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CHAPTER I

INTRODUCTION

Software testing continues to be an area of active research, since the demand for re-

liable software is high and will remain high in the future. Reliable software can be achieved

through testing, but current testing methods are computationally expensive. Recent de-

velopments in the area of distributed computing coupled with ongoing research in software

testing provide us with the opportunity to produce testing tools which can be cost effective.

Mutation testing is a technique, originally proposed in 1978 [1], that asks the tester

to demonstrate that a program being tested does not contain a finite, well-specified set of

faults. The tester does this by finding test cases that cause faulty versions of the program

to fail and either get correct output from the tested program (demonstrating its quality) or

also cause the tested program to fail (detecting a fault).

Unit level testing techniques, of which mutation is one, hold great promise for improv-

ing the quality of software. Unfortunately, the application of these techniques is currently

so expensive that we cannot afford to use them.

This paper focuses on and presents two areas of research: first, the development

of and experimental results with a distributed implementation of the Mothra mutation

testing system called MedusaMothra; and second, the experimentation with a dynamic

load balancing technique, which we term natural load balancing.

Chapter II introduces the concepts of mutation analysis and shows why this testing

method is computationally expensive. Chapter III discusses the Mothra software testing en-

vironment. Chapter IV discusses previous work in parallel mutation testing and introduces

MedusaMothra. Chapter V looks at the issues and problems involved with load balanc-

ing in general and static and dynamic load balancing in particular. Chapter VI gives an

overview over the MedusaMothra design issues and highlights some of the implementation

details. Chapter VII presents the experimental procedures used, the performance results,

and evaluates the natural load balancing model. Chapter VIII provides a concise summary

of our results and concludes with suggestions for future work, emphasizing areas that need

to be addressed for further improvement.



CHAPTER II

MUTATION ANALYSIS

Mutation testing helps a user create test data by interacting with the user to iter-

atively strengthen the quality of test data. During mutation testing, faults are introduced

into a program by creating many versions of the program, each of which contains one fault.

Test data is used to execute these faulty programs with the goal of causing the faulty pro-

gram to fail. Hence the term mutation; faulty programs are mutants of the original, and a

mutant is killed when a test case causes it to fail. When this happens, the mutant is consid-

ered dead and no longer needs to remain in the testing process since any faults represented

by that mutant would have been detected.

Figure 1 contains a simple Fortran function with three mutated lines (preceded by

the ∆ symbol).

FUNCTION Min (I,J)

1 Min = I

∆ Min = J
2 IF (J .LT. I) Min = J

∆ IF (J .GT. I) Min = J

∆ IF (J .LT. Min) Min = J

3 RETURN

Figure 1. Function Min.

Note that each of the mutated statements represents a separate program. The most

recent mutation system, Mothra [2, 3], uses 22 types of mutation operators to test Fortran 77

programs. These operators have been developed and refined over 10 years through several

mutation systems. A complete list of the current Mothra mutation operators and their

descriptions can be found in Table 1.

The mutation operators are limited to simple changes because of the coupling effect,

which says that complex faults are coupled to simple faults in such a way that a test data

set that detects all simple faults in a program will detect most complex faults [1, 4].
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Table 1. Mothra mutation operators.

Mutation
Operator Description

AAR array reference for array reference replacement
ABS absolute value insertion
ACR array reference for constant replacement
AOR arithmetic operator replacement
ASR array reference for scalar variable replacement
CAR constant for array reference replacement
CNR comparable array name replacement
CRP constant replacement
CSR constant for scalar variable replacement
DER DO statement end replacement
DSA DATA statement alterations
GLR GOTO label replacement
LCR logical connector replacement
ROR relational operator replacement
RSR RETURN statement replacement
SAN statement analysis
SAR scalar variable for array reference replacement
SCR scalar for constant replacement
SDL statement deletion
SRC source constant replacement
SVR scalar variable replacement
UOI unary operator insertion
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The mutation testing process begins with the construction of mutants of a test pro-

gram. The user then adds test cases to the mutation system and checks the output of the

program on each test case to see if it is correct. If incorrect, a fault has been found and

the program must be modified and the process restarted. If the output is correct, that test

case is executed against each live mutant. If the output of a mutant differs from that of the

original program over the same test case, it is assumed to be incorrect and the mutant is

killed.

After all of the test cases have been executed against all of the live mutants, each

of the remaining mutants falls into one of two categories. One, the mutant is functionally

equivalent to the original program. An equivalent mutant always produces the same output

as the original program, so no test case can kill it. Two, the mutant is killable, but the set

of test cases is insufficient to kill it. In this case, new test cases need to be created, and

the process iterates until the test set is strong enough to satisfy the tester. The mutation

score for a set of test data is the percentage of non-equivalent mutants killed by that data.

We call a set of data mutation-adequate if its mutation score is 100%. The mutation testing

process is depicted graphically in Figure 2. P is the program to be tested and T is the test

case set.

The major computational cost of mutation testing is incurred when running the

mutant programs against the test cases. Offutt et al. [5] have analyzed the number of

mutants generated for a program and found them to be roughly proportional to the product

of the number of data references times the size of the set of data objects. Typically, this

is a large number. For example, 44 mutants are generated for the function Min shown in

Figure 1. For a typical 30 line subroutine, between 900 and 1000 mutants will be created.

Since each mutant must be executed against at least one, and potentially many, test cases,

mutation testing requires large amounts of computation.
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Figure 2. Mutation testing process.



CHAPTER III

THE MOTHRA SOFTWARE TESTING ENVIRONMENT

The Mothra software testing environment was developed at the Georgia Institute of

Technology and consists of several tools that allow the user to interactively test a Fortran 77

program [2, 3, 6]. Figure 3 shows the architecture of Mothra and the interactions between

the tools 1.

Expected

rosetta

mapper
godzilla

Source parser
Code
Symbol

Test Cases

Source

decode

mutmake MDR

Figure 3. Mothra system architecture.

Parser translates a Fortran 77 program into intermediate code and creates symbol

table information. Mutmake uses the intermediate code and the symbol table information to

1Taken from King and Offutt [3]
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produce mutant descriptor records (MDRs). Mapper allows the user to interactively create

and modify test cases. An alternative to mapper is godzilla, which generates test cases

automatically based on path expressions and necessity constraints [7]. Rosetta executes

intermediate code instructions and can be used in two modes: (1) executing the original

program and creating the expected output; or (2) executing the mutant programs on one

or more test cases. Decode enables the user to view a Fortran 77 program, its intermediate

code, mutations, and/or symbol table information. Besides these tools, additional tools

allow the user to retrieve status information for a particular testing experiment.



CHAPTER IV

PREVIOUS WORK IN PARALLEL MUTATION TESTING

Several proposals and attempts have been made to implement mutation testing on

high-performance machines to speed up the testing process. The target machines for

these efforts were vector processors, single-instruction-multiple-data (SIMD) or multiple-

instruction-multiple-data (MIMD) machines. This section briefly reviews previous work in

parallel mutation testing and discusses two implementations of HyperMothra in more

detail.

General Work

Mathur and Krauser proposed mutant unification [8, 9]. They suggest that vector-

izable programs be created, each of which incorporates several mutants of the same type,

which are unified into one program. Their hope is that a vector processor could then exe-

cute the unified mutant programs and achieve a significant speedup over a scalar processor.

In a later publication [10], Krauser, Mathur, and Rego expand their concept of mutant

unification to SIMD machines. Although the simulation results were showing significant

speedup, two major problems are still to be overcome in this proposal: (1) the lack of a

mutant unifier, and (2) the compilation bottleneck. Neither proposal has been implemented

and the authors imply in their papers that both techniques require further research before

it can become practical for mutation testing.

The latest efforts to increase the performance of mutation testing have been im-

plemented on multiple-instruction-multiple-data (MIMD) machines. Two main approaches

are currently researched: (1) compiling the mutant programs and executing them on node

processors; and (2) parallelizing Mothra’s interpreter.

Choi, Mathur, and Pattison [11, 12] developed a framework for scheduling mutant

executions on the nodes of a hypercube (PMothra). Each mutant is separately compiled

on a host processor and the resulting executable programs are scheduled for execution on

the node processors. Again, the speedup for the tested programs was significant, but the

compilation bottleneck makes this system impractical.
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HyperMothra and Static Load Balancing

A completely different approach to speed up the mutation testing process has been

taken by Offutt et al. [13]. Using an Intel iPSC/2 hypercube, the Mothra interpreter is

divided into a host interpreter and a node interpreter, and the actual mutant interpreta-

tion is moved to node processors. In the resulting tool, HyperMothra, a host processor

distributes mutants to each node processor and the node processors interpret mutants for

each test case. Each test case and its expected output is sent to all nodes. Each node

interprets all its mutants against each test case and sends the number of live mutants back

to the host processor. Once all test cases have been distributed and executed, the nodes

send the remaining mutant information back to the host. In this first implementation of

HyperMothra, static load balancing was implemented; i.e., the mutants were distributed to

the node processors only once and no mutants were moved from one node to another during

execution. Three mutant distribution orders were used: (1) as created by the mutmake tool;

(2) in random order; and (3) by mutant type (Round-Robin).

Experiments with HyperMothra yielded the best speedup when the mutants were

distributed by their type order (Round-Robin). Additionally, the communication overhead

is relatively high in comparison to the execution cost when testing small programs, but for

larger programs, nearly linear speedups were observed.

HyperMothra and Dynamic Load Balancing

Khambekar [14] used this already existing version of HyperMothra and added two

dynamic load balancing schemes to the HyperMothra interpreter, Buddy and Hierarchical.

Both schemes allow for the nodes to exchange mutants if one node finishes applying a test

case to its assigned mutants while another node is still executing mutants. This process

of dynamic balancing continues until all nodes have finished interpreting the current test

case and the next test case is issued. Buddy combines several nodes which can exchange

mutants during dynamic load balancing efforts, whereas Hierarchical establishes a hierarchy

between the nodes and uses this hierarchy to perform dynamic load balancing. Although

parallelization with static load balancing provided very good speedup and consequently high

efficiency, dynamic load balancing resulted in an even higher efficiency, with both balancing

schemes performing nearly identically.
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Discussion

The currently existing approaches to parallelize mutation testing have three prob-

lems. First, they were either only partially implemented or not implemented at all; second,

some existing implementations have limitations that make them impractical for extensive

testing applications; and third, current implementations use special, not necessarily widely

available architectures such as vector processors or hypercubes for parallel mutant execu-

tion.

The remainder of this paper presents a distributed mutation testing system, Me-

dusaMothra. MedusaMothra is fully implemented within the Mothra software testing

environment and has the same functionality as the Mothra mutant interpreter rosetta.

Additionally, MedusaMothra does not require a specialized hardware architecture such as

a hypercube for distributed mutant execution and can be executed in the same computing

environment as all the existing Mothra tools. MedusaMothra also uses a different dynamic

load balancing scheme than dynamic HyperMothra.



CHAPTER V

LOAD BALANCING TAXONOMY

In the latter part of the previous chapter, we described the static and dynamic

load balancing techniques used in HyperMothra. Since MedusaMothra employs a specific

dynamic load balancing technique, some major issues and problems of load balancing in

general are discussed in this chapter. We also show how these issues influenced the design

of the two HyperMothra implementations. (In this paper, we will refer to Fichter’s imple-

mentation of HyperMothra [15] as static HyperMothra and to Khambekar’s implementation

of HyperMothra [14] as dynamic HyperMothra.) It has to be mentioned that dynamic Hy-

perMothra was implemented in the context of a much broader study of load balancing on

several different architectures, whereas static HyperMothra only focused on one static load

balancing scheme for one specific architecture, an Intel iPSC/2 hypercube. As a result, we

focus our discussion more on dynamic HyperMothra.

Load balancing is part of the broad problem of resource allocation; its main problem

is how to distribute tasks among processors connected by a network to equalize the workload

among the processors. (In this paper, all load that needs to be balanced will be referred to

as “tasks”.) As a result, the execution time of an application will be reduced. These issues

need to be addressed when talking about load balancing [14, 16, 17, 18].

Location of Decision. Status information of all processors and execution environments

can be collected at one centralized location where a scheduler is used to dispatch

tasks to suitable locations for processing; or the decision making process can be

physically distributed among the processors that use information stored in many

places. Simplicity gives the centralized approach a major advantage, but at the same

time, it suffers from several drawbacks such as congestion at the central processor

and low reliability in case of failure of the central processor. In the hierarchical

implementation of dynamic HyperMothra, processors are grouped together with an

assigned group head. Each member of any particular group keeps its own status
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and each group head maintains condensed load status information on the group

as a whole. As a result, the hierarchical implementation of dynamic HyperMothra

is mostly distributed with some partial centralizations at the group heads. The

decision-making process in the buddy implementation of dynamic HyperMothra is

purely distributed.

Load Granularity. The granularity of load can be divided into three levels [14]: process,

subtask, and data–item level, each representing, for example, entities such as pro-

cesses, multiple related data structures, and elements of an array, respectively. The

granularity of load in both load balancing schemes of HyperMothra is at the mu-

tant and/or test case level; i.e., mutant and/or test case information is exchanged

between processors (data–item level).

Load Estimation/Calculation. Load estimation/calculation should include processor,

process, and environment characteristics. The load is calculated as either the num-

ber of tasks in the queue of each processor, the amount of data that needs to be

processed by each processor, the total time requirement, or the throughput at each

processor. Usually, the load on each processor is only estimated; in a few cases it

is either exactly known or assumed to be known a priori. The hierarchical scheme

of dynamic HyperMothra does not specify the type of load calculation; the buddy

implementation uses the task queue length for the load calculation. Both load bal-

ancing schemes use only local processor load information for load calculation and

do not take process and environment characteristics into consideration.

Homogeneity of Processors. It is important to take the capabilities of all processors

involved into consideration when selecting or designing a load balancing method.

For example, some processors might be limited to integer arithmetic or some others

may have added vector or graphics capabilities. Both load balancing schemes of

dynamic HyperMothra can be applied to heterogeneous systems. Khambekar notes

in his dissertation [14] that a heterogeneous system with processors having different

CPU and/or I/O speed can be handled by simple modifications in the load cal-

culation. Heterogeneous systems in which some processors have special resources

need to be handled by having inhibitors when the load to be shared requires those

resources and the original requestor does not possess them.
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The above mentioned issues of load balancing cover topics that are relevant to static

and dynamic load balancing. Since HyperMothra is implemented with static and dynamic

load balancing, we further identity some issues that are specific to static and dynamic load

balancing and discuss how these issues were implemented in both versions of HyperMothra.

Static Load Balancing

In a system that employs static load balancing, decisions about the locations of

all tasks are made before the tasks start execution. This a priori assignment of tasks

to processors is made deterministically or probabilistically. A task is not moved from

one location to another after it has been assigned to a processor. Since no system state

information has to be maintained, Goscinski [17] identifies the simplicity of static load

balancing algorithms as the principal advantage. Static load balancing algorithms, however,

fail to adjust to changes in the system load and ultimately can suffer from poor resource

utilization.

Static HyperMothra assigns mutants to nodes of the hypercube. If static Hyper-

Mothra can claim the requested number of nodes, the mutant execution will take place;

otherwise, the user either has to decrease the number of requested nodes or wait until the

requested number of nodes becomes available. No system state information is maintained,

because once static HyperMothra claims a particular node, it does not have to compete

with other processes for CPU time on that particular node; i.e., that node is owned by

static HyperMothra until mutant execution is finished.

Dynamic Load Balancing

In contrast to static load balancing, dynamic load balancing attempts to equalize

system load during execution time. These dynamic load balancing issues need to be ad-

dressed.

Transfer Policy. The transfer policy determines at what load level a processor should

transfer out or transfer in a task. A transfer can be decided on no load data, on the

average or difference of the load among the sender and receiver processors, or on

the difference from the average load on the system. As a result, the transfer policy
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can be “Don’t Care,” a fixed threshold, or average load. Dynamic HyperMothra

uses a threshold to determine when to transfer tasks from one processor to another.

The load on a particular processor takes on one of two states: lightly loaded and

heavily loaded. It should also be noted that operating system support for dynamic

load balancing is not a common feature in most generally available systems. Process

migration is a facility to dynamically relocate a process from the processor on which

it is executing to another processor. In most cases, moving a process from one

processor to another requires extensive kernel support which may not be provided

(SunOS 4.1.1, for example, which was used during the MedusaMothra development,

does not support process migration).

Initiation Type. Some dynamic load balancing schemes off-load tasks or attempt to off-

load tasks from heavily loaded systems (load-driven/source-driven approach),

whereas in the demand-driven/server-driven approach, idle processors can ini-

tiate the action of balancing by requesting tasks from other processors. The second

approach reduces the overhead of initiation from already busy processors and places

it on idle processors. In a third scheme, some systems periodically exchange sta-

tus and/or balance tasks. Both load balancing schemes implemented in dynamic

HyperMothra use a demand-driven approach.

Amount of Status Data Exchanged. Since network traffic has a strong impact on the

performance of dynamic load balancing algorithms, the amount of exchanged data

between processors and the number of data exchanges between processors are im-

portant factors for designing dynamic load balancing algorithms. The amount of

information exchanged involves a tradeoff between having a high level of detail and

minimizing the volume of network traffic. It has been shown [19, 20] that extremely

simple scheduling policies provide dramatic performance improvement relative to

no load balancing. The performance achieved with simple policies is close to that

which can be expected from complex policies. Therefore, the amount of information

exchanged should be minimized.
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Number of Status Data Exchanges. The number of data exchanges between proces-

sors represents a tradeoff between the volume of network traffic and the desire to

communicate with every node in the system. A computer should send load infor-

mation to every remote computer, as this provides the greatest number of poten-

tial destinations for migrating tasks. The problem of how often load information

should be exchanged is still an open problem [21]. Dynamic HyperMothra uses

a broadcast approach to notify other nodes about load changes (lightly-loaded or

heavily-loaded). In the hierarchical scheme, a node informs the node above it in the

hierarchy about the status change. This new information change is propagated all

the way to the top of the hierarchy and therefore available to all the other nodes.

In the buddy implementation a node broadcasts a load change to its “buddies”; i.e.,

the nodes it was initially grouped with.

In this taxonomy, we deliberately chose just to emphasize the main load balancing

issues for static and dynamic load balancing that influenced the design of both HyperMothra

versions. In the next chapter, we will discuss how these load balancing issues influence the

design of MedusaMothra.



CHAPTER VI

MEDUSAMOTHRA DESIGN AND IMPLEMENTATION

Design Goals

Two main goals were set at the beginning of the design of MedusaMothra:

1. Speed up the mutation testing process. Ideally, we would like to see linear speedup.
Linear speedup is the ideal case where if n processors are used, a problem is solved
n times faster than if a single processor is used. In practice, linear speedup can
rarely be achieved, primarily because of the communication overhead.

2. Efficient dynamic load balancing. Ideally, all client processors would be fully avail-
able and we would like to see exact balance on all clients; i.e., each client performs
the same amount of work. A hypercube is an example of a system that provides
dedicated nodes. In practice, this exact balance cannot be guaranteed because of
the multi-user capabilities of the used Sun workstations. Other users can start pro-
cesses on any particular client and therefore reduce the CPU-time for the mutation
testing process on that particular client. The dynamic load balancing scheme should
recognize this situation and distribute tasks in a way that minimizes the running
time of the mutation testing process.

These two issues were the main motivations for the MedusaMothra implementation

The following sections describe how these goals influenced the design of MedusaMothra.

General Design Issues

Several issues were taken into consideration during the initial design phase of Medu-

saMothra. We examined the existing implementations of HyperMothra to see if the design

goals could be met by porting an existing HyperMothra version to Sun workstations. In

Chapter V, we mentioned that static HyperMothra deterministically assigns mutants to

nodes and does not take any load information into consideration. This strategy works well

on an architecture such as the hypercube because once an application “owns” a partic-

ular node, no other application or process can claim that node. Since Sun workstations

are multi-user workstations and therefore display a much more dynamic behavior in terms

of running multiple processes at the same time, the static HyperMothra load balancing

approach would have been unable to respond to the dynamic changes in a computing en-

vironment comprised of Sun workstations and as a result would suffer from poor resource

utilization.
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The load balancing of dynamic HyperMothra seemed to be more suited for a com-

puting environment with Sun workstations since dynamic load balancing schemes take the

system load into consideration. Both load balancing implementations targeted tightly-

coupled multi-processor systems. Since the hypercube, for example, provides dedicated

node processors that do not share CPU-time with any other user, both dynamic load bal-

ancing schemes initially distribute mutants to the processors. This initial distribution of

mutants could result in a performance degradation for both dynamic HyperMothra load

balancing schemes in a network of multi-user workstations. In the hierarchical scheme, it

is possible that some overloaded workstations are assigned mutants during the initial mu-

tant distribution. The hierarchical load balancing scheme would resolve this situation by

redistributing the mutants from the overloaded workstation to some unloaded workstations.

Since mutants are assigned to every workstation in the hierarchy, the unloaded workstations

have to execute the assigned mutants first before requesting work from another workstation.

In the worst case, the overloaded workstations would have executed no mutants and as a

result, all their assigned mutants would be distributed to other workstations causing addi-

tional communication overhead. In the buddy load balancing scheme, mutants are grouped

together in sets. In a network of multi-user workstations, a particular buddy set could be

comprised of only overloaded workstations. Since work is balanced only within a particular

buddy set, this dynamic load balancing scheme will balance work only on overloaded work-

stations and will not take any other, possibly unloaded workstations outside its buddy set

into consideration. As a result, performance of HyperMothra could be decreased.

Both implementations meet the first goal of speeding up the mutation testing pro-

cess, but we felt that the second goal, efficient dynamic load balancing in a network of

Sun workstations, would not be completely satisfied if we ported an already implemented

HyperMothra load balancing scheme to a computing environment comprised of Sun work-

stations. As a result, we developed a new dynamic load balancing scheme which we term

natural load balancing.

Natural load balancing is demand–driven. Clients request work from a particular

server and the server responds to a request with more information. The location of decision

is completely determined by the client and therefore purely distributed. The server is not
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involved at all in the decision–making process, but only responds to the client’s requests.

As a result, the server does not have to collect status data from any of the clients, which

minimizes the network traffic volume and overhead. No status data of any arbitrary client

is used to influence the decision on where to distribute more work. Clients only request

additional work when they finish a previously assigned task.

A centralized approach was chosen mainly because of its simplicity. In a centralized

model, one server accumulates all the necessary information and controls the access of the

clients to this information. Figure 4 depicts a possible configuration consisting of one server

and four clients.
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Figure 4. Centralized model.
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MedusaMothra employs the following communication scheme between the server and

any particular client. After making itself known to the server, a client initially receives some

initialization data and a (mutant, test case) pair, specifying the test case and the mutant

that needs to be executed. This initialization data is sent once in the beginning from the

server to the client, and after a particular client has initialized its data structures, it executes

the mutant against the test case and determines the status (alive or killed) of the mutant.

The status is sent back to the server. Once the server receives a status from a particular

client, a new (mutant, test case) pair is produced and sent to the client. Additionally, the

server updates the mutant descriptor file if necessary. The client executes this new mutant

against the received test case and determines its status. Figure 5 shows this recurring

communication between the server and any arbitrary client. When all mutants have been

executed against all test cases, a termination message is sent to all clients that request more

work.

(Mutant/Test Case) Information

Mutant Status (live/killed)

Server Client i

Figure 5. Communication between server and clients.

Figures 6 and 7 show the server and client algorithms. The server has two modes of

operation; original and mutant execution. During original execution, the expected output

for the original program is created. The expected output for each test case is used later

during mutant execution when expected output must be compared with mutant output. No

mutant programs are executed during original execution. Experience with Mothra indicates

that original output generation can be done efficiently on one workstation. During mutant

execution, the server accepts requests from the clients and generates the next (mutant, test

case) pair. The (mutant, test case) pairs are indices for the mutant descriptor file and the

test case file.
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begin MedusaMothraServer

read symbol table information

read intermediate code

read test case values

if (original execution) then
for (each selected test case) do

interpret original intermediate code

write expected output to output files

endfor
else

while (any client connected)

read request from a client

generate next mutant and test case pair

if (no more mutants or test cases) then
send "Good-Bye" message to client

mark client as disconnected

else /* initial request */

if (first request from client) then
send initialization information and

(mutant, test case) pair to client

else /* result from previous mutant execution */

send (mutant, test case) pair to client

if (mutant status == dead) then
mark mutant as killed in mutant descriptor file

endif
endif

endif
endwhile

endif
end MedusaMothraServer

Figure 6. MedusaMothra server algorithm.
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begin MedusaMothraClient

write initial request message to server

read initialization information and

(mutant, test case) pair from server

read symbol table information

read intermediate code

read test case values

while ("Good-Bye" message not received from server) do
generate received mutant

execute generated mutant against received test case

if (interpretation ends abnormally ||

mutant output values are incorrect) then
mark mutant status as killed

endif

send mutant status back to server

read new (mutant, test case) pair from server

endwhile

end MedusaMothraClient

Figure 7. MedusaMothra client algorithm.
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Implementation Details

Two protocol types for ARPA Internet communication are currently supported by

SunOS Release 4.1.1, which was used for the Implementation of MedusaMothra. The Trans-

mission Control Protocol/Internet Protocol (TCP/IP) and the User Datagram Protocol

(UDP). TCP is the virtual circuit (connection-oriented) protocol of the Internet protocol

family and provides reliable, flow-controlled, in-order, two-way transmission of data. The

connection establishment is achieved via a procedure called “three-way handshake,” and

significant state information is kept. UDP is a connectionless protocol, which provides un-

reliable delivery; acknowledgements are not used to confirm message delivery, and messages

may arrive out of order. As a result, messages can be lost, duplicated, or arrive out of order.

The major advantage of the connectionless service is the that the protocol is simple, data

delivery is fast, and there is no connection management (establishment, release) overhead

[17, 22]. However, the data delivery is unreliable which requires an underlying protocol

manager to correct the problems introduced by UDP. In contrast, TCP provides reliable

service, but because of the overhead created by the establishment and release operations

for the virtual circuits, it is less efficient.

MedusaMothra uses TCP/IP for its inter–process communication (IPC); i.e., the

communication between the server and the clients. We chose TCP for two reasons. First,

initial experiments and studies with both protocol types indicated that using a protocol

manager to correct UDP problems can actually thrash the server workstation when many

messages are sent. Second, considering the running time (usually at least several min-

utes) of MedusaMothra experiments, the overhead created by the establishment and release

operations for TCP connections can be neglected.

The Network File System (NFS) is used to perform transparent file access over the

network. The server and the client need permanent access to the mutant descriptor file, the

symbol table file, and the test case value file in order to create the necessary mutants and

test cases. Since only the server writes to the mutant descriptor file, any update/timing

problems introduced by NFS were also eliminated. We also used NFS to make the server

name and the port number at which the server accepts connections from any particular

client well-known to the clients. The server name and the port number are stored in a data
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file called “SERVER” and any client must have access to this file in order to establish a

connection with the server. Additionally, the names of all clients are stored in a data file

called “CLIENTS”. This file is only read by the server and is used as a security mechanism

to prevent unauthorized or unknown clients from connecting and sending messages to the

server.

The select() system call is used in the MedusaMothra server to multiplex between

the virtual circuits with the clients. Each virtual circuit is associated with one specific

I/O descriptor. The select() system call examines I/O descriptor sets to see if some of the

descriptors in a particular I/O descriptor set have data that is ready for reading, writing,

or have an exceptional condition pending. Using the select statement ensures that no

connections or data transmissions are pending without the server knowing about it. Figure

8 shows the use of the select() system call in the MedusaMothra server.

The server listens to a well–known socket which the clients use to establish the initial

virtual circuit and adds it to the I/O descriptor set. Once the select() call indicates that

some data can be retrieved at any of the I/O descriptors in the set, priority is given to

the initial connection requests of any client in an effort to maximize the number of known

clients to the server.

User Interface

We use the rsh facility to start MedusaMothra clients on any particular client. Rsh

connects to a specified client and executes a specified command. For MedusaMothra, rsh

connects to a particular client specified in the “CLIENTS” file and executes the Medusa-

Mothra client. A shell script lets the user specify the number of clients. The shell script

sequentially reads the “CLIENTS” file and starts the MedusaMothra client on the specified

clients. The source code for the shell script can be found in Appendix A. By keeping the

information of the server name, the server socket number, and the client names in data

files, we enable the user to change the configuration of MedusaMothra easily and without

recompiling any of the source code. As mentioned earlier, the “SERVER” file contains the

name of the server and the port number it listens to. Port numbers are user specified and

can take on any value from 4096 to 65535. Figures 9 and 10 depict a sample “SERVER”
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.

.

.

create well-known socket for clients to connect to

add well-known socket to descriptor set

listen to well-known socket

.

.

.

while (more test cases) do
rval = select(descriptor set)

if (rval == 0) then
select timed out; no data at any descriptor

else
if (connection request on well-known socket) then

accept new client

establish virtual circuit

add new client to descriptor set

else
for (each virtual circuit with pending data) do

read data from client

send next (mutant, test case) pair

endfor
endif

endif
.

.

.

endwhile

Figure 8. Usage of select() in the MedusaMothra server.
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and “CLIENTS” file. The number 16 at the beginning of the “CLIENTS” file tells the num-

ber of entries in the file. This number is used by the server of MedusaMothra. Currently,

MedusaMothra is only implemented for Sun 4 workstations. The issues involved in porting

MedusaMothra to a heterogeneous computing environment are discussed in Chapter VII.

wayne 5284

Figure 9. Sample SERVER file.

16
oak
palmetto
poplar
juniper
walnut
mahogany
redwood
cedar
cypress
bamboo
magnolia
sequoia
hedge
banyan
birch
teak

Figure 10. Sample CLIENTS file.



CHAPTER VII

EXPERIMENTAL EVALUATION OF MEDUSAMOTHRA

To investigate whether the design goals mentioned in Chapter VI were met, several

Fortran 77 programs of various sizes were tested. The first part of this chapter discusses the

experimental procedure and the results of the experiments that evaluated the speedup of

MedusaMothra. The second part describes the results of some studies that were made with

respect to the dynamic load balancing responsiveness and effectiveness of MedusaMothra.

Validation of MedusaMothra

To ensure the correctness of MedusaMothra, the original Sun version of Mothra was

used as an oracle throughout the development of MedusaMothra. An oracle is a (hypo-

thetical) entity that knows whether the output of a given test case on the test program

is correct [23]. Many test programs were processed with the original Mothra version and

MedusaMothra. For each program in the experimental test set, MedusaMothra kills the

same mutants as the original Mothra for the same test cases.

Speedup Evaluation

Ten Fortran 77 programs that cover a wide range of applications were selected for

the experiments. These programs range in size from 10 to 52 executable statements and had

from 196 to 2746 mutants. The programs are described in Table 2. Appendix B contains

complete source code listings for each program.

All tests were conducted with a Sun 4/75 workstation as the server and Sun 4/25

workstations as clients and a relatively unloaded Ethernet. To ensure a relatively low load

on all the workstations and the Ethernet, all tests were run at very early morning hours.

Experimental Procedure

To measure performance data for MedusaMothra, these steps were performed for

each Fortran 77 program.

Parse Program: Intermediate code and symbol table information for the program under

test were produced by parser.
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Table 2. Experimental programs.
Program Description Statements Mutants Test Cases
BUB Bubble sort on an integer array 11 338 313
DEADLK Deadlock avoidance program 52 2746 66
EUCLID Greatest common divisor 11 196 161
FIND Partitions an array 28 1022 364
INSERT Insertion sort on an integer array 14 460 193
PAT Pattern matching 18 394 274
QUAD Real roots of quadratic equation 10 359 13
SEARCH Search for an element in an array 18 370 269
TRITYP Classifies triangle types 28 951 647
WARSHALL Transitive closure of a matrix 11 305 269

Generate Mutants: All possible mutants were created using mutmake.

Define Variable Classes: The class (in, out, in/out, don’t care) of each variable was

defined using mapper.

Generate Test Cases: Godzilla was used to generate a set of test cases. Since Godzilla

failed or created too many test cases for DEADLK and QUAD, test cases were

hand–generated for these programs. The hand-generated test cases attempted to

kill all mutants.

Create Expected Output: The MedusaMothra interpreter was run in original execution

mode to determine and store the output of the original program for each test case.

Interpret Mutants on One Workstation: The wall time for mutant execution was mea-

sured for one workstation (Sun 4/25). This step was necessary since speedup is

calculated relative to the execution time of one workstation.

Interpret Mutants on Multiple Workstations: MedusaMothra was run in mutant ex-

ecution mode with a selected number of workstations (2, 4, 8, and 16) and the wall

time for the mutant execution was measured.

Speedup Results

To evaluate the performance of MedusaMothra, the wall time was measured and the

resulting speedup was calculated for 2, 4, 8, and 16 client workstations. Wall time can be

defined in terms of the time the user has to wait until the server of MedusaMothra finishes

execution. The wall time was measured using the time() C library function. Speedup for n
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processors is defined as the execution time on one processor divided by execution time on

n processors. Formula 1 shows this relationship.

Speedup =
Execution T ime on One Processor

Execution T ime on n Processors
. (1)

The speedup calculations were done with respect to an “intermediate” version of the

rosetta interpreter. For his master’s thesis, Lee [24] had removed some inefficiencies from the

original rosetta code, including removing the fork() system call from the rosetta interpreter.

A more detailed description of the inefficiencies in the original rosetta code can also be found

in Fichter’s master’s thesis [15]. We added some additional code for debugging purposes

and timing measurements and used this “intermediate” version to measure the running time

of the experiments for one workstation.

Figures 11 and 12 show the wall time results for the tested Fortran 77 programs for

2, 4, 8, and 16 clients. Notice that the wall execution time for the computationally more

expensive programs such as DEADLK and WARSHALL is decreased by a much larger

factor than for computationally inexpensive programs such as EUCLID and QUAD. The

wall time for WARSHALL, for example, was reduced from 8047 seconds for one workstation

to 596 seconds for 16 client workstations. Figures 13 and 14 depict the speedup (relative

to one workstation) for all test programs using 2, 4, 8, and 16 clients. We have also plotted

the line which represents linear speedup for comparison purposes (denoted x). Note that

corresponding to the wall execution times, the computationally more expensive programs

yield better speedup than the computationally less expensive programs.

These observations about MedusaMothra speedup can be explained by communica-

tion overhead cost. If little computation is necessary for a problem, or if more clients are

cooperating to solve a problem, then communication overhead accounts for a more signifi-

cant part of the total execution time. Additionally, the amount of communication increases

as the number of clients increases. The results for QUAD illustrate this behavior very well.

QUAD is a small, computationally very inexpensive program with a small number of test

cases. As a result, we had only limited speedup for 2, 4, and 8 clients; 1.38, 2.42, and 3.62,

respectively. For 16 clients, the speedup actually decreased to 2.42 and yielded the same

wall time as for four clients. Only 13 clients out of the 16 clients were able to connect
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Figure 11. Wall time (Part 1).
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to the server and only eleven actually received mutant and test case information. This

behavior is a result of the computationally inexpensive characteristic of QUAD, and the

size and the quality of the test case set. The test cases for QUAD were hand–generated

and attempted to kill all mutants. All other programs yielded increased speedup when the

number of clients was increased.

A detailed listing of all experimental data produced for this paper can be found in

Appendix C. For each Fortran 77 program, the number of clients, the wall execution time,

and if two or more clients were used, the distribution of (mutant, test case) pairs among

the clients are listed.

Dynamic Load Balancing Studies

In Chapter VI, we introduced the concept of natural load balancing. No status data

is used in the natural load balancing scheme to influence the decision on where to distribute

more work. Clients only request more work if they have finished a previously assigned task.

In this section, we investigate whether the natural load balancing scheme satisfies our design

goals for efficient dynamic load balancing and present the results of this investigation.

Experimental Procedure

According to our load balancing design goals, we investigated whether the natural

load balancing scheme distributed tasks equally over a network of relatively unloaded work-

stations. Additionally, we examined how the natural load balancing scheme made adjust-

ments in its task distribution to the clients when two workstations were overloaded with two

CPU-bound processes. We selected two Fortran 77 programs, TRITYP and WARSHALL,

for these experiments. Both had relatively long wall execution times for eight clients, but

TRITYP is computationally cheap whereas WARSHALL is one of the most computationally

expensive programs of the programs tested. These steps were performed for both programs.

Interpret Mutants with Eight Clients on a Relatively Unloaded System Medusa-

Mothra was run in mutant execution mode and the wall time, the (mutant, test case)

distribution, and the load average of all clients over the wall time were measured.
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Interpret Mutants with Eight Clients on a Loaded System Again, MedusaMothra

was run in mutant execution mode, but this time, two clients were overloaded with

two CPU-bound programs on each client. The wall time, the (mutant, test case)

distribution, and the load average of all clients over the wall time were measured.

The load average of the clients was measured using the rup command. Among other

information, rup returns the average number of jobs in the run queue over the last 1, 5,

and 15 minutes of a remote machine. We used the average number of jobs in the run queue

over the last one minute as a measure of how the average load changed when two clients

were overloaded. A shell script was used to update all the necessary data of all clients in

a circular fashion. In the following two sections, we will refer to “updates” when talking

about timing dependencies. These updates are obtained by the previously mentioned shell

script and do not correspond to seconds but only to the number of times each client was

queried for the average load using the rup command. The source code for the CPU-bound

program and for the update shell script can be found in Appendix D.

Trityp Results

Figure 15 shows the load average of the eight clients on a relatively unloaded system.

Except for two short instances which are unrelated to the TRITYP mutant execution, the

average load stays between 0.6 and 0.9. When two clients were overloaded with the CPU-

bound programs, the load average for the two overloaded clients increased to around 2.5,

but the load average for the other six clients stayed about the same as for the unloaded

system. Figure 16 depicts the load averages for the two overloaded clients and the six other

clients. These graphs indicate that the natural load balancing scheme does in fact balance

tasks equally on all clients. Even for the case with two overloaded clients and six relatively

unloaded clients, tasks were distributed equally with respect to the load averages on the

overloaded and unloaded clients.

In order to compare the load average of the unloaded and overloaded systems, we

calculated the mean average load for the eight unloaded clients of the first test run and for

the six unloaded clients of the second test run. The results are show in Figure 17. Notice

that although the difference of the average loads is small, the wall execution time for the
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second test run with the two overloaded clients is slightly longer. To be exact, with the

two overloaded clients, the wall time for TRITYP was 610 seconds instead of 562 seconds

for the unloaded system. Considering the fact that 25% of the computing capacity was

overloaded, this 8.54% increase in wall execution time seems to be minor.

To evaluate whether a redistribution of (mutant, test case) pairs took place, we

looked at the number of pairs received and executed by each client. Figures 18 and 19

display graphically the distribution of (mutant, test case) pairs among the eight clients.

Although one might expect that the two overloaded clients (in this case oak and palmetto)

actually executed fewer (mutant, test case) pairs, this is not the case for TRITYP. An

explanation for this behavior is the fact that TRITYP is computationally inexpensive and

was not affected by the overloading of two clients. The only difference between the two

distributions is that for the overloaded case, the distribution is not quite as constant. In

the unloaded case, the difference between the maximum and minimum number of (mutant,

test case) pairs was 235 pairs, whereas in the overloaded case, this difference was 424 pairs.
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Warshall Results

Since TRITYP, with its computationally inexpensive characteristic did not produce

any redistribution among the clients used, we expected WARSHALL to do so. Figure

20 shows the load average for WARSHALL of the eight clients on a relatively unloaded

system. The load average is not quite as steady as for TRITYP. This can be explained by

the nature of the WARSHALL program. WARSHALL consists primarily of three loops and

the mutations performed on these loops can result in infinite or long-running executions.

When two clients were overloaded with the CPU-bound processes, the load average for the

two overloaded clients displayed the same behavior as for the TRITYP experiment; i.e.,

tasks were distributed equally to all clients.

Figure 21 depicts the load averages for the two overloaded clients and the six unloaded

clients. Again, we calculated the mean load average for the eight unloaded clients of the

first test run and for the six unloaded clients of the second test run. The results are show

in Figure 22. This time, the average load was slightly higher for the six unloaded clients of

the second test run and the wall execution time increased by 15.85% from 1180 seconds to

1367 seconds.

To evaluate whether a redistribution of (mutant, test case) pairs took place for

WARSHALL, we looked at the number of pairs received and executed by each client. Figures

23 and 24 display graphically the distribution of (mutant, test case) pairs among the eight

clients. Notice that for the unloaded case, each client received approximately 8900 (mutant,

test case) pairs. In the overloaded case, the two overloaded clients (oak and palmetto) only

processed approximately 4400 (mutant, test case) pairs and the other six unloaded clients

processes approximately 10400 clients each.

These results for TRITYP and WARSHALL indicate that although no status in-

formation of the clients is used to make decisions about the location of a task, a good

distribution of the tasks takes place. Tasks are distributed equally to all clients in a rel-

atively unloaded system for both programs. In the case of overloading two clients, a task

redistribution took place to equalize the unavailable CPU-time on the overloaded clients

for WARSHALL. For TRITYP, no redistribution took place, because the two CPU-bound

processes had almost no influence on the very short execution time of TRITYP. Since no ad-
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ditional network traffic is introduced by collection status information of clients, the natural

load balancing model works well for MedusaMothra. The experimental data produced

for the dynamic load balancing experiments can be found in Appendix E. The number of

clients, the wall execution time, and the distribution of (mutant, test case) pairs among

the clients are listen for the experiments with two overloaded clients. The data for the

experiments on a relatively unloaded system can be found in Appendix C.
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Figure 23. (Mutant/Test Case) distribution, unloaded – Warshall.
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CHAPTER VIII

CONCLUSIONS AND FUTURE WORK

We have shown that the time spent on unit software testing can be significantly

reduced by distributing the work over several clients. MedusaMothra achieves a speedup

of 14.35 for DEADLK and 13.50 for WARSHALL when sixteen clients were used. These

numbers are very close to linear speedup. As a result, the mutant execution time was re-

duced from hours to minutes when comparing the mutant execution time of the original

Mothra to the mutant execution time of MedusaMothra. MedusaMothra can theoretically

be expanded to handle 256 clients, which makes it even more applicable for larger test pro-

grams. For computationally inexpensive programs, the number of clients for MedusaMothra

should be chosen carefully, because the communication overhead can actually increase the

wall execution time. For example, the QUAD program had better performance results with

eight clients than with 16 clients. In general, good speedup can be obtained when multiple

clients are used.

In the future, several additions can improve MedusaMothra. Currently, Medusa-

Mothra does not support heterogeneous architectures. Since distributed computing over

heterogeneous architectures is one of the more active research areas at the moment, an

attempt was made to keep MedusaMothra as transparent as possible with respect to the

addition of other architectures. The data which is sent between the server and the clients

could be encoded and decoded using External Data Representation (XDR) [25] routines.

The use of XDR routines allows programmers to describe arbitrary data structures in a

machine-independent fashion.

A further step would be the use of a tool such as Parallel Virtual Machine (PVM)

for the communication between the server and the clients. PVM is a software system that

enables a collection of heterogeneous computers to be used as a coherent and flexible con-

current computational resource. It transparently handles message routing, data conversion

for incompatible architectures, and other tasks that are necessary for operation in a het-

erogeneous network environment [26]. During the initial design phase of MedusaMothra,
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we considered using PVM but opted to implement MedusaMothra with Unix sockets using

TCP/IP, mainly because PVM was not then considered a standard.

The only problem besides porting either the MedusaMothra server or client to a

different architecture would be file access. MedusaMothra currently provides access to data

files via NFS, which allows transparent file access for the server and all the clients. If Me-

dusaMothra were distributed over a network of heterogeneous architectures, the necessary

data files would have to be distributed to all the target architectures before starting the

mutant execution.

Since the natural load balancing scheme performs well for MedusaMothra, it would

be interesting to see the performance results in terms of speedup for a more complex dy-

namic load balancing scheme. Additionally, the possibility of executing more than one

MedusaMothra client on a particular workstation introduces some interesting load balanc-

ing problems such as moving a MedusaMothra client to another workstation. Although

we mentioned in Chapter V that SunOS does not support process migration, it should be

possible to migrate a mutant during execution from one client to another, because mutants

are interpreted and not compiled. One major drawback for “mutant migration” would be

the possibly large amount of state information that had to be kept in order to migrate a

mutant from one client to another during mutant execution.

Other important issues for long-running distributed applications are checkpointing

and restart facilities. Both facilities are not fully implemented in MedusaMothra, but we did

introduce the necessary status data structures into MedusaMothra to keep track of which

client executes which (mutant, test case) pair in the server. Adding a timeout logic in the

server for the case of a client failure would ensure that no data is lost. Synchronizing the

status data structures with the mutant descriptor file would make it possible to implement

an effective check pointing and restart mechanism.

Several other attempts have been made to speed up the mutation testing process.

Weak mutation testing [24] and selective mutation testing [5] have shown very promising

results in terms of mutant execution time reduction and adequacy. Combining any of these

mutation techniques with MedusaMothra would certainly result in even smaller execution

times and therefore making structured testing methods such as mutation testing more cost

effective and usable.
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Appendix A

MedusaMothra Startup Shell Script

#! /bin/csh
# script to start up medusa environment with $1 clients
# clients are specified in the CLIENTS file
# this script must be run on the server
# assumes all mutants were created, i.e. mutmask = 3fffff
# IMPORTANT:
# MEDUSA_PATH defines the path of the server and client binaries.
# Assumes that the SERVER and CLIENTS file are in the directory of the
# experiment

set MEDUSA_PATH = /u2/czapf/research/test

# check arguments
if ($#argv != 2) then

echo ""
echo "Usage: stm <Number of Clients> <Experiment Name>"
echo ""
exit

endif

# clean up
/bin/rm -f *.out >& /dev/null

# start medusa server
echo "Starting Medusa Server"
echo "medusa -m3fffff -g "$PWD"/"$2
$MEDUSA_PATH/medusa -m3fffff -g $PWD/$2 >& server.out &

# make sure server is up and running
sleep 2

# start clients
set clients = ‘nawk ’{ if (NR > 1) print $1 }’ CLIENTS‘

@ counter = 0
foreach s ($clients)

echo starting client on $s
echo "rsh "$s "$MEDUSA_PATH/medusa_client $PWD &"
rsh $s "$MEDUSA_PATH/medusa_client $PWD >& $PWD/$s.out" &
@ counter++
if ($counter >= $1) break;

end
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Appendix B

Experimental Fortran 77 Program Listings

BUB

C--------------------------------------------------------------------------
C--- BUB Source Code
C--------------------------------------------------------------------------

SUBROUTINE BUBBLE (A)
INTEGER A (5)

C Sort A() using the bubble sort technique.

INTEGER N, ITMP

N = 5
DO 200 J = N-1, 1, -1

DO 100 I = 1, J, 1
IF (A (I).LE.A (I+1)) GOTO 100

ITMP = A (I)
A (I) = A (I+1)
A (I+1) = ITMP

100 CONTINUE
200 CONTINUE

RETURN
END
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DEADLK

C--------------------------------------------------------------------------
C--- DEADLK Source Code
C--------------------------------------------------------------------------

SUBROUTINE DEADLK(PCNT,RCNT,ALLOC,AVAIL,RQSTED,DLOCKV,STUCK)

C This subroutine checks to see if deadlock has occurred. It attempts
C to simulate the completion of all processes not currently blocked,
C then see if all blocked processes can complete. If not, we are
C deadlocked, and the routine returns a list of deadlocked processes.

C Constants
C ------------

PARAMETER ( MAXP=10, MAXR=10 )

C MAXP - maximum number of processes that may be specified
C MAXR - maximum number of resources that may be specified

C Parameters
C ----------

INTEGER PCNT, RCNT, AVAIL(0:MAXP-1), RQSTED(0:MAXP-1,0:MAXR-1)
INTEGER ALLOC(0:MAXP-1,0:MAXR-1), DLOCKV(0:MAXR-1)
LOGICAL STUCK

C PCNT - number of user processes in use
C RCNT - number of resource classes in the system
C AVAIL - array; for each resource class, number still available
C ALLOC - matrix; for each process, number of resources of each class
C currently allocated to it. ALLOC + CLAIMS = max total claim.
C RQSTED - matrix; for each process, number of resources it has requested
C in each class, but not received.
C Used only for blocked processes.
C DLOCKV - list of deadlocked processes, if any
C STUCK - true if we are deadlocked, false otherwise

C Local variables
C ---------------

INTEGER LAVAIL(0:MAXP-1), LALLOC(0:MAXP-1,0:MAXR-1)
INTEGER LRQSTD(0:MAXP-1,0:MAXR-1), I, J, DLVN
LOGICAL CHANGE

C LALLOC - Local copy of the ALLOC matrix; for each process, the number
C of resources of each class currently allocated to it.
C LAVAIL - Local copy of the AVAIL vector; for each resource class, the
C number of such resources still available.
C LRQSTD - Local copy of the RQSTED matrix; for each blocked process,
C the number of resources of each class it still wants
C DLVN - counts entries in the DLOCKV
C I,J,K - Loop indexes
C CHANGE - Lets us traverse the claims list until changes occur
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C---------------------------------------------------------------
C Begin code

C Make local copies of the available vector, and the allocated and
C requested matrices.

DO 20 I = 0, RCNT-1
DO 10 J = 0, PCNT-1

LALLOC(I,J) = ALLOC(I,J)
LRQSTD(I,J) = RQSTED(I,J)

10 CONTINUE
LAVAIL(I) = AVAIL(I)

20 CONTINUE

C Repeat the following loop until no changes occur (no unblocked
C processes are released). Set change false initially. The occurence
C of a change sets it true. The loop is post-tested and returns to 30
C if change is true.

30 CHANGE = .FALSE.

C Simulate completion of all nonblocked processes having allocated
C resources. For each process...

DO 200 I = 0, PCNT-1

C If it has requested resources it is blocked so start on next process.

DO 50 J = 0, RCNT-1
IF (LRQSTD(I,J) .GT. 0) GOTO 200

50 CONTINUE

C It has no requested resources, release any it has.

DO 70 J = 0, RCNT-1
LAVAIL(J) = LAVAIL(J) + LALLOC(I,J)
LALLOC(I,J) = 0

70 CONTINUE

200 CONTINUE

C Now, see if we can unblock any blocked processes. If so, a change
C has occurred. For each process...

DO 300 I = 0, PCNT-1

C If it has a request current, it is blocked. If we check all without
C finding one, goto consider the next process.

DO 250 J = 0, RCNT-1
IF (LRQSTD(I,J) .GT. 0) GOTO 270

250 CONTINUE
GOTO 300
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C The Ith process is blocked. See if we can unblock it. Check all
C resources it has requested. If we find a request that exceeds the
C number available goto consider the next process.

270 DO 280 J = 0, RCNT-1
IF (LRQSTD(I,J) .GT. LAVAIL(J)) GOTO 300

280 CONTINUE

C Getting here, we know we can unblock process I. Do so, by simulating
C it getting its requested resources. Its completion will be simulated
C on the next pass through the main loop.

CHANGE = .TRUE.
DO 290 J = 0, RCNT-1

LALLOC(I,J) = LALLOC(I,J) + LRQSTD(I,J)
LRQSTD(I,J) = 0

290 CONTINUE

300 CONTINUE

C Return to 30 if changes occurred, to repeat the loop.

IF (CHANGE .EQ. .TRUE.) GOTO 30

C Now if any processes with outstanding requests remain, we are deadlocked.
C As we search for them we put their IDs into DLOCKV to pass back.
C First initialize DLOCKV to null by placing -1 in all its locations.

400 DO 450 I = 0, PCNT-1
DLOCKV(I) = -1

450 CONTINUE
DLVN = 0
DO 500 I = 0, PCNT-1

DO 480 J = 0, RCNT-1
IF (LRQSTD(I,J) .GT. 0) THEN

DLOCKV(DLVN) = I
DLVN = DLVN + 1
GOTO 500

ENDIF
480 CONTINUE
500 CONTINUE

C If DLVN .gt. 0 we placed a process in the dlockv, so we are stuck.
C Else we are not.

IF (DLVN .GT. 0) THEN
STUCK = .TRUE.

ELSE
STUCK = .FALSE.

ENDIF

RETURN
END
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EUCLID

C--------------------------------------------------------------------------
C--- EUCLID Source Code
C--------------------------------------------------------------------------

INTEGER FUNCTION Euclid (A, B)
C
C Euclid’s GCD algorithm.
C= A in
C= B in
C

INTEGER A, B
INTEGER Div, Rem
ASSERT (A .GT. 0 .AND. B .GT. 0)

Rem = 1
C WHILE (Rem .GT. 0) DO
10 CONTINUE

IF (Rem .LE. 0) GOTO 20
Div = A/B
Rem = A - Div*B
A = B
B = Rem

C ENDWHILE
GOTO 10

20 CONTINUE

Euclid = A
END
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FIND

C--------------------------------------------------------------------------
C--- FIND Source Code
C--------------------------------------------------------------------------

SUBROUTINE FIND (A, N, F)
INTEGER A (10), N, F

C F is index into A(). After execution, all elements to the left of
C A(F) are less than or equal to A(F) and all elements to the right of
C A(F) are greater than or equal to A(F).
C Only the first N elements are considered.
C From DeMillo, Lipton, and Sayward [DeMi78], repeated from Hoare’s
C paper [Hoar70].

INTEGER M, NS, R, I, J, W

ASSERT (F.GE.1.AND.F.LE.N.AND.N.GE.1.AND.N.LE.10)
M = 1
NS = N

10 IF (M.GE.NS) GOTO 1000
R = A (F)
I = M
J = NS

20 IF (I.GT.J) GOTO 60
30 IF (A(I).GE.R) GOTO 40

I = I + 1
GOTO 30

40 IF (R.GE.A(J)) GOTO 50
J = J - 1
GOTO 40

50 IF (I.GT.J) GOTO 20

W = A (I)
A (I) = A (J)
A (J) = W
I = I + 1
J = J - 1
GOTO 20

60 IF (F.GT.J) GOTO 70
NS = J
GOTO 10

70 IF (I.GT.F) GOTO 1000
M = I
GOTO 10

1000 RETURN
END
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INSERT

C--------------------------------------------------------------------------
C--- INSERT Source Code
C--------------------------------------------------------------------------

SUBROUTINE INSERT (L,N)
INTEGER L(N),N
INTEGER KEY,I,J
C= L inout
C= N in

ASSERT (N.EQ.10)
J=2
1 IF (J.GT.N) GOTO 99
KEY=L(J)
I=J-1
5 IF (I.LE.0) GOTO 15

IF (L(I).LE.KEY) GOTO 15
L(I+1) = L(I)
I=I-1

GOTO 5
15 L(I+1) = KEY
J=J+1
GOTO 1
99 RETURN
END
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PAT

C--------------------------------------------------------------------------
C--- PAT Source Code
C--------------------------------------------------------------------------

SUBROUTINE PAT (P, S, CODE)
INTEGER P(9), S(3), CODE, I, J, K
I=0

2 CODE=0
J=0

3 K=I+J
IF (P(K).EQ.S(J+1)) GOTO 1
I=I+1
IF (I.GT.7) RETURN
GOTO 2

1 J=J+1
IF (J.GT.2) GOTO 4
GOTO 3

4 CODE=1
RETURN
END
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QUAD

C--------------------------------------------------------------------------
C--- QUAD Source Code
C--------------------------------------------------------------------------

C
C JEFF OFFUTT
C 12-02-89
C
C This program accepts three constants CoeffA, CoeffB, and CoeffC
C that represent a quadratic equation. The roots are computed and
C printed if they exist.
C

SUBROUTINE ROOTS (CoeffA, CoeffB, CoeffC, Root1, Root2)
C INPUT VARIABLES ...

REAL CoeffA, CoeffB, CoeffC
C OUTPUT VARIABLES ...

REAL Root1, Root2
C Internal VARIABLES ...

REAL Disc
ASSERT (CoeffA .NE. 0.0)

Disc = CoeffB*CoeffB - (4*CoeffA*CoeffC)
IF (DISC .GE. 0.0) THEN

Root1 = ((-CoeffB) + SQRT(Disc)) / (2*CoeffA)
Root2 = ((-CoeffB) - SQRT(Disc)) / (2*CoeffA)

ELSE
Root1 = 0.0
Root2 = 0.0

ENDIF
STOP
END
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SEARCH

C--------------------------------------------------------------------------
C--- SEARCH Source Code
C--------------------------------------------------------------------------

INTEGER FUNCTION SEARCH(A,E)

C Search array A for element E, return the index to E or the index
C immediately preceding where E should be placed. Uses Binary Search.

INTEGER A(8), E, J, K, I

IF (E .LT. A(1)) THEN
SEARCH = 0

ELSE
I = 1
J = 8

10 IF (I .LT. J) THEN
K = (I + J + 1) / 2
IF (E .LT. A(K)) THEN

J = K - 1
ELSE

I = K
ENDIF
GOTO 10

ENDIF

SEARCH = I

ENDIF
RETURN
END
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TRITYP

C--------------------------------------------------------------------------
C--- TRITYP Source Code
C--------------------------------------------------------------------------

INTEGER FUNCTION TRIANG(I,J,K)
INTEGER I,J,K

C MATCH IS OUTPUT FROM THE ROUTINE:
C TRIANG = 1 IF TRIANGLE IS SCALENE
C TRIANG = 2 IF TRIANGLE IS ISOSCELES
C TRIANG = 3 IF TRIANGLE IS EQUILATERAL
C TRIANG = 4 IF NOT A TRIANGLE

C After a quick confirmation that it’s a legal
C triangle, detect any sides of equal length

IF (I.LE.0.OR.J.LE.0.OR.K.LE.0) THEN
TRIANG=4
RETURN

ENDIF
TRIANG=0
IF (I.EQ.J) TRIANG=TRIANG+1
IF (I.EQ.K) TRIANG=TRIANG+2
IF (J.EQ.K) TRIANG=TRIANG+3
IF (TRIANG.EQ.0) THEN

C Confirm it’s a legal triangle before declaring
C it to be scalene

IF (I+J.LE.K.OR.J+K.LE.I.OR.I+K.LE.J) THEN
TRIANG = 4

ELSE
TRIANG = 1

ENDIF
RETURN

ENDIF

C Confirm it’s a legal triangle before declaring
C it to be isosceles or equilateral

IF (TRIANG.GT.3) THEN
TRIANG = 3

ELSE IF (TRIANG.EQ.1.AND.I+J.GT.K) THEN
TRIANG = 2

ELSE IF (TRIANG.EQ.2.AND.I+K.GT.J) THEN
TRIANG = 2

ELSE IF (TRIANG.EQ.3.AND.J+K.GT.I) THEN
TRIANG = 2

ELSE
TRIANG = 4

ENDIF

END



55

WARSHALL

C--------------------------------------------------------------------------
C--- WARSHALL Source Code
C--------------------------------------------------------------------------

SUBROUTINE WARSHALL (A)
INTEGER A (5,5)

C= A inout

ASSERT (A.LE.1 .AND. A.GE.0)

C Calculate the transitive closure of A using Warshall’s algorithm.

INTEGER I, J, K

DO 100 K = 1, 5
DO 200 I = 1, 5
DO 300 J = 1, 5

IF (A(I, J) .EQ. 0) THEN
A(I, J) = A(I, K) * A(K, J)

ENDIF
300 CONTINUE
200 CONTINUE
100 CONTINUE

RETURN
END
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Appendix C

Experimental Data

BUB

Experiment Summary: /home/students/czapf/research/test/BUB
----------------------------------------------------------
Number of Clients: 1
Running Time: 2386

Experiment Summary: /home/students/czapf/research/test/BUB
----------------------------------------------------------
Number of Clients: 4
Running Time: 796 seconds

Client (M/TC) Pairs
---------------------
banyan 20032
oak 19197
poplar 20632
dogwood 20033

Experiment Summary: /home/students/czapf/research/test/BUB
----------------------------------------------------------
Number of Clients: 8
Running Time: 463 seconds

Client (M/TC) Pairs Client (M/TC) Pairs
-----------------------------------------------
oak 10254 hedge 9860
palmetto 9795 poplar 9941
juniper 10093 walnut 10084
mahogany 10009 redwood 9855

Experiment Summary: /home/students/czapf/research/test/BUB
----------------------------------------------------------
Number of Clients: 16
Running Time: 260 seconds

Client (M/TC) Pairs Client (M/TC) Pairs
-----------------------------------------------
oak 5051 hedge 4917
palmetto 4712 poplar 5341
juniper 5087 walnut 5311
mahogany 5204 redwood 4968
cedar 4800 cypress 4960
bamboo 5056 magnolia 4786
sequoia 4909 banyan 4896
dogwood 5030 aspen 4852
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DEADLK

Experiment Summary: /home/students/czapf/research/test/D
--------------------------------------------------------
Number of Clients: 1
Running Time: 6629

Experiment Summary: /home/students/czapf/research/test/D
--------------------------------------------------------
Number of Clients: 2
Running Time: 3299 seconds

Client (M/TC) Pairs
---------------------
banyan 13748
oak 13882

Experiment Summary: /home/students/czapf/research/test/D
--------------------------------------------------------
Number of Clients: 4
Running Time: 1723 seconds

Client (M/TC) Pairs
---------------------
banyan 6975
oak 6683
poplar 7527
dogwood 6447

Experiment Summary: /home/students/czapf/research/test/D
--------------------------------------------------------
Number of Clients: 8
Running Time: 882 seconds

Client (M/TC) Pairs Client (M/TC) Pairs
-----------------------------------------------
oak 3539 hedge 3178
palmetto 3520 poplar 3434
juniper 3826 walnut 3388
mahogany 3606 redwood 3478

Experiment Summary: /home/students/czapf/research/test/D
--------------------------------------------------------
Number of Clients: 16
Running Time: 462 seconds

Client (M/TC) Pairs Client (M/TC) Pairs
-----------------------------------------------
oak 1918 hedge 1518
palmetto 1812 poplar 1855
juniper 1923 walnut 1627
mahogany 1655 redwood 1634
cedar 1625 cypress 1858
bamboo 1816 magnolia 1649
sequoia 1565 banyan 1783
dogwood 1806 aspen 1808
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EUCLID

Experiment Summary: /home/students/czapf/research/test/E
--------------------------------------------------------
Number of Clients: 1
Running Time: 196

Experiment Summary: /home/students/czapf/research/test/E
--------------------------------------------------------
Number of Clients: 2
Running Time: 116 seconds

Client (M/TC) Pairs
---------------------
banyan 2011
oak 2026

Experiment Summary: /home/students/czapf/research/test/E
--------------------------------------------------------
Number of Clients: 4
Running Time: 58 seconds

Client (M/TC) Pairs
---------------------
banyan 1018
oak 1011
poplar 999
dogwood 1009

Experiment Summary: /home/students/czapf/research/test/E
--------------------------------------------------------
Number of Clients: 8
Running Time: 37 seconds

Client (M/TC) Pairs Client (M/TC) Pairs
-----------------------------------------------
banyan 557 oak 538
poplar 551 dogwood 507
juniper 469 redwood 482
maple 497 hedge 436

Experiment Summary: /home/students/czapf/research/test/E
--------------------------------------------------------
Number of Clients: 16
Running Time: 29 seconds

Client (M/TC) Pairs Client (M/TC) Pairs
-----------------------------------------------
oak 282 hedge 308
palmetto 282 poplar 272
juniper 275 walnut 292
mahogany 225 redwood 254
cedar 242 cypress 260
bamboo 158 magnolia 247
sequoia 232 banyan 194
dogwood 266 aspen 249
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FIND

Experiment Summary: /home/students/czapf/research/test/F
--------------------------------------------------------
Number of Clients: 1
Running Time: 4179

Experiment Summary: /home/students/czapf/research/test/F
--------------------------------------------------------
Number of Clients: 2
Running Time: 2830 seconds

Client (M/TC) Pairs
---------------------
banyan 69419
oak 69265

Experiment Summary: /home/students/czapf/research/test/F
--------------------------------------------------------
Number of Clients: 4
Running Time: 1598 seconds

Client (M/TC) Pairs
---------------------
banyan 35800
oak 36677
poplar 33827
dogwood 32338

Experiment Summary: /home/students/czapf/research/test/F
--------------------------------------------------------
Number of Clients: 8
Running Time: 848 seconds

Client (M/TC) Pairs Client (M/TC) Pairs
-----------------------------------------------
oak 17798 hedge 16610
palmetto 17356 poplar 17543
juniper 17597 walnut 17267
mahogany 17443 redwood 17045

Experiment Summary: /home/students/czapf/research/test/F
--------------------------------------------------------
Number of Clients: 16
Running Time: 478 seconds

Client (M/TC) Pairs Client (M/TC) Pairs
-----------------------------------------------
oak 8721 hedge 9169
palmetto 8191 poplar 8479
juniper 8571 walnut 8187
mahogany 8581 redwood 8390
cedar 8306 cypress 9062
bamboo 8460 magnolia 8992
sequoia 8807 banyan 9022
dogwood 8965 aspen 8762
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INSERT

Experiment Summary: /home/students/czapf/research/test/IN
---------------------------------------------------------
Number of Clients: 1
Running Time: 718

Experiment Summary: /home/students/czapf/research/test/IN
---------------------------------------------------------
Number of Clients: 2
Running Time: 376 seconds

Client (M/TC) Pairs
---------------------
banyan 4646
oak 4676

Experiment Summary: /home/students/czapf/research/test/IN
---------------------------------------------------------
Number of Clients: 4
Running Time: 200 seconds

Client (M/TC) Pairs
---------------------
banyan 2271
oak 2350
poplar 2364
dogwood 2337

Experiment Summary: /home/students/czapf/research/test/IN
---------------------------------------------------------
Number of Clients: 8
Running Time: 106 seconds

Client (M/TC) Pairs Client (M/TC) Pairs
-----------------------------------------------
oak 1206 hedge 1154
poplar 1172 juniper 1161
walnut 1191 mahogany 1157
redwood 1172 palmetto 1109

Experiment Summary: /home/students/czapf/research/test/IN
---------------------------------------------------------
Number of Clients: 16
Running Time: 63 seconds

Client (M/TC) Pairs Client (M/TC) Pairs
-----------------------------------------------
oak 650 hedge 623
palmetto 506 poplar 613
juniper 621 walnut 603
mahogany 550 redwood 601
cedar 583 cypress 575
bamboo 511 magnolia 599
sequoia 587 banyan 578
dogwood 583 aspen 539
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PAT

Experiment Summary: /home/students/czapf/research/test/PAT
----------------------------------------------------------
Number of Clients: 1
Running Time: 2003

Experiment Summary: /home/students/czapf/research/test/PAT
----------------------------------------------------------
Number of Clients: 2
Running Time: 1087 seconds

Client (M/TC) Pairs
---------------------
banyan 20688
oak 21027

Experiment Summary: /home/students/czapf/research/test/PAT
----------------------------------------------------------
Number of Clients: 4
Running Time: 579 seconds

Client (M/TC) Pairs
---------------------
banyan 10243
oak 10472
dogwood 10447
juniper 10553

Experiment Summary: /home/students/czapf/research/test/PAT
----------------------------------------------------------
Number of Clients: 8
Running Time: 297 seconds

Client (M/TC) Pairs Client (M/TC) Pairs
-----------------------------------------------
oak 5282 hedge 5206
poplar 5255 juniper 5258
walnut 5226 mahogany 5273
redwood 5183 palmetto 5032

Experiment Summary: /home/students/czapf/research/test/PAT
----------------------------------------------------------
Number of Clients: 16
Running Time: 180 seconds

Client (M/TC) Pairs Client (M/TC) Pairs
-----------------------------------------------
oak 2737 hedge 2712
palmetto 2467 poplar 2664
juniper 2740 walnut 2672
mahogany 2709 redwood 2516
cedar 2503 cypress 2654
bamboo 2567 magnolia 2426
sequoia 2615 banyan 2614
dogwood 2532 aspen 2587
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QUAD

Experiment Summary: /home/students/czapf/research/test/Q
--------------------------------------------------------
Number of Clients: 1
Running Time: 29

Experiment Summary: /home/students/czapf/research/test/Q
--------------------------------------------------------
Number of Clients: 2
Running Time: 21 seconds

Client (M/TC) Pairs
---------------------
banyan 364
oak 363

Experiment Summary: /home/students/czapf/research/test/Q
--------------------------------------------------------
Number of Clients: 4
Running Time: 12 seconds

Client (M/TC) Pairs
---------------------
banyan 181
oak 181
poplar 191
dogwood 174

Experiment Summary: /home/students/czapf/research/test/Q
--------------------------------------------------------
Number of Clients: 8
Running Time: 8 seconds

Client (M/TC) Pairs Client (M/TC) Pairs
-----------------------------------------------
oak 113 hedge 87
palmetto 84 poplar 95
juniper 78 walnut 91
mahogany 91 redwood 88

Experiment Summary: /home/students/czapf/research/test/Q
--------------------------------------------------------
Number of Clients: 13
Running Time: 12 seconds

Client (M/TC) Pairs Client (M/TC) Pairs
-----------------------------------------------
banyan 116 oak 137
poplar 96 dogwood 23
juniper 43 redwood 66
maple 1 hedge 88
walnut 81 escher 0
birch 8 newton 6
cypress 0
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SEARCH

Experiment Summary: /home/students/czapf/research/test/S
--------------------------------------------------------
Number of Clients: 1
Running Time: 359

Experiment Summary: /home/students/czapf/research/test/S
--------------------------------------------------------
Number of Clients: 2
Running Time: 180 seconds

Client (M/TC) Pairs
---------------------
banyan 3342
oak 3269

Experiment Summary: /home/students/czapf/research/test/S
--------------------------------------------------------
Number of Clients: 4
Running Time: 99 seconds

Client (M/TC) Pairs
---------------------
banyan 1677
oak 1612
poplar 1686
dogwood 1636

Experiment Summary: /home/students/czapf/research/test/S
--------------------------------------------------------
Number of Clients: 8
Running Time: 59 seconds

Client (M/TC) Pairs Client (M/TC) Pairs
-----------------------------------------------
oak 849 hedge 868
palmetto 811 poplar 827
juniper 776 walnut 818
mahogany 832 redwood 856

Experiment Summary: /home/students/czapf/research/test/S
--------------------------------------------------------
Number of Clients: 16
Running Time: 44 seconds

Client (M/TC) Pairs Client (M/TC) Pairs
-----------------------------------------------
oak 428 hedge 430
poplar 353 juniper 445
walnut 413 mahogany 443
redwood 414 cedar 461
cypress 455 bamboo 490
magnolia 400 sequoia 363
banyan 400 dogwood 471
aspen 333 palmetto 356



64

TRITYP

Experiment Summary: /home/students/czapf/research/test/T
--------------------------------------------------------
Number of Clients: 1
Running Time: 2748

Experiment Summary: /home/students/czapf/research/test/T
--------------------------------------------------------
Number of Clients: 2
Running Time: 2061 seconds

Client (M/TC) Pairs
---------------------
banyan 39780
oak 39491

Experiment Summary: /home/students/czapf/research/test/T
--------------------------------------------------------
Number of Clients: 4
Running Time: 1056 seconds

Client (M/TC) Pairs
---------------------
oak 19885
hedge 19894
palmetto 19785
poplar 19707

Experiment Summary: /home/students/czapf/research/test/T
--------------------------------------------------------
Number of Clients: 8
Running Time: 562 seconds

Client (M/TC) Pairs Client (M/TC) Pairs
-----------------------------------------------
oak 9886 dogwood 9889
juniper 9923 redwood 9839
hedge 9970 walnut 9994
cypress 9759 palmetto 9967

Experiment Summary: /home/students/czapf/research/test/T
--------------------------------------------------------
Number of Clients: 16
Running Time: 347 seconds

Client (M/TC) Pairs Client (M/TC) Pairs
-----------------------------------------------
banyan 5269 oak 5102
palmetto 5089 poplar 5279
dogwood 4943 juniper 5017
teak 5354 walnut 5047
aspen 4725 mahogany 5036
redwood 5347 spruce 4895
cedar 5292 cypress 2469
maple 4850 willow 5134
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WARSHALL

Experiment Summary: /home/students/czapf/research/test/W
--------------------------------------------------------
Number of Clients: 1
Running Time: 8047

Experiment Summary: /home/students/czapf/research/test/W
--------------------------------------------------------
Number of Clients: 2
Running Time: 4544 seconds

Client (M/TC) Pairs
---------------------
banyan 35478
oak 35988

Experiment Summary: /home/students/czapf/research/test/W
--------------------------------------------------------
Number of Clients: 4
Running Time: 2273 seconds

Client (M/TC) Pairs
---------------------
banyan 17905
oak 17939
poplar 17819
dogwood 17803

Experiment Summary: /home/students/czapf/research/test/W
--------------------------------------------------------
Number of Clients: 8
Running Time: 1180 seconds

Client (M/TC) Pairs Client (M/TC) Pairs
-----------------------------------------------
oak 8983 palmetto 8923
poplar 8958 juniper 8874
walnut 8970 mahogany 8833
redwood 8979 cedar 8946

Experiment Summary: /home/students/czapf/research/test/W
--------------------------------------------------------
Number of Clients: 16
Running Time: 596 seconds

Client (M/TC) Pairs Client (M/TC) Pairs
-----------------------------------------------
oak 4487 hedge 4490
palmetto 4517 poplar 4498
juniper 4500 walnut 4539
mahogany 4431 redwood 4455
cedar 4464 cypress 4393
bamboo 4411 magnolia 4410
sequoia 4470 banyan 4449
dogwood 4481 aspen 4471
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Appendix D

Utilities for Dynamic Load Balancing Studies

CPU-Bound Program

/*----------------------------------------------------------------------*/
/* crunch.c */
/*----------------------------------------------------------------------*/

/* This program is your basic no I/O number cruncher */
/* Written by M. Westall for CpSc 824 */

#include <math.h>

main()
{

long start;
long end;
double x;
int i, j;

start = time(0);
for (i = 0; i < 60; i++)

for (j = 0; j < 750000; j++)
x += j * i / 0.3;

end = time(0);

printf("%d %d %d \n", start, end, end-start);
}
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Update Shell Script

#! /bin/csh
# script to keep track of load averages on $1 clients
# clients are specified in the CLIENTS file

if ($#argv != 2) then
echo ""
echo "Usage: ruptimer <Number of Clients> <# updates>"
echo ""
exit

endif

/bin/rm -f *.time

set clients = ‘nawk ’{ if (NR > 1) print $1 }’ CLIENTS‘

@ counter = 0
foreach s ($clients)

touch $s.time
@ counter++
if ($counter >= $1) break;

end

@ timevar = 0
while (1)

@ counter = 0
foreach s ($clients)

echo -n $timevar >> $s.time
rup $s | nawk ’{ printf " %2.2f\n",$8 }’ >> $s.time
@ counter++
if ($counter >= $1) break;

end
@ timevar++
if ($timevar > $2) break;

end
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Appendix E

Experimental Data for Dynamic Load Balancing Studies

TRITYP

Experiment Summary: /home/students/czapf/research/test/T
--------------------------------------------------------
Number of Clients: 8
Running Time: 610 seconds

Client (M/TC) Pairs Client (M/TC) Pairs
-----------------------------------------------
oak 9831 palmetto 10056
poplar 9651 juniper 9882
walnut 10057 mahogany 9633
redwood 10048 cedar 10016

WARSHALL

Experiment Summary: /home/students/czapf/research/test/W
--------------------------------------------------------
Number of Clients: 8
Running Time: 1367 seconds

Client (M/TC) Pairs Client (M/TC) Pairs
-----------------------------------------------
oak 4385 palmetto 4475
poplar 10348 juniper 10432
walnut 10442 mahogany 10425
redwood 10528 cedar 10431
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