
3.7 Semaphores and Locks in Win32

Win32 provides four types of objects that can be used for thread synchronization: Mutex,

CRITICAL_SECTION, Semaphore, and Event:

� Mutex and CRITICAL_SECTION objects are lock objects

� Win32 Semaphores are counting semaphores

� Semaphore, Event, and Mutex objects can be used to synchronize threads in different

processes or threads in the same process, but CRITICAL_SECTION objects can only

be used to synchronize threads in the same process.

3.7.1 CRITICAL_SECTION

A CRITICAL_SECTION is essentially a Win32 version of the recursive mutexLock

object described in Section 3.3:

� A thread that calls EnterCriticalSection() is granted access if no other thread owns the

CRITICAL_SECTION; otherwise, the thread is blocked.

� A thread releases its ownership by calling LeaveCriticalSection(). A thread calling

LeaveCriticalSection() must be the owner of the CRITICAL_SECTION. If a thread

calls LeaveCriticalSection() when it does not have ownership of the

CRITICAL_SECTION, an error occurs that may cause another thread using

EnterCriticalSection() to wait indefinitely.

� A thread that owns a CRITICAL_SECTION and requests access again is immediately

granted access. An owning thread must release a CRITICAL_SECTION the same

number of times that it requested ownership, before another thread can become the

owner.

Listing 3.18 shows how to use a CRITICAL_SECTION. A CRITICAL_SECTION object

must be initialized before it is used and deleted when it is no longer needed.

CRITICAL_SECTION cs; // global CRITICAL_SECTION

unsigned WINAPI Thread1(LPVOID lpvThreadParm) {
 EnterCriticalSection(&cs);
 // access critical section
 LeaveCriticalSection(&cs);
 return 0;
}

unsigned WINAPI Thread2(LPVOID lpvThreadParm) {
 EnterCriticalSection(&cs);
 // access critical section
 LeaveCriticalSection(&cs);
 return 0;
}

int main() {
 HANDLE threadArray[2];
 unsigned winThreadID;
 InitializeCriticalSection(&cs);
 threadArray[0]= (HANDLE)_beginthreadex(NULL,0, Thread1, NULL,0,
 &winThreadID);
 threadArray[1]= (HANDLE)_beginthreadex(NULL,0, Thread2, NULL,0,
 &winThreadID);
 WaitForMultipleObjects(2,threadArray,TRUE,INFINITE);
 CloseHandle(threadArray[0]);
 CloseHandle(threadArray[1]);
 DeleteCriticalSection(&cs);
 return 0;
}

 Listing 3.18 Using a Win32 CRITICAL_SECTION.

Listing 3.19 shows class win32Critical_Section, which is a wrapper for

CRITICAL_SECTION objects.

The CRITICAL_SECTION member cs is initialized when a win32Critical_Section object

is constructed and deleted when the object is destructed.

class win32Critical_Section {
// simple class to wrap a CRITICAL_SECTION object with lock/unlock operations
private:
 CRITICAL_SECTION cs;
public:
 win32Critical_Section () { InitializeCriticalSection(&cs); }
 ~ win32Critical_Section () { DeleteCriticalSection(&cs);}

 void lock() { EnterCriticalSection(&cs); }
 void unlock() { LeaveCriticalSection(&cs);}
};
Listing 3.19 C++ class win32Critical_Section.

Class win32Critical_Section can be used to create lockable objects:

 class lockableObject {
 public:
 void F() {
 mutex.lock();
 ...;
 mutex.unlock();
 }
 void G() {
 mutex.lock();
 ...; F(); ...; // method G() calls method F()
 mutex.unlock();
 }
 private:
 ...
 win32Critical_Section mutex;
 };

A better approach to creating lockable objects is to take advantage of C++ semantics for

constructing and destructing the local (automatic) variables of a method.

Listing 3.20 shows class template mutexLocker<> whose type parameter lockable

specifies the type of lock (e.g., win32Critical_Section) that will be used to create a

lockable object:

The constructor and destructor for mutexLocker are responsible for locking and unlocking

the lockable object that is stored as data member aLockable.

template<class lockable> class mutexLocker {
public:
 mutexLocker(lockable& aLockable_) : aLockable(aLockable_) {lock();}
 ~mutexLocker() { unlock();}
 void lock() {aLockable.lock();}
 void unlock() {aLockable.unlock();}
private:
 lockable& aLockable;
};
Listing 3.20 C++ class template mutexLocker.

To make a method a critical section, begin the method by creating a mutexLocker object.

 class lockableObject {
 public:
 void F() {
 mutexLocker< win32Critical_Section > locker(mutex);
 …
 }
 void G() {
 mutexLocker< win32Critical_Section > locker(mutex);
 …; F(); …; // this call to F() is inside a critical section
 }
 private:
 ...
 win32Critical_Section mutex;
 };

The locking and unlocking of mutex will occur automatically as part of the normal

allocation and deallocation of local variable locker:

� When locker is constructed, mute.lock() is called.

� When locker is destructed, mutex.unlock() is called.

It is now impossible to forget to unlock the critical section when leaving F() or G().

Furthermore, the destructor for locker will be called even if an exception is raised.

3.7.2 Mutex

A Mutex is a recursive lock with behavior similar to that of a CRITICAL_SECTION.

Operations WaitForSingleObject() and ReleaseMutex() are analogous to

EnterCriticalSection() and LeaveCriticalSection(), respectively:

� A thread that calls WaitForSingleObject() on a Mutex is granted access to the Mutex

if no other thread owns the Mutex; otherwise, the thread is blocked.

� A thread that calls WaitForSingleObject() on a Mutex and is granted access to the

Mutex becomes the owner of the Mutex.

� A thread releases its ownership by calling ReleaseMutex(). A thread calling

ReleaseMutex() must be the owner of the Mutex.

� A thread that owns a Mutex and requests access again is immediately granted access.

An owning thread must release a Mutex the same number of times that it requested

ownership, before another thread can become the owner.

Mutex objects have the following additional features:

� A timeout can be specified on the request to access a Mutex.

� When the Mutex is created, there is an argument that specifies whether the thread that

creates the Mutex object is to be considered as the initial owner of the object.

Listing 3.21 shows how to use a Mutex object. You create a Mutex by calling the

CreateMutex() function. The second parameter indicates whether the thread creating the

Mutex is to be considered the initial owner of the Mutex. The last parameter is a name

that is assigned to the Mutex.

HANDLE hMutex = NULL; // Global
Mutex
unsigned WINAPI Thread1(LPVOID lpvThreadParm) {
 // Request ownership of mutex.
 DWORD rc =::WaitForSingleObject(
 hMutex, // handle to the Mutex
 INFINITE); // wait forever (no timeout)
 switch(rc) {
 case WAIT_OBJECT_0: // wait completed successfully
 break; // received ownership
 case WAIT_FAILED: // wait failed
 // received ownership but the program's state is unknown
 case WAIT_ABANDONED:
 case WAIT_TIMEOUT: // timeouts impossible since INFINITE used
 PrintError("WaitForSingleObject failed at ",__FILE__,__LINE__);
 // see Listing 1.3 for PrintError().
 break;
 }
 // Release ownership of mutex
 rc = ::ReleaseMutex(hMutex);
 if (!rc) PrintError("ReleaseMutex failed at ",__FILE__,__LINE__);
 return 0;
}
unsigned WINAPI Thread2(LPVOID lpvThreadParm) { /* same as Thread1 */ }
int main() {
HANDLE threadArray[2];
 unsigned threadID;
 hMutex = CreateMutex(
 NULL, // no security attributes
 FALSE, // this mutex is not initially owned by the creating thread
 NULL); // unnamed mutex that will not be shared across processes
 threadArray[0]= (HANDLE)_beginthreadex(NULL,0,Thread1,NULL,0,
 &threadID);
 threadArray[1]= (HANDLE)_beginthreadex(NULL,0, Thread2, NULL,0,
 &threadID);
 WaitForMultipleObjects(2,threadArray,TRUE,INFINITE);
 CloseHandle(threadArray[0]); // release references when finished with them
 CloseHandle(threadArray[1]); CloseHandle(hMutex);
 return 0;
}
Listing 3.21 Using Win32 Mutex objects.

Unlike a CRITICAL_SECTION, a Mutex object is a kernel object that can be shared

across processes.

The fact that Mutex objects are kernel objects means that CRITICAL_SECTIONS may

be faster than Mutexes:

� If a thread executes EnterCriticalSection() on a CRITICAL_SECTION when the

CRITICAL_SECTION is not owned, an atomic interlocked test is performed (see

Sections 2.2.1 and 2.3) and the thread continues without entering the kernel.

� If the CRITICAL_SECTION is already owned by a different thread, then the thread

enters the kernel and blocks. A call to WaitForSingleObject() on a Mutex always

enters the kernel.

If a thread terminates while owning a Mutex, the Mutex is considered to be “abandoned”.

� When this happens, the system will grant ownership of the Mutex to a waiting thread.

� The thread that becomes the new owner receives a return code of

WAIT_ABANDONED.

3.7.3 Semaphore

Win32 Semaphores are counting semaphores. Operations WaitForSingleObject() and

ReleaseSemaphore() are analogous to P() and V(), respectively.

When a Semaphore is created, its initial and maximum values are specified:

� initial value must be greater than or equal to zero and less than or equal to the

maximum value.

� maximum value must be greater than zero.

� the value of the Semaphore can never be less than zero or greater than the specified

maximum value.

 HANDLE hSemaphore;
 hSemaphore = CreateSemaphore(
 NULL, // no security attributes
 1L, // initial count
 LONG_MAX, // maximum count (defined in C++ as at least 2147483647)
 NULL); // unnamed semaphore
 if (!hSemaphore) PrintError("CreateSemaphore",__FILE__,__LINE__);

 DWORD rc = WaitForSingleObject(
 hSemaphore, // handle to semaphore
 INFINITE); // no time-out
 switch(rc) {
 case WAIT_OBJECT_0:
 break; // wait completed successfully
 case WAIT_FAILED:
 case WAIT_TIMEOUT: // no timeouts possible since INFINITE was used
 PrintError("WaitForSingleObject failed at ",__FILE__,__LINE__);
 break;
 }
 rc = ReleaseSemaphore(
 hSemaphore, // handle to semaphore
 1, // increase count by one
 NULL); // not interested in previous count
 if (!rc) PrintError("Release Semaphore failed at ",__FILE__,__LINE__);

� The second argument for ReleaseSemaphore() specifies how much to increment the

value of the Semaphore.

� The last argument for ReleaseSemaphore() is the address of a long value that will

receive the value of the Semaphore’s count before incrementing the count.

When you are finished with the semaphore call CloseHandle() to release your reference

to it:

 CloseHandle(hSemaphore);

A simple C++ wrapper class called win32Semaphore is shown in Listing 3.22.

#include <windows.h>
#include <limits.h>
const int maxDefault = LONG_MAX; //defined in C++ as at least 2147483647
class win32Semaphore {
private:
 HANDLE hSemaphore;
 int initialValue; int maxValue;
public:
 void P();
 DWORD P(long timeout);
 void V();
 win32Semaphore(int initial);
 win32Semaphore(int initial, int max);
 ~win32Semaphore();
};

win32Semaphore :: win32Semaphore(int initial) : initialValue(initial),
maxValue(maxDefault) {
 hSemaphore = CreateSemaphore(
 NULL, // no security attributes
 initial, // initial count
 maxValue, // maximum count
 NULL); // unnamed semaphore
 if (!hSemaphore) PrintError("CreateSemaphore",__FILE__,__LINE__);
}

win32Semaphore :: win32Semaphore(int initial, int max) : initialValue(initial),
 maxValue(max) {
 hSemaphore = CreateSemaphore(
 NULL, initial, maxValue, NULL);
 if (!hSemaphore) PrintError("CreateSemaphore",__FILE__,__LINE__);
}

win32Semaphore :: ~win32Semaphore() {
 DWORD rc = CloseHandle(hSemaphore);
 if (!rc) PrintError("CloseHandle",__FILE__,__LINE__);
}

void win32Semaphore :: P() {
 DWORD rc = WaitForSingleObject(
 hSemaphore, // handle to semaphore
 INFINITE); // no time-out
 if (!rc) PrintError("WaitForSingleObject",__FILE__,__LINE__);
}

DWORD win32Semaphore :: P(long timeout) {
 DWORD rc = WaitForSingleObject(hSemaphore, timeout); // no time-out
 if (!(rc==WAIT_OBJECT_0)||(rc==WAIT_TIMEOUT))
 PrintError("WaitForSingleObject failed at ",__FILE__,__LINE__);
 return rc;
}

void win32Semaphore :: V() {
 DWORD rc = ReleaseSemaphore(
 hSemaphore, // handle to semaphore
 1, // increase count by one
 NULL); // not interested in previous count
 if (!rc) PrintError("ReleaseSemaphore failed at ",__FILE__,__LINE__);
}

Listing 3.22 Class win32Semaphore.

3.7.3.1 Class mutexLock.

Class mutexLock in Listing 3.23 guarantees FCFS notifications.

� When a thread needs to wait in method lock(), it acquires a win32Semaphore from a

pool of available semaphores, inserts the semaphore into a FCFS queue, and executes

a P() operation on the semaphore.

� In method unlock(), ownership of the mutexLock is passed to a waiting thread by

performing a V() operation on the semaphore at the front of the queue.

� The unblocked thread returns its win32Semaphore to the pool by calling release().

The FCFS queue of semaphores maintained by class mutexLock guarantees FCFS

notifications for mutexLock objects.

� Each thread that is blocked in method lock() is blocked on a win32Semaphore in the

queue.

� The unlock() operation unblocks the thread that has been blocked the longest.

Acquiring semaphores from a semaphore pool makes it possible to reuse

win32Semaphores instead of creating a new one each time a thread blocks:
� The semaphore pool initially contains a single semaphore.

� If an attempt is made to acquire a semaphore when the pool is empty, the acquire()

method creates another semaphore and adds it to the pool.

This type of “resource pooling” is commonly used for resources that are expensive to

create.

3.7.3.2 Class countingSemaphore.

Class countingSemaphore in Listing 3.24 uses a FCFS queue of win32Semaphores to

implement FCFS notifications just as mutexLock did.

Class countingSemaphore also provides an implementation of the VP() operation. An

execution of t.VP(s) performs a V() operation on s followed by a P() operation on t.

The VP() operation must lock both semaphores before either operation is begun. This

locking must be done carefully.

 Thread 1 Thread 2

 t.VP(s); s.VP(t);

If Thread 1 succeeds in locking s while Thread 2 succeeds in locking t, then neither

thread will be able to lock its other semaphore, resulting in a deadlock.

To prevent this circular waiting condition from occurring, the locks for the two

semaphores are always acquired in the same order. This is accomplished by giving each

semaphore a unique ID and forcing the VP() operation to lock the semaphore with the

lowest ID first.

The V() part of a VP() operation must satisfy the requirement that it will not block. This is

checked by VP().

� If a V() is attempted on a binary semaphore whose permits value is 1, the VP()

operation fails.

� If the P() part of the operation is required to block, VP() releases both semaphore

locks and blocks the calling thread.

class countingSemaphore : public semaphore {
// a countingSemaphore with FCFS notifications
private:
 std::queue<win32Semaphore*> waitingP; // queue of threads blocked on P
 bool doP();
 semaphorePool pool; // pool of semaphores
public:
 countingSemaphore(int initialPermits);
 void P();
 void V();
 void VP(semaphore* vSem);
};

countingSemaphore::countingSemaphore(int initialPermits):semaphore(initialPermits){}

void countingSemaphore::P() {
 lock(); // lock is inherited from class semaphore
 --permits;
 if (permits>=0) {unlock(); return; }
 // each thread blocks on its own semaphore
 win32Semaphore* s = pool.acquire();
 waitingP.push(s); // append the semaphore
 unlock();
 s->P(); // block on the semaphore
 pool.release(s);
}

void countingSemaphore::V() {
// each thread blocks on its own semaphore
 lock(); // lock semaphore
 ++permits;
 if (permits>0) { unlock(); return; }
 win32Semaphore* oldest = waitingP.front();
 waitingP.pop();
 oldest->V();
 unlock(); // end synchronized(this) to avoid doing s.P() while
} // holding the lock on this semaphore

bool countingSemaphore::doP() {
// Called by VP() operation; checks permits and returns true if P() should block;
// false otherwise.
 --permits;
 if (permits>=0) return false; // P() does not block
 else return true; // P() does block
}

void countingSemaphore::VP(semaphore* vSem) {
// Execute {vSem->V(); this->P();} without any intervening P() or V() operations
// on this or vSem. Return 0 if this operation fails.
// Lock the semaphores in ascending order of IDs to prevent circular deadlock (i.e.
// T1 holds the lock of this and waits for vSem's lock while T2 holds vSem's lock
// and waits for the lock of this.)
 semaphore* first = this; semaphore* second = vSem;
 if (this->getSemaphoreID() > vSem->getSemaphoreID()) {
 first = vSem; second = this;
 }
 first->lock(); second->lock();
 //vSem.V() must not block
 if (vSem->permits==1 && vSem->isBinarySemaphore()) {
 // method isBinarySemaphore() is inherited from class semaphore
 std::cout << "VP failed at line " << __LINE__ << " in " << __FILE__
 << " with error: V operation will block." << std::endl;
 exit(1);
 }
 // perform vSem.V()
 vSem->V(); // okay to already hold vSem's lock (which is first or second)
 // since it is a recursive lock
 // perform this->P()
 bool blockingP = doP();
 if (!blockingP) {second->unlock(); first->unlock();}
 // each thread blocks on own semaphore
 win32Semaphore* s = pool.acquire();
 waitingP.push(s); // otherwise append blocked thread
 second->unlock(); // unlock semaphores before blocking
 first->unlock();
 s->P(); // s is already in waitingP so FCFS is enforced
 pool.release(s);
}
Listing 3.24 C++/Win32 class countingSemaphore.

3.7.4 Events

One thread can signal the occurrence of an activity or event to one or more other threads

using a Win32 Event object.

� An Event can be either a manual-reset or auto-reset Event.

� The state of an Event is either “signaled” or “nonsignaled”.

� When an Event is created, the initial state (signaled or non-signaled) and the type

(manual-reset or auto-reset) is specified.

Signaling an event:

� When the state of a manual-reset Event object is set to signaled, it remains signaled

until it is explicitly reset to non-signaled by the ResetEvent() function. Any number of

waiting threads, or threads that subsequently begin wait operations for the specified

Event object, can be released while the object's state is signaled.

� When the state of an auto-reset Event object is set to signaled, it remains signaled until

a single waiting thread is released; the system then automatically resets the state to

non-signaled.

The state of an Event is changed using SetEvent(), ResetEvent(), or PulseEvent():

� SetEvent():

o For an auto-reset event, SetEvent() sets the state to signaled until one waiting

thread is released. That is, if one or more threads are waiting one will be released

and the state will be reset to nonsignaled. If no threads are waiting, the state will

stay signaled until one thread waits, at which time the waiting thread will be

released and the state will be returned to nonsignaled.

o For a manual-reset event, all waiting threads are released and the state remains

signaled until it is reset by ResetEvent(). Setting an event that is already in the

signaled state has no effect.

� ResetEvent() sets the state to nonsignaled (for both manual-reset and auto-reset

Events). Resetting an event that is already in the nonsignaled state has no effect

� PulseEvent()

o For a manual-reset event, PulseEvent() sets the state to signaled, wakes up all

waiting threads, then returns the state to nonsignaled.

o For an auto-reset event, PulseEvent() sets the state to signaled, wakes up a single

waiting thread (if one is waiting), then returns the state to nonsignaled. If no

threads are waiting, PulseEvent() simply sets the state to nonsignaled and returns.

We used a manual-reset Event in the implementation of the C++/Win32 Thread class

from Chapter 1. Listing 3.25 shows several methods of class Thread.

Thread::Thread(std::auto_ptr<Runnable> runnable_) : runnable(runnable_) {
 if (runnable.get() == NULL)
 PrintError("Thread(std::auto_ptr<Runnable> runnable_) failed at ",
 __FILE__,__LINE__);
 completionEvent = CreateEvent(
 NULL, // no security attributes
 1, // manual reset Event
 0, // initially nonsignaled
 NULL); // unnamed event

 hThread = (HANDLE)_beginthreadex(NULL,0, Thread::startThreadRunnable,
 (LPVOID)this, CREATE_SUSPENDED, &winThreadID);
 if (!hThread) PrintError("_beginthreadex failed at ",__FILE__,__LINE__);
 }
}

unsigned WINAPI Thread::startThread(LPVOID pVoid) {
 Thread* aThread = static_cast<Thread*> (pVoid);
 assert(aThread);
 aThread->result = aThread->run();
 aThread->setCompleted();
 return reinterpret_cast<unsigned>(aThread->result);
}

void* Thread::join() {
 DWORD rc = WaitForSingleObject(
 completionEvent, // handle to event
 INFINITE); // no timeout
 if (!(rc==WAIT_OBJECT_0))
 PrintError("WaitForSingleObject failed at ",__FILE__,__LINE__);
 return result;
}

void Thread::setCompleted() {
 DWORD rc = SetEvent(completionEvent);
 if (!rc) PrintError("SetEvent failed at ",__FILE__,__LINE__);
}

Listing 3.25 The Event object in the Win32 Thread class.

Recall from Chapter 1 that the Thread class constructor calls Win32 function

_beginthreadex() to create a new Win32 thread. Several arguments are passed to

_beginthreadex(), including:

� Thread::startThread(): the startup method for the Win32 thread

� (LPVOID) this: a pointer to the Thread object that is being constructed. This pointer is

forwarded to method startThread().

Method startThread():
� casts its void* pointer parameter to Thread*

� then calls the run() method of the Thread.

� When run() returns, startThread() calls setCompleted() to set the thread’s status to

completed and to notify any threads waiting in join() that the thread has completed.

Methods setCompleted() and join() are implemented using an Event called

completionEvent that is created in the Thread class constructor.

� A thread calling T.join() is blocked on completionEvent if T has not yet completed.

� The call to setCompleted() releases all threads that are blocked on completionEvent

and leaves completionEvent in the signaled state.

� Since the completionEvent is never reset, threads that call join() after setCompleted()

is called are not blocked.

If completionEvent were an auto-reset event, then a call to setCompleted() would release

all the waiting threads and reset completionEvent to the non-signaled state.

This would cause a problem since any threads that then called T.join() would be blocked

forever even though thread T had already completed.

3.7.5 Other Synchronization Functions

The WaitForMultipleObjects() function was described in Section 1.4 where it was used in

the main thread to wait for child threads to finish.

� Threads are kernel objects and thus are either in the signaled or non-signaled state.

When a thread is created and running, its state is non-signaled.

� When the thread terminates, it becomes signaled.

The SignalObjectAndWait() function allows the caller to atomically signal an object and

wait on another object. When used with semaphores, it is equivalent to the VP() operation

defined in Section 3.4.2.

 DWORD SignalObjectAndWait(
 HANDLE // handle to object for signal
 HANDLE // handle to object for wait
 DWORD // time-out interval
 BOOL // alertable option: specifies whether the wait state can be aborted
);

Function SignalObjectAndWait() is available in Windows NT/2000 4.0 and higher. It is

not supported in Windows 95/98.

3.7.6 Example: C++/Win32 Bounded Buffer

Listing 3.26 is a Win32 solution to the bounded buffer problem that is based on the Java

version in Listing 3.17.

const int capacity = 3;
class Buffer {
private:
 int buffer[capacity];
 int count, in, out;
public:
 Buffer() : in(0), out(0), count(0) { }
 int size() { return count;}
 int withdraw () {
 int value = 0;
 value = buffer[out]; // out is shared by consumers
 out = (out + 1) % capacity;
 count--;
 return value;
 }
 void deposit (int value) {
 buffer[in] = value; // in is shared by producers
 in = (in + 1) % capacity;
 count++;
 }
};

Buffer sharedBuffer; // 3-slot buffer
mutexLock mutexD, mutexW;
countingSemaphore emptySlots(capacity);
countingSemaphore fullSlots(0);
int main() {
 std::auto_ptr<Producer> p1(new Producer);
 std::auto_ptr<Producer> p2(new Producer);
 std::auto_ptr<Consumer> c1(new Consumer);
 std::auto_ptr<Consumer> c2(new Consumer);
 p1->start();c1->start(); p2->start();c2->start();
 p1->join(); p2->join(); c1->join(); c2->join();
 return(0);
}

Listing 3.26 Win32 bounded buffer using countingSemaphores and mutexLocks.

class Producer : public Thread {
public:
 virtual void* run () {
 int i;
 std::cout << "producer running" << std::endl;
 for (i=0; i<2; i++) {
 emptySlots.P();
 mutexD.lock();
 sharedBuffer.deposit(i);
 std::cout << "Produced: " << i << std::endl;
 mutexD.unlock();
 fullSlots.V();
 }
 return 0;
 }
};
class Consumer : public Thread {
public:
 virtual void* run () {
 int result;
 std::cout << "consumer running" << std::endl;
 for (int i=0; i<2; i++) {
 fullSlots.P();
 mutexW.lock();
 result = sharedBuffer.withdraw();
 mutexW.unlock();
 std::cout << "Consumed: " << result << std::endl;
 emptySlots.V();
 }
 return 0;
 }
};

Listing 3.26 (cont.) Win32 bounded buffer using countingSemaphores and mutexLocks.

