
1.4 Threads in Win32 

 

Multithreaded programs in Windows use the functions in the Win32 API. Threads are 

created by calling function _beginthreadex(): 

 

 unsigned long _beginthreadex( 
 void* security, // security attribute 
 unsigned stackSize, // size of the new thread’s stack 
 unsigned ( __stdcall *funcStart ) (void *), // starting address of function to run 
 void* argList, // arguments to be passed to the thread 
 unsigned initFlags, // initial state of the thread: running or suspended 
 unsigned* threadAddr // thread ID 

 ); 
 
If _beginthreadex() is successful, it returns a valid thread handle, which must be cast to 

the Win32 type HANDLE to be used in other functions. It returns 0 if it fails. 
 

The program in Listing 1.3 is a C++/Win32 version of the Java program in Listing 1.1.  

� Each thread executes the code in function simpleThread(), 

� Thread IDs are integers that the user supplies as the fourth argument on the call to 

function _beginthreadex().  

� The main thread uses function WaitForMultipleObjects() to explicitly wait for both 

threads to complete before it exits the main() function. (Java’s main() method 

implicitly waits for its child threads to complete.)  

� When both threads have completed, function GetExitCodeThread() is used to capture 

the return values of the threads. 

 

The Windows operating system uses preemptive, priority-based scheduling. 



#include <iostream> 
#include <windows.h> 
#include <process.h> // needed for function _beginthreadex() 
 
unsigned WINAPI simpleThread (LPVOID myID) { 
// myID receives the 4th argument of _beginthreadex(). 
// Note: “WINAPI” refers to the “__stdcall” calling convention used to call Win32  
// API functions, and “LPVOID” is a Win32 data type defined as void* 
 
 std::cout << "Thread " << (unsigned) myID << " is running" << std::endl; 
 return (unsigned) myID; 
} 
 
int main() { 
 const int numThreads = 2; 
 HANDLE threadArray[numThreads]; // array of thread handles 
 unsigned threadID; // returned by _beginthreadex(), but not used 
 DWORD rc; // return code; (DWORD is defined in WIN32 as unsigned long) 
 
 // Create two threads and store their handles in array threadArray 
 threadArray[0]=(HANDLE)_beginthreadex(NULL,0,simpleThread,(LPVOID)  
  1U,0,&threadID); 
 threadArray[1]=(HANDLE)_beginthreadex(NULL,0,simpleThread,(LPVOID)  
  2U,0,&threadID); 
 
 // wait for threads to finish 
 rc = WaitForMultipleObjects(numThreads,threadArray,TRUE,INFINITE);  
 
 DWORD result1, result2; // these variables will receive the return values 
 rc = GetExitCodeThread(threadArray[0],&result1); 
 rc = GetExitCodeThread(threadArray[1],&result2); 
 std::cout << "thread1:" << result1 << " thread2:" << result2 << std::endl; 
 
 rc = CloseHandle(threadArray[0]); // release reference to thread when finished 
 rc = CloseHandle(threadArray[1]); 
 return 0; 
} 
 
Listing 1.3 A simple concurrent program using C++/Win32. 
 


