants generated for a sequence are considered to

be a “variant group”. At any point during reachability testing, there may be 0, 1, or more

variant groups remaining to be processed.

- Number of variants generated for the SYN-sequence collected during execution. This is the

size of the variant group.

Here is the stats.txt file generated for the BoundedBufferMonitorSU program with 2 producers

and 2 consumers:

New Test Run at Wed Jan 04 09:49:51 GMT-05:00 2006

1:NumberOfSequences/Executions 2:Remaining Groups 3:NumberOfVariants (in the group)

1 1 6

2 1 0

3 2 1

4 3 1

5 4 3

6 5 3

7 6 3

8 5 0

9 6 1

10 7 1

11 6 0

12 5 0

13 4 0

14 5 1

15 6 1

16 5 0

17 4 0

18 3 0

19 4 1

20 5 1

21 4 0

22 3 0

23 2 0

24 1 0

The first line “1 1 6” shows that a group of 6 variants was generated for the sequence collected

during the first execution.

The first variant in this group was used to perform the second execution of the program. Line 2

“2 1 0” shows that no variants were generated for the trace collected during this execution.

The second variant in the first group was used to perform the third execution of the program.

Line 3 “3 2 1” shows that a group of one variant was generated for the trace collected during this

execution. There are now 2 variant groups remaining to be processed – group 1 has 4 variants

remaining to be processed and group 2 has a single variant.

In all there were 23 variants generated and 24 executions of the program.

As we mentioned at the beginning of this document, if you are planning to use reachability

testing, use a try-catch block at the end of your main() method:

 public static void main (String args[])

 Producer p1 = new Producer(1);

 Producer p2 = new Producer(2);

 Consumer c1 = new Consumer (1);

 Consumer c2 = new Consumer (2);

 p1.start(); p2.start(); c1.start(); c2.start();

 try {

 p1.join(); p2.join(); c1.join(); c2.join();

 }

 catch(Exception e) {}

 }

This try-catch block is required to ensure that all user threads are completed before the main()

method returns to the RTDriver.

You can also run RT with deadlock detection (-DdeadlockDetection=on).

6. Checking the Sequences that are Exercised During Reachability Testing

User-level events can be generated and collected during execution. At the end of each execution

during reachability testing, this sequence of events can be passed to a user-supplied check()

routine that checks the exercised sequence for correctness.

For example, in the distributed mutual exclusion example program

(DistributedMutualExclusion3), when each process enters its critical section, it executes:

 ApplicationEvents.exerciseEvent("enter");

This generates an application event.

To check the sequences that are exercised, write the following class:

 public class MyChecker implements Checker {

 public boolean check (ArrayList seq) {

 // returns false if any check fails

 /* your check routine here */

 }

 }

and supply the implementation of method check(). Method check() will receive an ArrayList of

AppEvent, where an AppEvent is:

public class AppEvent {

 private int tid; // thread id

 private String label; // event label

 private vectorTimeStamp stamp; // event timestamp

 public AppEvent (int tid, String label, vectorTimeStamp stamp) {

 this.tid = tid; this.label = label; this.stamp = stamp;

 }

 public int getThreadID () {return tid;}

 public String getLabel () {return label;}

 public vectorTimeStamp getTimeStamp () {return stamp;}

 public boolean happenBefore (AppEvent another) {

 return stamp.lessThan (another.getTimeStamp ());

 }

 public boolean isConcurrent (AppEvent another) {

 return !happenBefore(another) && !another.happenBefore(this);

 }

 public String toString () {

 StringBuffer rval = new StringBuffer ();

 rval.append("AppEvent ["); rval.append(tid); rval.append(", "); rval.append(label + ", ");

 rval.append(stamp); rval.append("]"); return rval.toString ();

 }

}

AppEvents are created by calls to exerciseEvent("label"). Each event contains the label, the

thread ID of the calling thread, and a vector timestamp value for the event.

Compile MyChecker.java:

 Windows: javac MyChecker.java

 Unix: javac MyChecker.java

Perform RT using:

 Windows: java -Dmode=rt -DcheckTrace=on RTDriver DistributedDiningPhilosophers

 Unix: java -Dmode=rt -DcheckTrace=on RTDriver DistributedDiningPhilosophers

The check() method for the DistributedDiningPhilosophers example program checks that no

neighboring philosophers eat concurrently and that all philosophers eventually eat:

import java.util.ArrayList;

public class MyChecker implements Checker {

 private int[] tids; // application thread IDs

 private ArrayList seq; // a sequence of application events

 public MyChecker () {

 tids = new int [3];

 tids[0] = 1; tids[1] = 4; tids[2] = 7; // hardcode thread IDs

 }

 public boolean check (ArrayList seq) {

 //System.out.println("*****");

 //for (int i=0; i<seq.size();i++)

 // System.out.println((AppEvent)seq.get(i));

 //System.out.println("*****");

 boolean rval = true;

 // check for eventual entry

 int culprit = -1;

 for (int i = 0; i < tids.length; i ++) {

 boolean entered = false;

 for (int j = 0; j < seq.size (); j ++) {

 AppEvent event = (AppEvent) seq.get(j);

 if (tids[i] == event.getThreadID ()) {

 entered = true;

 break;

 }

 }

 if (!entered) {

 culprit = tids[i];

 rval = false;

 break;

 }

 }

 if (!rval) {System.out.println("Failed: Thread " + culprit + " did not enter.");}

 else { // check for mutual exclusion

 for (int i = 0; i < seq.size (); i ++) {

 AppEvent event = (AppEvent) seq.get(i);

 for (int j = 0; j < seq.size (); j ++) {

 if (i != j) {

 AppEvent it = (AppEvent) seq.get(j);

 if (event.isConcurrent (it)) {

 System.out.println("Concurrent application events:" + event + "; " + it);

 rval = false;

 break;

 }

 }

 }

 if (!rval) {System.out.println("Failed: Mutual exclusion violated.");}

 else { //System.out.println("Passed");}

 }

 }

 return rval;

 }

}

7. Reachability Testing Reductions

There are four ways to reduce the number of sequences that are exercised during reachability

testing.

For semaphore-based programs, reachability testing (RT) can be performed with the

PVReduction. This reduction (safely) ignores some races between P and V operations, e.g., a

race between two V operations on the same semaphore. This optimization will often cause fewer

sequences to be exercised. For the BoundedBufferSemaphores example program, we would run:

 Java –classpath .;.. -Dmode=rt -DPVReduction=on RTDriver BoundedBufferSemaphores

(Eclipse Users: In your Run configuration for a Java Application:

- under Main, the main class is RTDriver

- the Program Argument is BoundedBufferSemaphores

- the VM arguments are –classpath .;.. -Dmode=rt -DPVReduction=on

)

The output would look something like:

start:Mon Nov 14 15:30:23 GMT-05:00 2005

1/1

25/25

50/50

Reachability Testing completed.

 Executions:56 / Sequences Collected:56

 Elapsed time in minutes: 0.11666666666666667

 Elapsed time in seconds: 7.0

 Elapsed time in milliseconds: 7000

The number of sequences exercised may vary, depending on the races that actually occur when

the program is executed.

The actual elapsed time may be up to 4 seconds more or less than shown.

The second way to reduce the number of sequences exercised during reachability testing is to use

the symmetry reduction. For example, in example program BoundedBufferSemaphores, the

Producer threads have identical behavior, i.e., each Producer executes P and V operations on the

same semaphores, in the same order, independent of any inputs, and independent of the identity

of the thread. We can take advantage of the symmetry of the Producer threads by ignoring the

different orders that Producer threads execute the same operation (and the same with

Consumers.) For example, each Producer thread begins by executing mutexD.P(). Normal RT

will exercise the 6 possible orders in which the three Producer threads can execute mutexD.P().

With symmetry reduction, RT ignores the races that occur between Producer threads executing

mutexD.P(). This causes fewer sequences to be exercised.

To use the symmetry reduction, first create a file called symmetry.txt. Each line of this file

specifies the thread identifiers of one group of symmetric threads. For example, for program

BoundedBufferSemaphores the contents of symmetry.txt should be:

 5 6 7

 8 9 10

 The first group - 5 6 7 - represents the three Producer threads. The second group - 8 9 10 -

represents the three Consumer threads. Each thread in the program should be listed in one and

only one group. To see the thread identifiers, you can first run the program for a few seconds in

rt mode without symmetry reduction and examine the identifiers in file ThreadID.txt. (Make sure

you use the identifiers generated by rt mode, not trace mode, since the identifiers may be

different. In rt mode, the synchronization objects (e.g., semaphores) receive identifiers too, but

the symmetry.txt file should only contain identifiers for threads.)

Run reachability testing with symmetry reduction using:

 java -Dmode=rt -DsymmetryReduction=on RTDriver BoundedBufferSemaphores

(Eclipse Users: In your Run configuration for a Java Application:

- under Main, the main class is RTDriver

- the Program Argument is BoundedBufferSemaphores

- the VM arguments are -Dmode=rt -DsymmetryReduction=on

)

The output should look something like:

start:Mon Jan 23 10:15:31 GMT-05:00 2006

1/1

Reachability Testing completed.

 Executions:9 / Sequences Collected:9

 Elapsed time in minutes: 0.06666666666666667

 Elapsed time in seconds: 4.0

 Elapsed time in milliseconds: 4000

You can also run BoundedBufferSemaphores in reachability testing mode with both the

symmetry reduction and the PVReduction:

 java -Dmode=rt -DPVReduction=on -DsymmetryReduction=on

 RTDriver BoundedBufferSemaphores

The output should look something like:

start:Mon Jan 23 10:17:49 GMT-05:00 2006

1/1

Reachability Testing completed.

 Executions:1 / Sequences Collected:1

 Elapsed time in minutes: -0.06666666666666667

 Elapsed time in seconds: -4.0

 Elapsed time in milliseconds: -4000

Your output may also indicate that 3 sequences were exercised instead of 1. (The number of

sequences exercised may vary, depending on the P/V races that actually occur when the program

is executed.)

The symmetry reduction can be applied to all the BoundedBuffer and ReaderWriter example

programs, but not to programs CyclicScheduler, DiningPhilosophers, or

DistributedMutualExclusion. Program DiningPhilosophers contains some symmetry but this

symmetry currently cannot be exploited by our symmetry reduction. (Different philosophers

access different forks (semaphores) which violates the requirements of our symmetry reduction.)

Be careful when you write programs on which you plan to apply symmetry reduction. We use a

very simple, but also very limited, technique to identify which synchronization operation is being

executed by a thread. (This involves creating a Throwable object e and calling e.getStackTrace()

to identify the point in the source code where the call is being made.) For this technique to work,

only one synchronization operation can appear in a line of source code. For example, you should

write:

 s.P();

 s.V();

instead of

 s.P(); s.V().

Also, the operations should not appear inside a loop.

The third way to reduce the number of sequences exercised during reachability testing is to use t-

way reachability testing. T-way reachability testing exercises SYN-sequences selectively, not

exhaustively. The selection of SYN-sequences is based on a combinatorial testing strategy

known as t-way testing. Exhaustive reachability testing derives race variants to cover all possible

combinations of the race outcome changes that can be made in a SYN-sequence. In contrast, t-

way reachability testing derives race variants to cover all possible t-way combinations of the race

outcome changes, i.e., those involving changes to the outcomes of t race conditions, where t is

usually a small number. T-way reachability testing can substantially reduce the number of SYN-

sequences exercised during reachability testing. For example, for a solution to the distributed

dining philosophers (DDP) problem with 3 processes, exhaustive reachability testing exercises

more than 5 million sequences, while 1-way reachability testing exercises only 5,199 sequences

on average.

Run t-way reachability testing using:

 java -classpath .;.. -Dmode=rt -DtWay=on -Dt=1 RTDriver DistributedDiningPhilosophers

The fourth way to reduce the number of sequences exercised during reachability testing is to use

random reachability testing. Like t-way reachability testing, random reachability testing

exercises SYN-sequences selectively, not exhaustively. During random reachability testing, a

random choice is made to either execute or discard a group of variants. The number of sequences

exercised by random reachability testing appears to be similar to the number of sequences

exercised by 1-way reachability testing.

Run random reachability testing using:

 java -classpath .;.. -Dmode=rt –DrunMode=random RTDriver DistributedDiningPhilosophers

8. Detecting Data Races during Reachability Testing

A program that accesses shared variables outside of a critical section is said to have a data race.

Data races can be detected during reachability testing by using special shared object classes that

monitor Read and Write operations on the shared objects. The shared object classes are just

wrappers for primitive types int, boolean, double, and long:

 sharedInteger s = new sharedInteger(0,"s");

 sharedBoolean b = new sharedBoolean(true,"b");

 sharedDouble d = new sharedDouble(1.0,"d");

 sharedLong l = new sharedLong(1,"l")

When a shared object is constructed, it must be assigned an initial value and a name. Each shared

object class supplies Read and Write operations for the shared objects. For example:

 System.out.println(s.Read());

 s.Write(s.Read() + 1);

The Read and Write operations are traced and analyzed during reachability testing. If any Read

and Write operations are involved in a data race, i.e., the shared object is accessed outside of a

critical section, then reachability testing ends and the SYN-sequence that contained the data race

is displayed.

 Specify -DdetectDataRace=on to check for data races during RT:

 Windows: java -Dmode=rt -DdetectDataRace=on …

 Unix: java -Dmode=rt -DdetectDataRace=on …

Methods Read() and Write() can only be called by TDThread objects. If a normal Java Thread

object calls Read() or Write(), an error will occur.

Example directory SharedVariable contains a program that illustrates the use of the shared object

classes.

Note that if the shared object classes are not used and data races occur during reachability testing

then reachability testing will usually fail and display a message indicating that a data race is

likely to be what caused the failure. This message is not very helpful in determining how to fix

the program. If the shared object classes are used, then the Read or Write operations involved in

the data race will be displayed, helping the programmer find and fix the erroneous critical

section.

9. Distributed Reachability Testing

One way to speed up reachability testing is to perform reachability testing in parallel on

multiprocessor/distributed systems. Reachability testing can be performed on a multi-core

machine, or on multiple workstations in a distributed system. Since test runs during reachability

testing are independent, inter-process communication takes place only when variants are

distributed to the workstations.

Our implementation of distributed reachability testing is a work in progress. We are tuning the

implementation to achieve the best performance and ease of use.

The partitioning scheme used in MM gives each of the “worker” processes an equal number of

initial variants and allows a worker process to request more variants from the “manager” process

when the worker runs out. The manager can send some of its variants to a worker that requests

more. (The manager process also performs reachability testing with its own set of variants.)

Alternatively, the manager can steal variants from some other worker. Each worker process has

one thread to execute the program under test, one thread to generate variants, and one thread to

monitor the progress of reachability testing and request more variants when the worker runs out.

To perform distributed reachability testing on program DistributedMutualExclusion, the

RTDriver program is first executed as a manager by using the following command:

 java -Dmode=rt -DmanagerWorker=manager -DnumWorkers=10 -DserverPort=40021

 RTDriver DistributedMutualExclusion

The manager’s properties specify the number of workers and the port number on the server

machine that the workers will be using to communicate with the manager. The following

command is used to start the RTDriver program as worker 1:

 java -Dmode=rt -DmanagerWorker=worker -DworkerNumber=1 -DserverPort=40021

 -DserverIP=192.168.1.1 RTDriver DistributedMutualExclusion

The worker’s properties specify the worker’s number, which identifies the worker, and the IP

address and port number used to communicate with the server machine that is executing the

manager program.

If the manager and worker processes are running on the same machine, you can use:

 -DserverIP=LocalHost.

The value n for the manager’s numWorkers property is used to partition the initial batch of

variants among the n workers that are available when reachability testing starts. More workers

can be added while reachability testing is in progress. The added workers obtain variants by

stealing them from the manager or from other workers.

When the manager process and all the worker processes complete, the results for worker i are

saved in file workerResultsi.txt and the file RTResults.txt contains the results for all the workers

and the manager. There is a delay of several minutes at the end as workers communicate their

results with the manager process.

The file workerResults1.txt produced by worker 1 above contains:

 Reachability Testing completed.

 Executions:1592 / Sequences Collected:1592

 Elapsed time in minutes: 7.6947833333333335

 Elapsed time in seconds: 461.687

 Elapsed time in milliseconds: 461687

File RTResults.txt contains:

 Reachability Testing completed for Manager

 Executions:2440 / Sequences Collected:2440

 Elapsed time in minutes: 6.500516666666667

 Elapsed time in seconds: 390.031

 Elapsed time in milliseconds: 390031

 (sub)Total Executions:2440 (sub)Total Sequences Collected:2440

 Reachability Testing completed for Worker 1

 Executions:1592 / Sequences Collected:1592

 Elapsed time in minutes: 8.5315

 Elapsed time in seconds: 511.89

 Elapsed time in milliseconds: 511890

 (sub)Total Executions:4032 (sub)Total Sequences Collected:4032

The elapsed time recorded for the worker in file RTResults.txt is longer than the time recorded in

workerResults1.txt due to some delays that are performed at the end of the manager’s execution.

The times in the workerResults.txt files are more accurate. Actually, the times recorded in

workerResults.txt are also a little longer than the actual time, the actual time typically being 30

or seconds less than the recorded time.

The manager and worker in the above example were executed on the same machine, which had

only 1 CPU, so there was no speedup relative to using a single process for reachability testing.

When running distributed reachability testing on a compute cluster, the speedup is nearly linear.

Example directory DistributedReachabiltyTesting illustrates this process.

10. Stateful Reachability Testing

Stateful reachability testing extracts and stores program states to reduce the number of sequences

that are executed during reachability testing. To perform stateful reachability testing you must

use the stateful RT driver. Stateful reachability testing is performed in “rt” mode -Dmode=rt with

the property -DstatefulRT=on.

For example, execute the following command (in Windows) to apply stateful reachability testing

to a version of the distributed mutual exclusion program that uses monitors to simulate message

passing:

java -Dmode=rt -Dhash=25 -DstatefulRT=on -DstatePruning=on -DmaxThreads=10

-classpath .;../ModernMultithreading.jar RTDriverStateful DMEMonitorSC

(In Unix, use “-classpath .:../ModernMultithreading.jar”, which replaces ‘;’ with ‘:’.)

The output of stateful reachability testing for DMEMonitorSC is as follows:

start:Tue Mar 12 14:07:09 EDT 2013

start input

1/1

25/25

Reachability Testing completed.

 Executions:42 / Sequences Collected:42

 Peak Stored States: 16

 Number of States: 336

 Number Variants Pruned: 32

 Elapsed time in minutes: 0.025

 Elapsed time in seconds: 1.5

 Elapsed time in milliseconds: 1500

After displaying the start time, the number of executions is displayed, every 25 executions, until

stateful RT terminates. The information displayed after RT completes is:

- Then the number of exercised sequences,

- The peak stored states, which is the maximum number of program states that had to be stored in

memory at any one time

- The number of states in the program

- The number of variants that did not have to be exercised because these variants would only

visit a part of the state space that had been visited before.

- The elapsed time for RT. The actual elapsed time may be 4 seconds more or less than shown.

Regular RT exercises 96 sequences for this program. Thus, stateful RT reduces the number of

executions, at the cost of more space for storing states, and additional time and effort for

extracting states.

