
TESTING WEB APPLICATIONS WITH MUTATION ANALYSIS

by

Upsorn Praphamontripong
A Dissertation

Submitted to the
Graduate Faculty

of
George Mason University
In Partial Fulfillment of

The Requirements for the Degree
of

Doctor of Philosophy
Information Technology

Committee:

Dr. Jeff Offutt, Dissertation Director

Dr. Paul Ammann, Committee Member

Dr. Huzefa Rangwala, Committee Member

Dr. Rajesh Ganesan, Committee Member

Dr. Stephen Nash, Senior Associate Dean

Dr. Kenneth S. Ball, Dean, Volgenau School
of Engineering

Date: Spring Semester 2017
George Mason University
Fairfax, VA



Testing Web Applications with Mutation Analysis

A dissertation submitted in partial fulfillment of the requirements for the degree of
Doctor of Philosophy at George Mason University

By

Upsorn Praphamontripong
Master of Science

Central Michigan University, 2004
Bachelor of Science

Thammasat University, 1997

Director: Dr. Jeff Offutt, Professor
Department of Computer Science

Spring Semester 2017
George Mason University

Fairfax, VA



Copyright c© 2017 by Upsorn Praphamontripong
All Rights Reserved

ii



Dedication

I dedicate this dissertation to my parents, Jate and Khemsiri, who always work hard to
provide me with the finest education; my sister, Prachayani, and my brother, Ularn, who
constantly cheer me up and give me warmhearted support; my advisor and mentor, Dr.
Jeff Offutt, whose encouragement and guidance have made it possible for me to successfully
accomplish this research; and most important of all, my children, Palawudth and Adithya,
and my husband, Somsak, whose love, patience, and sacrifice are only to see me doing what
I am most passionate about.

iii



Acknowledgments

This great milestone of mine would not have been possible if Dr. Jeff Offutt did not let me
interview him prior to my joining George Mason University. Throughout this long journey,
he has always been there for me with tremendous encouragement and understanding, in-
sightful guidance, consistent caring and patience and even admonishment sometimes. He
has always been supportive and especially guiding me throughout the darkest moment. He
always believes in me. He told me “You can do more than you think!” He has challenged
me in each of every possible way a great mentor and dissertation chairperson would do. His
feedback, both positive and negative, have helped me to improve the quality of my research
and groomed me as a researcher. I could not have professionally grown this much without
his constructive and invaluable guidance. If it were not for the opportunity to work with
him under the Self-Paced Learning Increases Retention and Capacity (SPARC) project and
the opportunity he gave me to teach a Design and Implementation of Software for the Web
(SWE 432) course, I would have never discovered my true passion and pursuit of academia
career, nor could I have succeeded this far. “Thank you so much, Dr. Offutt. You are
always my role model and my best mentor!”

I would also like to express my gratitude to Dr. Paul Ammann, my committee member,
for his constant generosity and encouragement. Not only has he provided me valuable sug-
gestions on my research and academia career, but he has always been supportive, especially
when I started teaching for the first time. My genuine appreciation goes to Dr. Huzefa
Rangwala for stepping up voluntarily to serve as my committee member at the time when I
needed it the most. I would also like to extend my sincere gratitude to Dr. Rajesh Ganesan,
my committee member who has given me constructive suggestions and alternative views
from a system engineer’s perspective.

Furthermore, my sincere thanks goes to Dr. Kinga Dobolyi, my wonderful colleague
and mentor. I am greatly indebted for her inspiration, advice, and mentorship. I am truly
thankful that we shared the “up and down” moments and the frequent “fifteen-hours a day
of Marmoset preparation” together. I wish to thank Dr. Marcio E. Delamaro as well for his
insights on my Ph.D. symposium and his enthusiastic assistance with my presentation. I also
wish to thank Alastair Neil for his support and troubleshooting Tomcat and all technical
difficulties I have had for these past years. I would especially like to thank Lin Deng for
helping me set up the experiment and for his creative ideas on “killing mutants.”

At the risk of the list getting too long, I must acknowledge and express my gratitude to
fellow students, colleagues and friends – Sunitha Thammala, JingJing Gu, Nan Li, Vinicius
H. S. Durelli, Ehsan Kouroshfar, Nariman Mirzaei, Garrett Kent Kaminski, Vasileios Pa-
padimitriou, Bob Kurtz Jr., and the experiment participants including Han Tsung Liu, Jae
Hyuk Kwak, Maha Al-Freih, Norah Alobaidan, Noor Bajunaid, Scott Brown, Colin Buck-
ley, Dr. Nida Gökçe, Santos Jha, Pranab Khanal, Kiranmai Kovuru, Alexander Marcus,
Benjamin McWhorter, Mayank Mehta, Shanthi Ramachandran, Victor Shen, Sunny Singh,
Dana Mun Turner, Lyla Wade, Wade Ward, and Hozaifah Zafar.

iv



Table of Contents

Page

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Challenges for Testing Web Applications . . . . . . . . . . . . . . . . . . . . 4

1.2 Goals and Scope of This Research . . . . . . . . . . . . . . . . . . . . . . . 16

1.3 Hypothesis and Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.4 Conventions and Terminologies . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.5 Structure of this PhD Dissertation . . . . . . . . . . . . . . . . . . . . . . . 21

2 Background and Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.1 Mutation Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.1.1 An Overview of the Mutation Testing Process . . . . . . . . . . . . . 24

2.1.2 Cost Reduction Techniques . . . . . . . . . . . . . . . . . . . . . . . 27

2.2 Web Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.3 Web Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.4 Web Application Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.4.1 Model-based Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.4.2 Mutation-based Testing . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.4.3 Input Validation-based Testing . . . . . . . . . . . . . . . . . . . . . 40

2.4.4 User-Session-based Testing . . . . . . . . . . . . . . . . . . . . . . . 43

3 A Web Fault Categorization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4 Mutation Testing for Web Applications . . . . . . . . . . . . . . . . . . . . . . . 51

4.1 Web Mutation Testing Process . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.2 Web Mutation Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.2.1 Operator for Faults due to Users’ Ability to Control Web Apps . . . 54

4.2.2 Operators for Faults due to Identifying Web Resources with URLs . 58

4.2.3 Operator for Faults due to Invalid HTTP Requests . . . . . . . . . . 62

4.2.4 Operator for Faults due to Data Exchanges between Web Components 63

v



4.2.5 Operator for Faults due to Novel Control Connections . . . . . . . . 64

4.2.6 Operators for Faults due to Server-Side State Management . . . . . 66

4.2.7 Operators for Faults due to Client-Side State Management . . . . . 68

5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.1 Experimental Tool . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.1.1 Functionality of webMuJava . . . . . . . . . . . . . . . . . . . . . . . 71

5.1.2 Overview Structure of webMuJava . . . . . . . . . . . . . . . . . . . 76

5.1.3 Assumptions and Design Decisions . . . . . . . . . . . . . . . . . . . 80

5.1.4 Known Limitations and Possible Improvement . . . . . . . . . . . . 82

5.2 Experimental Evaluation of Web Mutation Operators . . . . . . . . . . . . 83

5.2.1 Experimental Subjects . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.2.2 Experimental Procedure . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.2.3 Experimental Results and Analysis . . . . . . . . . . . . . . . . . . . 88

5.2.4 Threats to Validity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5.3 Experimental Evaluation for Fault Study . . . . . . . . . . . . . . . . . . . 98

5.3.1 Experimental Subjects . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.3.2 Experimental Procedure . . . . . . . . . . . . . . . . . . . . . . . . . 101

5.3.3 Experimental Results and Analysis . . . . . . . . . . . . . . . . . . . 103

5.3.4 Threats to Validity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

5.4 Experimental Evaluation of Web Mutation Testing on Traditional Java Mutants116

5.4.1 Experimental Subjects . . . . . . . . . . . . . . . . . . . . . . . . . . 117

5.4.2 Experimental Procedure . . . . . . . . . . . . . . . . . . . . . . . . . 117

5.4.3 Experimental Results and Analysis . . . . . . . . . . . . . . . . . . . 119

5.4.4 Threats to Validity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

5.5 Experimental Evaluation of Redundancy in Web Mutation Operators . . . . 146

5.5.1 Experimental Subjects . . . . . . . . . . . . . . . . . . . . . . . . . . 147

5.5.2 Experimental Procedure . . . . . . . . . . . . . . . . . . . . . . . . . 148

5.5.3 Experimental Results and Analysis . . . . . . . . . . . . . . . . . . . 149

5.5.4 Threats to Validity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

6 Conclusions and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

6.1 Research Problem and RQs Revisited . . . . . . . . . . . . . . . . . . . . . 162

6.2 Summary of Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

6.3 Future Research Directions . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

vi



List of Tables

Table Page

2.1 Critical research web app testing . . . . . . . . . . . . . . . . . . . . . . . . 34

2.2 Critical research web app testing (continue) . . . . . . . . . . . . . . . . . . 35

3.1 Summary of web faults . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.1 Summary of web faults and web mutation operators . . . . . . . . . . . . . 53

5.1 Subject web apps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.2 Summary of mutants generated and killed by web mutation adequate tests . 88

5.3 Number of mutants generated and killed by web mutation adequate tests . 89

5.4 Number of mutants generated and killed by traditional tests . . . . . . . . . 91

5.5 Mutation Scores (Each test team developed one test set for each subject) . 92

5.6 Overall usefulness of web mutation operators . . . . . . . . . . . . . . . . . 94

5.7 Subject web apps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

5.8 Summary of mutants generated and killed . . . . . . . . . . . . . . . . . . . 104

5.9 Number of mutants generated and killed . . . . . . . . . . . . . . . . . . . . 107

5.10 Summary of hand-seeded faults . . . . . . . . . . . . . . . . . . . . . . . . . 109

5.11 Summary of mutant-faults . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

5.12 Summary of statistical analysis using Student’s t test . . . . . . . . . . . . . 112

5.13 Summary of non-mutant faults detected and undetected by web mutation-

adequate tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

5.14 Subject web apps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

5.15 Summary of web mutants killed by web mutation tests . . . . . . . . . . . . 120

5.16 Number of non-equivalent web mutants killed by web mutation tests . . . . 122

5.17 Summary of Java mutants killed by Java mutation tests . . . . . . . . . . . 124

5.18 Number of non-equivalent Java mutants killed by Java mutation tests . . . 127

5.19 Summary of non-equivalent Java mutants killed by web mutation tests . . . 128

5.20 Number of non-equivalent Java mutants killed by web mutation tests . . . . 130

5.21 Summary of non-equivalent web mutants killed by Java mutation tests . . . 136

5.22 Number of non-equivalent web mutants killed by Java mutation tests . . . . 137

vii



5.23 Subject web apps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

5.24 Summary of web mutants generated and killed . . . . . . . . . . . . . . . . 150

5.25 Number of mutants generated and killed . . . . . . . . . . . . . . . . . . . . 153

5.26 Overall redundancy of web mutation operators . . . . . . . . . . . . . . . . 155

5.27 Average redundancy of web mutation operators . . . . . . . . . . . . . . . . 157

viii



List of Figures

Figure Page

1.1 Use of web browser features (Back button) . . . . . . . . . . . . . . . . . . 7

1.2 Identifying web resources with URLs (submit a form to a different web resource) 8

1.3 Use of HTTP request modes . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.4 Communication via data exchange (mismatched parameters) . . . . . . . . 11

1.5 Novel control connection (forward connection instead of redirect connection) 12

1.6 caption with footnote . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.7 Client-side state management (replacing necessary hidden input value) . . . 15

2.1 caption with footnote . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.2 Interactions between users and web apps . . . . . . . . . . . . . . . . . . . . 30

4.1 Overview of a web mutation testing process . . . . . . . . . . . . . . . . . . 51

5.1 webMuJava - Screen for generating mutants . . . . . . . . . . . . . . . . . . 72

5.2 webMuJava - Screen for viewing mutants . . . . . . . . . . . . . . . . . . . 73

5.3 webMuJava - Screen for executing mutants and showing test results . . . . 74

5.4 Example test case for a FOB mutant . . . . . . . . . . . . . . . . . . . . . . 75

5.5 Example test case for a WSCR mutant . . . . . . . . . . . . . . . . . . . . . 76

5.6 Structure of webMuJava . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.7 Mutation scores of traditional tests . . . . . . . . . . . . . . . . . . . . . . . 93

5.8 Usefulness of web mutation operators . . . . . . . . . . . . . . . . . . . . . . 95

5.9 Hand-seeded fault (mutant-faults and non-mutant faults) . . . . . . . . . . 108

5.10 Non-mutant faults detected by web mutation tests . . . . . . . . . . . . . . 110

5.11 Q-Q Plot for Fault Detection . . . . . . . . . . . . . . . . . . . . . . . . . . 112

5.12 Ratio of killed Java mutants by operators (number of killed Java mutants /

number of generated Java mutants) . . . . . . . . . . . . . . . . . . . . . . . 145

5.13 Ratio of killed web mutants by operators (number of killed web mutants /

number of generated web mutants) . . . . . . . . . . . . . . . . . . . . . . . 146

5.14 Non-equivalent web mutants generated . . . . . . . . . . . . . . . . . . . . . 150

5.15 Overall redundancy of web mutation operators . . . . . . . . . . . . . . . . 154

ix



5.16 Average redundancy of web mutation operators . . . . . . . . . . . . . . . . 158

x



Abstract

TESTING WEB APPLICATIONS WITH MUTATION ANALYSIS

Upsorn Praphamontripong, Ph.D.

George Mason University, 2017

Dissertation Director: Dr. Jeff Offutt

Web application software uses new technologies that have novel methods for integration

and state maintenance that amount to new control flow mechanisms and new variables

scoping. While modern web development technologies enhance the capabilities of web ap-

plications, they introduce challenges that current testing techniques do not adequately test

for. Testing individual web software component in isolation cannot detect interaction faults,

which occur in communication among web software components. Improperly implementing

and testing the communications among web software components is a major source of faults.

This research presents a novel solution to the problem of integration testing of web

applications by using mutation analysis, web mutation testing. New mutation operators

are defined and a tool, webMuJava, that implements these operators is presented. A series

of four experimental studies was conducted using 15 web mutation operators. The results

show that (1) web mutation generated very few equivalent mutants (only 6% on average

across four experiments); (2) web mutation testing provides 100% coverage on web mutants

whereas 12 independently developed tests designed to satisfy traditional testing criteria

provides 47% coverage; (3) no traditional tests kill FOB mutants; (4) web mutation tests

can help create tests that are effective at finding web faults; (5) tests designed for web

mutation testing detects all kinds of method-level Java mutants; (6) tests designed for



method-level Java mutation testing missed all FOB, WCTR, and WSIR mutants; (7) Java

mutants help design tests that verify individual web components whereas web mutants

help design tests that verify interactions between web components; (8) while overlapping,

web mutation testing and method-level Java mutation testing are complementary and can

improve the quality of tests; (9) three mutation operators that are redundant and can be

excluded from the testing process with minimal loss in fault detection are WFUR, WHID,

and WLUD; and (10) the FOB and WSIR operators may be particularly strong and can

lead to high quality tests.



Chapter 1: Introduction

“Has anyone gone a day without using the web?” Typical responses will range from using

the web “every day” to “many times a day” and usually web users not only read static

pages on the web but they also interact with software on the web. These software programs

are called web applications. Without a doubt, human daily activities rely heavily on web

applications.

Web applications (web apps) are software systems that run on a server and use web

browsers as clients to display the user interfaces. A key benefit of web apps is that users

can access web apps at anytime and from anywhere without installing any software. For

decades, web apps have a major impact on our daily lives. Worldwide Internet usage

increased more than 918.3% during 2000-2016 [100]. Profit and non-profit organizations

have increasingly been shifting their services to web apps [16, 58, 97, 100] to maintain and

enhance their competitive positions. The consolidation of services in web apps has signifi-

cantly helped enterprises centralize their resources and improve their levels of service. For

example, many e-commerce sites such as BankOfAmerica.com, amazon.com, eBay.com, and

statefarm.com are web apps. Likewise, academic institutions have transformed services such

as admission, grading, and registration processes to be online. Healthcare providers and

health insurance companies such as Kaiser Permanente and Anthem now base their services

on web apps to improve their response time, to increase availability, to ensure accessibility,

and to facilitate claim filing [97]. Many government agencies have deployed web apps to

facilitate operational processes such as registering vehicles and paying property taxes. The

Washington D.C. U.S. Customs and Border Protection (CBP) has deployed the Automated

Commercial Environment (ACE) Secure Data Portal, a web portal that facilitates and an-

alyzes consolidated border processing information so that violations of U.S. laws can be

identified and confirmed quickly [16].

1



However, in practice, while web apps can tremendously facilitate daily activities, indus-

try has suffered huge losses due to failures of web apps. In October 2004, PayPal, the online

payment service, had to waive all customers’ transaction fees for an entire day because of a

service outage after upgrading its software [38]. The service unavailability may have been

due to integration errors [87]. In August 2006, Amazon.com disconnected its website for

two hours because its web apps were not fully functioning, losing millions of dollars as its

customers could not access the system [106]. In July 2008, Amazon’s S3 systems, a web

component hosted storage service, failed so that many businesses relying on this service

lost information and significant revenue [17]. Consequently, Amazon lost customers and its

reputation was damaged. In September 2011, Target’s website was out of service for two

hours and functioning intermittently for an entire day after launching a new clothing cam-

paign. The malfunction of its web app delayed and canceled numerous customers’ orders.

In February 2011, Google Mail service (Gmail) was temporarily unavailable, causing the

company to disable part of its services. Over 120,000 users could not access their email

accounts. Google reported the cause of the outages was a fault in a Gmail storage software

update [12]. In my personal experience in March 2012, purchasing two of the same items

from the BodyShop website turned a buy-one-get-one 50% off to a half price each item.

Another personal experience in June 2012, after placing an order through Amazon website

and successfully logging off, I clicked the back button several times intending to find infor-

mation from a previous screen. Typically, users would expect their payment information to

be inaccessible once they successfully logged off from their online account, or at least they

should be forced to re-log in. To my surprise, after navigating back several screens, I was

shown a screen with full payment information for the purchase I just made. Such exposure

of sensitive information can raise chances of unauthorized access and misuse of confidential

information. In October 2011, Bank Of America’s website was sporadically unavailable for

six consecutive days due to the upgrading of its online banking [10]. In September 2012, six

US major banks (Bank of America, JPMorgan Chase, Citigroup, US Bank, Wells Fargo,

and PNC) suffered online attacks, resulting in denial of services to thousands of customers

2



[86]. Furthermore, in August 2013, Amazon.com was down for approximately 30 minutes,

causing the company to lose approximately $2 million [14]. Dropbox, a cloud-based file-

sharing company, suffered an outage in January 2014. The company reported that the

failure was due to a fault in a system maintenance script [33]. In February 2015, Anthem

suffered cyberattacks that breached personal information (Social Security numbers, birth-

days, addresses, and income data) for tens of millions of customers and employees [34]. As

another personal anecdote, in April 2016 my advisor lost 20 minutes worth of data entries

after clicking the browser back button while using the TurboTax web software. In December

2016, at least 500 million Yahoo user accounts were compromised [32].

Moreover, records and announcements show that universities’ web apps have been

hacked, allowing unauthorized access to students’ confidential information such as social

security numbers. Without appropriate and adequate web app testing, systems crash and

software fails. The impact of unreliable web apps may range from inconvenience (i.e.,

malfunction of the app or users’ dissatisfaction), economic shortage (i.e., interruption of

business), or catastrophic impact (i.e., loss of life due to failures of safety-critical systems

such as medical web apps). Unreliable web apps can even raise the chance of terrorist

attacks [110].

These numerous problems show that web apps are often deployed with significant faults.

Ensuring the proper functioning of web apps is difficult due to the novel and powerful

technologies that have been created to design and build them. Furthermore, user loyalty

toward any particular website is usually low and is primarily determined by the quality

of web apps [79]. The increasing reliance on web apps demands appropriate web-specific

testing techniques to ensure reliability of web apps, as well as to ensure that the apps meet

their users’ expectations.

Web app testing is an ongoing research area. Many studies on testing web apps have been

attempted. While some studies focus on different web-specific features and some consider

different development frameworks, some overlap. At the moment, researchers, developers,

and testers do not know how best to test web apps. This dissertation focuses on developing

3



a web app testing technique based on mutation analysis (Section 2.1) called web mutation

testing. Further discussion on goals, scope, and the rationale for this research is presented

in Section 1.2. Before discussing web mutation testing, an overview of challenges in testing

web apps is presented below. These challenges were analyzed along with the nature of web

apps to list various kinds of web faults (Chapter 3), which are later used to design web

mutation operators (Chapter 4).

1.1 Challenges for Testing Web Applications

Because the effectiveness of mutation testing depends primarily on the mutation operators

used to mutate the software artifacts, understanding potential web faults is mandatory prior

to designing the operators. Therefore, various resources including a publicly available study

on web faults and bug reports were investigated.

Thus far, no standard web fault model has been published. Several studies have at-

tempted to classify web faults [26,35,69,93]. However, the existing categorizations overlap

without being consistent or complete. Therefore, this research modeled web faults intending

to ensure coverage of faults that occur in communications between web components, which

are referred to as interaction faults. To accomplish this, the nature of web apps and web

development technologies were explored. An analysis of web faults from the existing study

(as mentioned above) and an analysis on web specific features that can introduce web faults

and that affect the testing process (i.e., challenges in testing web apps) were integrated to

create a list of web faults. Further information on potential web faults according to each

challenge is given in Chapter 3. Note that this research is particularly focused on interaction

faults and primarily considers server-side web software.

Web apps are user interactive software apps deployed on a web server and accessible

through its screens (sometimes called pages) via web browsers. Web apps can be developed

from and consist of multiple diverse, distributed, and dynamically generated web software

components. Web components are software modules independently compiled and executed.

4



They implement different parts of the web apps’ functionality. They interact with each

other to provide services to the users. Interaction between web components relies on the

HyperText Transfer Protocol (HTTP). Each interaction (from sending a request to receiving

a response) requires individual HTTP connection. The individual connection causes state

of web app to be disconnected; i.e., information is not maintained between connections.

This introduces the stateless property of the HTTP. Web components may be created with

different software technologies, reside on different servers, and integrate dynamically. The

appearance (user interface, which are screens rendered in web browsers) of web apps may

vary depending upon state, users, time of day, and geography. In addition to the controls

provided by the web apps, users may interact with the web apps using browser controls such

as back, forward, and reload. The nondeterministic behavior allowed by these technologies

increases complexity, the potential for errors, and the difficulty of testing. Section 2.2

discusses the engineering impacts of web app technologies in depth.

In addition to techniques used in traditional software development, many new tech-

nologies have been created to design and develop web apps. These include the HyperText

Transfer Protocol (HTTP), and non-compiled languages or scripting languages such as Hy-

perText Markup Language (HTML) and JavaScript. Many technologies have been used to

control execution flow and manage the state of web apps, allowing web apps to provide a

variety of services and to evolve and be released to respond to users’ needs more rapidly

than traditional software apps.

Although these web development techniques are powerful and enhance the functionality

of web apps, they introduce new challenges in testing. The problems this research addresses

are based on the following seven specific challenges.

1. Users’ ability to control web apps: Web apps allow operational transitions [82],

which are transitions caused by users, web clients, or system configuration. Unlike tra-

ditional programs where interactions between users and the software are definite and

cannot be changed by the user, web users can use features of the web browser to by-

pass the app’s normal execution flow. Users can navigate to previously viewed screens

5



by pressing the back and forward buttons, reload the screen using the refresh but-

ton, and rewrite URLs (Uniform Resource Locators) directly. The back and forward

buttons record all the data (possibly including the current state of the app and the

current state of the browser) that were posted to the server by the previous requests.

These data will be resent when users navigate back and forth between screens. This

kind of requests cannot be distinguished by the web server. The order in which the

requests are made can affect how the app behaves. The users’ ability to control web

apps can disrupt the control flow, causing inconsistencies in web apps’ navigation,

corrupting the state of web apps, and allowing confidential information to be accessed

improperly. For example, in online banking, pressing the back button after a user

successfully transfers funds between accounts can result in duplicated transactions.

Funds to be withdrawn and deposited may be inconsistent and incorrect.

Let’s use the Text Information Management System, a small web app allowing users

to maintain text information, to illustrate how web-specific features can introduce

web faults and impact the testing process. Figure 1.1 illustrates the case when a user

has successfully logged in to the Text Information Management System and tried to

add information to his/her account. Instead of completing the adding process (i.e.,

submitting a data entry form of a record add web component), he/she clicked the

browser’s back button, leading him/her to a screen listing his/her existing information

(the browse web component). At this point, he/she may expect that the data recently

entered but not submitted to the system still remain when he/she revisits the form

(i.e., record add). On the other hand, under the same circumstances, other users may

expect a blank form. The design decision is up to the system owners and developers

to ensure that the operational transitions are correctly allowed for. However, very

often, this kind of transitions is overlooked by the developers and the testers.

Operational transitions can cause inconsistencies in web apps’ navigation and cor-

rupt the state of the apps. Almost half of user sessions include navigation caused

by the use of browser’s navigation features [102]. Web apps have little control over

6



the user’s ability to change the flow of execution. At the same time, many develop-

ers are not familiar with the conceptual impacts of operational transitions. Hence,

appropriate testing mechanisms are vital.

Figure 1.1: Use of web browser features (Back button)

2. Identifying web resources with Uniform Resource Locators (URLs): Web

resources (including images, style sheets, JavaScripts, Java Server Pages (JSPs), and

Java servlets) are parts of a web app and are identified by URLs. These components

are integrated dynamically during execution. They are not available until after the

web app is deployed and can be modified any time during execution. Inappropriately

identifying web resources could lead to unexpected behavior of a web app including

an attempt to visit an unintended or nonexistent screen or a request to an incorrect

JavaScript. These mistakes can lead to failures.

Figure 1.2 shows a scenario where an incorrect URL is specified. As a web app can be

developed by multiple developers, there may be multiple versions of web components

that authenticate users. Using the URL to an incorrect login component can perform

different authenticating mechanisms or access a different set of credentials, introducing

inconsistencies and violating data integrity.

7



Figure 1.2: Identifying web resources with URLs (submit a form to a different web resource)

3. Communication between web components through HTTP requests: Each

HTTP request consists of a type of the request (called a transfer mode) along with a

URL to which the request is sent and data associated with the request. HTTP allows

several transfer request modes, each of which can impact the action and response of

the apps. The transfer mode determines how the data are packaged when they are

conveyed to the server. The most commonly used transfer modes are GET and POST.

A GET request transfers information as parameters (represented as name-value pairs)

appended to the URL (destination) string; for example, https://cs.gmu.edu:8443/

uprapham/example/randomString?param1=value1\&param2=value2. With most

browsers, users can see the URL along with the actual data transmitted. Users then

can bookmark the URL or save it for later access. A GET request is properly used

to retrieve data from a web server. The size of data transmitted is limited, usually

to 1024 bytes. Due to the size restriction, submitting a large data set (i.e., resulting

in a long URL) using a GET mode may cause invalid behavior on the web server (for

example, data anomalies or a system crash).

Unlike a GET request, where data are attached to a URL and only the URL is sent

to the server, a POST request packages data and constructs the request as an HTTP

8



Figure 1.3: Use of HTTP request modes

message. The size of data transmitted using a POST request is not constrained. A

POST request is usually used when information is sent as part of the request such as

when storing or updating data into a database, uploading a file, submitting a form, or

sending an email. Data transmitted using a POST mode usually change state on the

web server. Improper use of these transfer modes can result in inconsistent behavior

of web apps or reveal confidential information; for instance, a different presentation

of a response screen or loss of input values. As another example, if a GET request is

used to transfer a form that includes hidden fields (such as a counter tracking a log-in

attempt), the user can see this information and may change it to gain unauthorized

access.

Figure 1.3 illustrates an improper use of HTTP transfer mode. As soon as a user

opens the first screen of the app (the index web component), he/she will be prompted

to log in with a userid and password. If the form is submitted with a POST request,

the login information will be packaged in an HTTP message and transmitted to a web

component named login to perform an authentication. If the form is submitted with

a GET request, the login information will be appended to the URL. This can expose

confidential information.

9



4. Communication via data exchanges between web software components:

Unlike communication between traditional software components, interactions between

web software components rely on sending requests along with needed information (i.e.,

parameter-value pairs). The target component (the web component that will process

the request) uses the provided information to process the requests. Due to the fact

that web apps are usually developed by teams, inconsistencies in communications can

occur. The provided information may be referred to by names that are different from

the parameters’ names the target component expects. Values being sent may be in-

compatible with the types expected by the target component. Although values are

exchanged between web components as strings, some operations or processes may use

the values to infer certain constraints. For example, a target web component that

verifies the availability of funds in an online banking may expect the value to be of

type float or double; a component that authenticates login attempts may expect

the number of attempts to be of type integer. If parameter mismatches occur, the

app may fail once the target component executes or parses this received information.

In addition to parameters’ names and their values, the number of parameters being

sent may be different from the number of parameters expected by the target compo-

nent. These inconsistencies can affect the behavior of the app. As an example, for a

search facility, if a component sends a request with more parameters than the target

component expects, the extra parameters are not taken into account and hence the

search result may not succeed.

Another example, as demonstrated in Figure 1.4, is when two online courses use

the Text Information Management System. Both courses can be accessed through

the same initial screen (the index web component) but only the student’s login in-

formation (regardless of the course identification) is expected by the authentication

web component (the login component), although the courseID may be included in

the request. As a result, for a student who enrolled in both courses, once the login is

successful, a student may be sent to an unintended course’s screen. This inconsistency

10



Figure 1.4: Communication via data exchange (mismatched parameters)

is because of parameter mismatches between web components.

5. Novel control connections: In traditional software, connections between software

components are based on method calls, inheritance, and message passing. In addi-

tion to these techniques, web apps use several control connections that were invented

specifically for web software. Different web app development frameworks introduce

different control connections. The common and basic control connections introduced

by the J2EE framework, for example, are forward and redirect. Forward and

redirect connections transfer control from one web component (the source) to an-

other component (the target), similar to a method call but with distinct differences.

Most importantly, control does not return to the source component.

Forward connections transfer control from a source component to a target com-

ponent; for instance, by using Java Server Pages (JSPs) to pass parameters with a

forward transition. The target must be on the same server. The control does not re-

turn to the source component. A forward does not inform the browser of the transfer

and does not include the data from the original request (although the source com-

ponent may share the data in-memory). The browser hosting the screen containing

11



Figure 1.5: Novel control connection (forward connection instead of redirect connection)

a forward connection is unaware that control has been transferred. As a result, ev-

ery time the browser tries to reload the screen, the original request with the original

URL (identifying the source component) is repeated. Therefore, inappropriate use

of a forward connection may result in data anomalies; for example, using it for an

operation inserting or updating information to a database may lead to inadvertently

duplicating an insert or an update to the database.

Redirect connections explicitly instruct the browser to create a new request and

send it to the target component. The target may be on another server. All request

data are included in the new request but the source and target might not be able

to share any data. Accordingly, objects executed in the original request scope are

unavailable to the new request. Similar to forward connections, by using redirect

connections, control does not return to the source component. An example of a

redirect connection is the Java servlet’s redirect transition.

To summarize, both forward and redirect behave similarly in three ways: they

transfer control to a new software component, they pass the user data that was in-

cluded in the request (form values, etc.), and control does not return to the originating

component (unlike a traditional method call). However, the differences are significant.

12



A forward transition must be on the same server and is handled by the server. A

redirect transition returns to the client’s browser, and the browser creates a new

request that can go to a different server. Thus, some state variables, such as the

request and session objects, that are available with a forward are not available with

a redirect. Many developers do not understand the somewhat subtle differences be-

tween these two and often use them incorrectly, causing errors in the software state.

6. Server-side state management: A web user usually interacts with a web app to

accomplish certain tasks and the communications involve a series of related interac-

tions between the user and the app. Due to the stateless property of the HyperText

Transfer Protocol (HTTP), each request sent between web components is handled in

separate threads by components that do not share memory space. Therefore, web

apps cannot maintain program state in the traditional ways of persistent objects and

variables in a shared scope. To handle a user session, persistent data must be stored

in an in-memory object whose accessibility must be specified.

Web development frameworks have created new techniques to manage state. This

research considers two state management mechanisms. First, in-memory objects can

be used to persist data and maintain the program state. In J2EE, these objects are

called session objects. Session objects allow web apps to keep track of data between

multiple HTTP requests. Data are stored as attributes of objects so they can be

accessed later. Improperly handled session objects (for instance, not creating a new

instance of the object when needed) can cause data anomalies and corrupt the state

of web apps.

Another mechanism, scope setting, is used to identify the accessibility of an in-

memory object. The J2EE framework (illustrated in Figure 1.6), for example, pro-

vides four levels of variable scoping: page, request, session, and application. A

variable of page scope is only available within the component that initially receives the

request. A variable of request scope is available to the component that receives the

13



Figure 1.6: State scope of web components in J2EE [78]1

request and all components that execute during the request. A variable of session

scope is available to all components that are defined as being part of the web app,

even across multiple requests, throughout the user session. A variable of application

scope is available to all apps running under the same servlet context. Scope setting

helps determine the lifetime of web components and their availability and accessi-

bility. However, many programmers have difficulty understanding these scopes and

frequently specify the scope inappropriately, allowing it to be accessed when it should

not be and vice versa.

7. Client-side state management: In addition to using server-side state management

techniques, the app state can be persisted across multiple requests by placing data

directly into the user interface as encoded in HTML files. One common approach is

the use of hidden form fields. Hidden form fields are form input elements that are

specified as hidden, allowing web apps to place data in the response HTML that will

be submitted in the next request. Hidden form fields are not rendered on the screen.

However, users can access the source code to view and change their values. Hidden

1Reproduced with permission from J. Offutt

14



Figure 1.7: Client-side state management (replacing necessary hidden input value)

form fields can be placed into the HTML by the web app, and then are sent during

the next request as normal form data. Since hidden form fields are presumably not

visible (on screen) to the users, web apps do not generally validate their values. As a

consequence, improper values of hidden form fields may be accepted.

Figure 1.7 shows the scenario when a hidden input attempt that tracks the number

of login attempts is altered, incorrectly allowing a user extra login attempts. Omitting

necessary data or submitting inappropriate data via hidden form fields to the server

can cause unintended results, possibly leading to unauthorized access to the system.

These seven challenges lead to faults occurring in communications between web com-

ponents, defined in this research as interaction faults. Possible web faults are discussed

in Chapter 3. Interaction faults, as defined here, are new to web apps and the current

state-of-art in web app testing is still unclear how they can best be detected. Interaction

faults make testing more complicated. As a result, a testing approach dealing specifically

with interaction faults is needed.

15



1.2 Goals and Scope of This Research

Web apps are subject to unique challenges because of the development frameworks used

to create them and the web component generation and integration that are dynamic and

complicated. The goal of this research is to invent and investigate the applicability of

mutation testing to web apps with a focus on detecting interaction faults before the software

is deployed. The ultimate goal of this research is to improve the quality of web apps and

reduce the cost of testing web apps by using effective web mutation operators for test case

design and generation.

Web apps are constructed differently from traditional software. New frameworks and

features that do not exist in traditional software have been created to design and develop

web apps. Existing techniques for traditional software testing do not support new web-

specific features.

There have been numerous studies on testing individual web software components.

Nonetheless, so far, very little research has focused on testing web component interac-

tions. Though web app testing at the unit level is necessary as it verifies each individual

web components, interaction faults cannot be detected by testing individual component in

isolation. Indeed, communications between web components are common sources of faults

in web apps. For instance, when two web components try to interact with each other, they

may make different assumptions. Mismatched assumptions can introduce faults into the

system.

Several techniques have been developed to test web apps. Some approaches focus on

input validation [74, 80, 83]. Some approaches rely on finite state machines [8]. Others are

based on user-sessions [30, 94, 96]. Mutation testing has been applied to web apps [27, 54].

Offutt et al. [83] introduced bypass testing, which has been extensively adopted and adapted

for web app testing [56, 74, 101]. Nevertheless, web app testing is a relatively new research

area and several web-specific features and challenges have not been dealt with. Though some

techniques consider the interactions between HTML forms, most do not take into account

the user’s interactions with the apps (e.g., using forward, back, and reload buttons) and

16



interactions between non-HTML web components such as JSPs and Java servlets. This

research focuses on developing an approach to test web apps and improving the quality of

test cases with an emphasis on revealing interaction faults.

Six specific objectives of this research are:

1. Understand potential interaction faults

2. Design web-specific mutation operators that reveal interaction faults, i.e., inventing

web mutation testing criterion

3. Evaluate the web mutation operators to select a collection of operators that are effec-

tive at finding faults, but also as cost-effective as possible

4. Evaluate the fault detection capability of tests generated with the web mutation test-

ing criterion

5. Evaluate the overlap between web mutation testing and traditional Java mutation

testing

6. Evaluate the redundancy in web mutation operators

Since this research focuses on server-side web apps, JavaScript and AJAX are excluded.

Although many web development frameworks exist, mutation testing requires source code

to be available, thus limiting the choices for web apps used for empirical validation of web

mutation testing. This research relies on J2EE-based web apps and considers web compo-

nents as software modules developed with JSPs and Java Servlets. Though the definitions

of web mutation operators are based on J2EE, the underlying concepts of the operators can

be applied to other web development languages and frameworks with modification on the

implementation.

17



1.3 Hypothesis and Approach

Mutation analysis specifically targets the structural and data aspects of software. It has

been shown to be effective at finding integration faults [18, 39, 54]. As many faults in web

apps are due to structural and data problems, mutation analysis is an obvious candidate

for these kinds of faults. This research investigates the usefulness of applying mutation

analysis to web apps, and evaluates its applicability in revealing web interaction faults.

This research expects that mutation testing can be used to help improve and ensure the

quality of tests.

Research Hypothesis:

Mutation testing can be used to reveal more web interaction faults

than existing testing techniques can in a cost-effective manner.

To verify the hypothesis, the experiments (presented in Chapter 5) are conducted in

four phases, each of which serves different purposes.

The first experiment focuses on verifying whether web mutation testing can help improve

the quality of tests developed with traditional testing criteria by answering the following

research questions.

RQ1: How well do tests designed for traditional testing criteria kill web mutants?

RQ2: Can hand-designed tests kill web mutants?

The second experiment examines the applicability of web mutation testing to detecting

web faults by answering the following research questions.

RQ3: How well do tests designed for web mutation testing reveal web faults?

RQ4: What kinds of web faults are detected by web mutation testing?

The third experiment evaluates whether web mutation testing criterion and traditional

Java mutation testing criterion are complementary to each other by answering the following

research questions.

18



RQ5: How well do tests designed for web mutants kill traditional Java mutants and

tests designed for traditional Java mutants kill web mutants?

RQ6: How much do web mutants and traditional Java mutants overlap?

The last experiment concentrates on reducing the testing cost in terms of the number

of mutants generated by answering the following research questions.

RQ7: How frequently can web mutants of one type be killed by tests generated

specifically to kill other types of web mutants?

RQ8: Which types of web mutants are seldom killed by tests designed to kill other

types of web mutants?

RQ9: Which types of web mutants (and thus the operators that create them) can be

excluded from the testing process without significantly reducing fault detection?

This dissertation approaches the challenges in testing web apps by recognizing that (i)

web apps are developed differently from traditional software thus existing software testing

techniques are insufficient for testing web apps, (ii) the majority of web faults occur in

interactions between web software components, and (iii) web faults can be imitated us-

ing mutation operators and can be detected by tests designed with web-specific mutation

testing.

To design web-specific mutation testing criterion (or web mutation testing, for simplic-

ity), the following steps are carried out.

• Investigate faults occurring in web apps: Faults occurring at the unit level can

be detected by unit testing of web apps, which is not very different from unit testing

of other software apps. On the other hand, faults occurring at the integration and

system level need special treatment as web apps integrate web software components

that can be on multiple hardware/software platforms, written in different languages,

and do not share the same memory space. Web software components and the content

presented to the user may be dynamically generated and customized according to the

server state and session variables. Requests made when web apps are executed are

19



independent and are handled by creating new threads on the software objects that

handle the requests. This can lead to problems with testing interactions between

web software components that do not exist with other software apps. Accordingly,

this research focuses on examining faults due to interactions between web components.

Various online resources, including existing studies on web faults and bug reports, have

been investigated. An analysis from these resources is integrated with an analysis on

the nature of web apps that impose challenges in testing web apps to create a web

fault model.

• Define web-specific mutation operators: Using faults categorized from the pre-

vious step, web-specific mutation operators are defined. These operators (i) imitate

faults that web developers make, such as replacing one scalar variable with another

or replacing one accessibility setting with another; (ii) force good tests, such as fail on

back (i.e., failing if and only if a browser back button is exercised); and (iii) imitate

faults that web developers are unaware of or do not normally make, or faults that are

hard to detect such as faults that occur when the control connection of web app is

used inappropriately (e.g., forward control connection instead of redirect control

connection).

1.4 Conventions and Terminologies

Throughout this PhD dissertation, italic font is used for emphasis and introducing new

terms. Typewriter font is used for web specific features and keywords, and J2EE JSP

and servlet codes and templates. When method names of web development frameworks or

of web apps under tests are referenced in the main body of text, trailing parentheses are

omitted.

URLs (Uniform Resource Locators) refer to a subset of URIs (Uniform Resource Iden-

tifiers). However, for simplicity, this research uses the term URL when referring to web

resources.

20



Faults (or software faults) are abnormal conditions or defects in software that can po-

tentially lead to software failures.

Failures (or software failures) are states (or behaviors) of software that propagate and

do not meet the software’s intended functionality.

Fault detection is the process of recognizing the existence of faults in software.

Interaction faults are faults that can occur in communications between web resources

(or web components).

Test cases (so-called test inputs or tests) are inputs entering to a software app under

test. These inputs include a collection of data values and a series of interactions between a

user and the app.

Test requirements are specific conditions or elements that test cases must cover.

Test suites (or test sets) are collections of test cases.

1.5 Structure of this PhD Dissertation

The remainder of this document is organized as follows. Chapter 2 provides background

on mutation analysis, its core concepts, and known limitations. Because this dissertation

focus on introducing an approach to appropriately test web apps that is as cost-effective as

possible, the chapter also emphasizes the computationally high cost of mutation analysis.

The concept of mutation analysis forms the foundation for web mutation testing. This

chapter also introduces background on the characteristics of web apps and the modeling of

web apps that demand novel mechanisms for testing web apps, followed by a discussion on

some existing techniques used for testing web apps.

Chapter 3 discusses possible faults occurring in interactions between web components.

This chapter lists web faults based on the seven challenges in testing web apps in section

1.1. The fault categorization is later used to design the web mutation operators.

Chapter 4 introduces web mutation testing and presents definitions of novel source-

code, web mutation operators. The emphasis is on testing the connections between web

components by mimicking potential faults that can occur in the transitions. Web mutation

21



operators are grouped according to the seven challenges.

Chapter 5 presents an empirical validation of web mutation testing. The validation

consists of four experiments. First, the experiment ratifies web mutation operators by

examining how well tests designed with traditional testing criteria kill web mutants (RQ1)

and whether the quality of these tests can be improved (RQ2). Second, the experiment

evaluates how well web mutation-adequate tests detect web faults (RQ3) and analyzes the

kinds of web faults that can be detected by web mutation testing (RQ4). Focusing on

improving mutation testing, the third experiment examines whether web mutation testing

and traditional Java mutation testing overlap (RQ5 and RQ6). Then, intending to minimize

the number of web mutants generated (and thus reducing the cost of mutation testing), the

last experiment analyzes and identifies redundancy in web mutation operators based on

how difficult each group of web mutants can be killed by tests designed for other groups of

web mutants (RQ7, RQ8, and RQ9).

Chapter 6 revisits the research problems (challenges in testing web apps, to be specific)

and research questions, and draws on the findings to verify the research hypothesis. It

summarizes the main contributions of this research. Finally, the chapter concludes with

future research directions.

22



Chapter 2: Background and Related Work

This chapter introduces background on mutation analysis and its core concepts. It also

presents characteristics of web apps that demand novel mechanisms for testing web apps.

The chapter, then, discusses some existing techniques available for testing web apps.

To test software, testers must design test cases (sometimes referred to as test inputs or

tests). Test cases are inputs entered to an app under test. These inputs include form data

values and a series of interactions between a user and the app. Test cases may be created

(i) randomly, (ii) based on the testers’ experience, and (iii) according to software testing

criteria. While randomly generating tests can be simple and source code of the app under

test is not needed, the tests’ ability to detect software faults varies tremendously depending

on selected test inputs. Furthermore, the quality of tests are different and relies heavily

on the testers’ experience. On the other hand, software testing criteria provide testers a

checklist (referred to as test requirements) describing how the tests should be and what

should be covered while testing. Precisely, the quality of test requirements determines the

quality of test cases and appropriate instructions (or criteria) are vital to derive high quality

test requirements. Mutation testing has been found to be an extremely effective technique

for producing test requirements.

2.1 Mutation Testing

Focusing on the use of mutation analysis to test web apps, this chapter presents a back-

ground on mutation analysis and discusses an overview of techniques that have been used

to test web apps and that have been used to reduce the cost of mutation testing. The

chapter does not intend to provide a comprehensive survey of all existing research in muta-

tion testing. Instead, it provides the core concepts of the underlying theory applied in this

23



research.

Over four decades, mutation analysis has evolved and proven to be effective at revealing

faults [9, 25, 42]. Precisely, mutation testing is a fault-based testing technique that can be

used to generate test cases to be used to measure the effectiveness of pre-existing tests.

Notwithstanding, it can be expensive due to the number of test requirements generated.

In the past few decades, mutation testing has been applied to many types of software

artifacts, including programming languages (such as Fortran 77 [22], C [67], and Java [44,63,

65]), specifications and models [11,31,55], android apps [23], and web apps and web services

[54,73,75,88,90,109]. Mutation testing has also been applied to non-software artifacts such

as security policies [70] and spreadsheets [4]. An alternative use of mutation analysis is to

help produce candidate patches in automated software repair [53]. Extensive information

on the development of mutation testing can be found in Jia and Harman’s survey [42].

2.1.1 An Overview of the Mutation Testing Process

The underlying concept of mutation testing is to create modified versions of the program

by syntactically changing the program. A single change made to the program signifies a

first-order mutant whereas multiple changes made to the program represent a higher-order

mutant. It is important to note that this research intends to provide a testing criterion

to both guide testers to detect certain kinds of web faults and to help developers to avoid

certain kinds of mistakes. Hence, this research relies heftily on first-order mutation testing.

The variations from first-order mutation testing intend to mimic common mistakes devel-

opers could have made or force testers to check whether the program behaves appropriately

under certain circumstances. Then a test suite is executed on the modified versions. The

more modified versions the test suite can distinguish from the original program, the more

effective the test suite is.

The general process of mutation testing consists of (i) generating mutants, (ii) executing

the app under tests, (iii) executing the mutants, and (iv) determining if the tests can detect

mutants [6, 21].

24



Mutants are variants of the app under test, where each mutant differs from the original in

a small syntactic way (usually one statement is changed) [6]. Mutants are test requirements

that testers must design test cases to satisfy. Most mutants represent mistakes that a

programmer could have made. Other mutants may encourage good tests, such as using

boundary values. Some mutants may be semantically equivalent to the original app, and

are called equivalent [81]. To generate mutants, rules specifying syntactic variations are

applied to the original source code. These rules are called mutation operators (also known

as mutation rules [81]).

Prior to evaluating the effectiveness of test suite, the tests must be designed and executed

on the original app. If the tests fail (i.e., the app is incorrect), the app must be fixed. The

testing and fixing process is repeated until all tests pass; that is, the app is correct with

respect to the tests. After successfully running the tests on the original app, the tests are

executed on the mutants.

To kill a mutant, the following three conditions must be satisfied [6, 22].

• Reachability : The mutated location in the program must be reached and thus exe-

cuted.

• Infection: After the mutated location is executed, the state of program must be

incorrect.

• Propagation: The infected state must affect some part of the program output.

These conditions forms the RIP model [6, 22], and help testers design tests that cause

the output or behavior of the mutants to be different from the output or behavior of the

original app. If a mutant behaves differently from the original app, the tests can detect

the faults that the mutant represents and the mutant is said to be killed. Dead mutants

are removed from the testing process. Tests are said to be effective at finding faults in the

app if they distinguish the app from its mutants [63]. Mutants that cannot be compiled or

executed because they are syntactically illegal are called stillborn. Stillborn mutants are not

useful in revealing faults or evaluating the quality of test cases since no further execution

25



or analysis can be done. Thus, stillborn mutants are excluded from this research, and when

possible not created. If mutants can be killed by almost any test cases, they are called

trivial mutants. If mutants behave exactly the same as the original app on all inputs, they

are said to be equivalent. Equivalent mutants always behave or produce the same output

as the original app; thus, no test cases can kill them. Determining equivalent mutants is

theoretically undecidable for some cases, and is usually done manually.

To measure the effectiveness of a test suite, the mutation score is computed as a per-

centage of the non-equivalent mutants that have been killed [6]. The mutation score ranges

from 0 to 100%, where 100% indicates that all mutants have been killed and hence the test

suite is adequate.

In addition to evaluating the effectiveness of a test suite, mutation testing helps improve

the quality of tests by providing a test-adequacy criterion. To do so, testers add more tests

and repeat the mutation testing process until achieving a mutation score of 100% or reaching

a threshold for mutation score.

Figure 2.1 presents an overview of the mutation testing process. Mutants are created

for a program under test P. A set of test cases (T) is designed and run on P. P is fixed until

it is correct. T is run on mutants. More test cases are designed and added to T, which in

turn is run on mutants until a desired threshold is achieved.

While mutation testing has been shown to be effective at designing high quality test

cases, the testing costs can be very expensive depending on the number of mutants gen-

erated. More mutants means, in general, more tests. Mutation testing requires human

effort in determining meaningful test inputs and identifying equivalent mutants. Further-

more, running a large number of mutants is computationally expensive. Several studies

[5, 19, 24, 43, 50, 76, 77, 81] have confirmed the challenges in testing due to the extensive

number of mutants. Many researchers have developed techniques to reduce the number of

mutants while maintaining the fault detection capability by selectively applying effective

mutation operators [19,24,76,77] and excluding redundant mutants from the testing process

[5, 50]. However, these studies have not considered web-specific mutation operators.

26



Figure 2.1: Mutation testing process [6]1

As this research focuses on applying mutation testing to web apps, the number of mu-

tants (which are test requirements) drive the testing cost. This research focuses on using

effective mutation operators [5,76,77] to get fewer mutants, thereby reducing cost. To pro-

vide the foundation for analyzing redundancy in web mutation operators and identifying

the effective operators, the next subsection discusses some background and an overview of

approaches that have been used to reduce cost in mutation testing.

2.1.2 Cost Reduction Techniques

While mutation testing has been shown to be effective at helping testers create better

quality tests, it can be computationally expensive due to the number of mutants. Several

approaches have been proposed to reduce the cost of mutation testing. Offutt and Untch

classified the approaches into three categories: do-fewer, do-smarter, and do-faster [81].

1Reproduced with permission from J. Offutt

27



Do-fewer approaches focus on running fewer mutants without sacrificing effectiveness. Do-

smarter approaches emphasize distributing the computational expense; for instance, by

executing mutants over several machines. Do-faster approaches concentrate on generating

and running programs more quickly; for instance, using the mutant schema generation

(MSG). The idea of MSG is to embed multiple mutants into each line of source code so that

one source file contains all mutants [104]. Another example of do-faster is the use of MSG

and Java reflection in muJava [65], which modifies Java bytecode to create mutants.

This research emphasizes the use of effective mutation operators to produce fewer mu-

tants that lead to highly effective tests. For this reason, it follows the do-fewer approach.

Wong [108] randomly select mutants according to a uniform distribution. However, he

reported that when the sampling rate was low enough to yield substantial savings, the

results were weak and could not confirm the use of randomly selecting mutants. Later,

instead of using the random approach, Wong and Mathur [107] suggested the idea of selective

mutation, which uses only the most critical mutation operators. This became one of the

early do-fewer approaches. Offutt, Rothermel, and Zapf [77] extended the selective mutation

idea, which allows testers to perform approximate mutation testing. They demonstrated

that reducing the number of mutants decreases the testing costs while providing coverage

that is almost as strong as non-selective mutation. Later, Offutt et al. [76] empirically

validated and recommended that only five Mothra mutation operators were sufficient and

provided almost the same coverage as using all 22 Mothra mutation operators. The selective

set of mutation operators (appropriately modified for Java) were implemented for Java in

muJava [65].

Kaminski et al. [46] proposed to selectively generate only logic mutants. They showed

that tests that weakly kill all logic mutants also strongly kill most general mutants and

hence provide sufficient test coverage with less testing cost. Kaminski et al. [47] further

showed that only three mutants out of the seven created by the relational operator replace-

ment operator (ROR) are needed. They theoretically proved that tests that kill these three

mutants are guaranteed to kill the remaining four mutants.

28



Untch suggested the use of a single statement deletion operator (SDL) [105]. He used

regression analysis to demonstrated that the SDL operator can reduce the mutation testing

cost by producing fewer mutants without significantly reducing fault detection. Deng et al.

[24] examined the effectiveness of the SDL mutation operator for Java in comparison with

other mutation operators implemented in muJava. Their experimental results confirmed

that using only the SDL operator significantly reduces the number of mutants and produces

few equivalent mutants. Tests that adequately kill all non-equivalent SDL mutants were

created and then executed against the entire set of mutants. Deng et al. showed that tests

designed specifically to kill SDL mutants can also kill other mutants. Their experiment

inspired experimental design of this dissertation. The difference is that, in this dissertation,

the experiment creates tests adequate to kill each type of mutant and executed these tests on

all mutants. Deng et al. rely on mutation scores of the overall mutants but this dissertation

consider the effectiveness of each test set on each type of mutants.

Delamaro et al. [19, 20] extended Deng et al. [24] study for programs written in C

language. Delamaro et al. evaluated the effectiveness of using only the SDL operator and

computed the cost-effectiveness by considering the number of tests needed and the number

of equivalent mutants. They confirmed that using the SDL operator by itself leads to highly

effective test sets. They concluded that the testing cost can be reduced considerably by

using a single, powerful mutation operator.

Most recently, Ammann et al. [5] identified redundancy among mutants in an attempt

to create a true minimal test set. They proposed excluding mutants that are redundant in

the sense that they are guaranteed to be killed by a test that kills another mutant. They

showed that, in theory, at least, approximately 90% of the muJava mutants and 99% of the

Proteum [67] are redundant. Their on going research is attempting to achieve most of this

potential savings through static and dynamic analysis of the mutants [50,51].

29



2.2 Web Applications

Web apps are user interactive software apps that provide specific resources such as content

and services, deployed onto a web server, and accessed through web browsers [15]. Figure

2.2 illustrates a general view of interactions between users and web apps. Once a client (a

web user via a web browser or another web component) sends a request to a web app, the

request is conveyed to a web server hosting the app. The web server analyzes the request

then dispatches it to an appropriate web app software component on the server. A web app

generates a response as an HTML document, which is then returned and rendered by the

browser.

Figure 2.2: Interactions between users and web apps

To be more specific, web apps are composed of the front-end graphical user interfaces

(GUIs) that are visible to users and the back-end web software components that provide

services. In this research, each interface displayed to users is called a screen. Thus, all

of the user’s interaction with web apps are done through the screens. Web apps are typi-

cally developed by teams with diverse expertise that integrate diverse frameworks and web

components [79].

Web components are modules that implement different parts of the web apps’ function-

ality. Web components are independently compiled and executed software components that

can be tested separately. They interact with each other to provide services to the orga-

nizations and users that operate the web apps. Web components may be generated using

different software technologies such as Java Server Pages (JSPs), Java servlets, JavaScripts,

30



Active Server Pages (ASPs), PHP: Hypertext Preprocessor, and Asynchronous JavaScript

and XML (AJAX). Web components may include static HTML files, and programs that dy-

namically generate HTML pages and forms with input fields. Web components may reside

on different servers and are integrated dynamically.

Composed of diverse, distributed and dynamically integrated web components, web apps

are heterogeneous. The appearance of web apps may vary depending upon users, time, and

geography. Furthermore, the content of each screen may be customized according to data

stored, the server state, or session variables at the moment the request is executed. As the

user interface of a web apps is the screen rendering in a web browser, users may interact

with the web apps using the browser controls (such as back, forward, and reload buttons)

in addition to the controls provided by the web apps. This nondeterministic construction

of web apps increases complexity and the difficulty of testing.

2.3 Web Modeling

This research focuses on applying mutation to test web apps; hence, understanding potential

web faults is mandatory prior to defining mutation operators. Up until now, no standard

web fault model is available. Though several attempts have been made to classify faults

occurring in web apps [35,69,93], the existing categorizations overlap without being complete

or consistent. Therefore, this research models web faults and hopes to ensure coverage

of interaction faults. The fault model is later used to design web mutation operators.

Discussion on the fault model is presented in Chapter 3.

To form a fault model, understanding of web faults is necessary. This research takes

into account how web apps are modeled and how web components interact, and analyzes

potential faults according to the seven challenges presented in Chapter 1.

Most web modeling approaches focus on representing static aspects of web apps [40,91].

Though some attempt to capture dynamic aspects of web apps [13, 103], they specifically

31



focus on expressing the models using the Unified Modeling Language (UML) without con-

sidering potential transitions between web software components. Accordingly, to derive

interaction faults in web apps, this research extended the types of transitions between web

components presented by Offutt and Wu [82] as follows:

• Simple Link Transition: An invocation of an HTML <A> link causes a transition

from the client to a web software component on the server. Simple link transitions are

static. If there is more than one <A> link in an HTML document being considered,

one of several web software components can be invoked.

• Form Link Transition: An invocation of an HTML <FORM> element causes a

transition from the client to a web software component on the server. Form link

transitions usually involve sending data to web software components that process the

data. They are dynamic and data (or inputs) are required prior to the invocation. If

there is more than one <FORM> element, one of several web software components can

be invoked.

• Component Expression Transition: A component expression transition occurs

when the execution of a web software component causes another component or a por-

tion of HTML to be generated and returned to the client. The HTML contents are

dynamically created and may vary depending on inputs. Not only do inputs impact

the contents of the HTML, but some state of the apps or the server (for example, the

user or session information, date an time, or geography) may also affect the HTML

contents. In general, a web software component can produce several component ex-

pressions.

• Operational Transition: An operational transition is a transition that is caused

by the client or system configuration. Examples of operational transitions are that

the client presses the back button, presses the forward button, presses the refresh

button, or directly alters the URL in the browser. Operational transitions also include

situations when a particular screen of a web app is accessed via a bookmark (the

32



browser loads a screen from the cache rather than loading it from the server). Web

apps have no control of this kind of transitions.

• Redirect Transition: A transition causes the client to regenerate the same request

to a different URL. Redirect transitions go through the browser, but users are nor-

mally unaware of the redirection. This transition includes forwarding, redirecting,

and including control connections between web software components.

• Remote transition: A remote transition occurs when a web app accesses web soft-

ware components that reside in different locations (i.e., available at remote sites). The

locations are usually available once the invocation is triggered. Hence, testing remote

transition is difficult due to limited knowledge of the remote sites.

2.4 Web Application Testing

This section presents an overview of the current state-of-art in web app testing techniques

and the techniques researchers used to validate their approaches. Existing testing techniques

used for web apps are classified by how they derive tests into four groups: (i) model-based

testing, (ii) mutation-based testing or syntax-based testing, (iii) input validation-based

testing, and (iv) user-session-based testing. Techniques are presented in chronological order

and are summarized in Tables 2.1 and 2.2.

2.4.1 Model-based Testing

Model-based testing techniques rely on the structural description of a web app. Common

representations are graphs (including control flow graph and data flow graph) and finite

state machines (FSMs). Nodes usually represent web components (in graphs) or state of the

app (in finite state machines) and edges signify communications or transitions between web

components. Other model representations for web apps are UMLs and formal specification

languages. Based on these representations, some coverage criteria can be applied to test

web apps.

33



Table 2.1: Critical research web app testing
Authors Highlights / implications / pitfalls

Model-based testing techniques

Kung et al. [49] and Used multiple models to represent interactions between
Liu et al. [59] web components; focused on data interactions; relied on

static HTML documents

Ricca and Tonella [91] Used a UML-based analysis model for test case generation;
captured transitions based on static HTML links and sequences
of URLs

Lucca et al. [61] Extended path-based testing to represent data flow in web apps;
did not consider internal states of web apps

Lucca and Penta[62] Modeled interactions between web pages with UML statecharts;
focused on the transitions caused by the browser back

and forward buttons; did not consider internal states
of web apps

Andrews et al. [8] Modeled and tested web apps with finite state machines (FSMs);
did not address how to handle dynamic aspects of web apps

Liu [60] Annotated control flow graphs with def-use information
to support JSP-based web app testing;
did not considered operational transitions

Halfond and Orso [37] Modeled web apps using control flow graphs; focused on
parameter mismatches in communications between web components;
assumed all paths were feasible; relied on Java source code

Halfond et al. [36] Extended their control flow graph based testing;
focused on specific kinds of faults due to parameter mismatches;
assumed all paths were feasible; relied on Java source code

Andrews et al. [7] Dealt with dynamic aspects by modeling web apps’ states with
hierarchical FSMs; reduced FSM state space explosion with
input constraint annotation; modeled operational transitions
with hierarchical FSMs could be expensive

Mesbah and Deursen [72] Focused on AJAX-based web apps; modeled web apps with the state
flow graph; dealt with broken links; considered the use of the
browser back button; relied on the apps’ invariants
whose correctness and completeness were difficult to verified

Mutation-based testing techniques

Lee and Offutt [54] Applied mutation testing to XML-based data interactions in
web apps; generated mutants of interaction data (not source code)

Mansour and Houri [68] Focused on event features in .NET code; dealt with method and
class levels, presentation level, and event level; did not
consider state management nor the use of browser’s features

Smith and Williams [98] Used statement-level mutation operators; did not
consider interactions between web components

Input validation-based testing techniques

Offutt et al. [83,84] Introduced bypass testing; evaluated how web apps
handled invalid inputs; focused on value-level, parameter-level
and control flow-level; did not consider the use of browser’s
features nor state management and state scope handling

Tappenden et al. [101] Applied the bypass testing concepts [83] to data
stored in cookies and verified the files being uploaded;
focused on security issues; did not considered challenges
discussed in Section 1.1 nor provided empirical validation

34



Table 2.2: Critical research web app testing (continue)
Authors Highlights / implications / pitfalls

Input validation-based testing techniques (continue)

Papadimitriou et al. [85] Extended the bypass testing concepts [83] and confirmed
the feasibility of the concepts; did not consider the use of
browser’s features nor state management and state scope handling

Li et al. [56] Altered the regular expression of valid inputs; focused on security
issue relied on static analysis; did not consider state management
and operational transitions

Mouelhi et al. [74] Extended bypass testing and implemented an input validation on
the server-side; focused on security issues; experimented on four
small custom-built web apps; did not consider operational
transitions, state management and state scope handling

Offutt et al. [80] Refined and extended the bypass testing concepts; demonstrated the
applicability using commercial web apps; did not consider the use
of browser’s features nor state management and state scope handling

User-session-based testing techniques

Kallepalli and Tian [45] Modeled the users’ navigational patterns with Unified Markov Models
and Li and Tian [57] analyzed faults and failures of web apps statistically; did not deal

with dynamic aspects of web apps; relied heavily on static usage logs

Elbaum et al. [29] Divided a user session into snapshots to derive test inputs;
considered state of web app from each snapshot; restricted to users
with similar usage profiles

Elbaum et al. [30] Showed that user-session-based testing could be complementary to
some existing white-box testing techniques; suffered from huge
amount of logged data

Sampath et al. [95] Used logged information to customize test requirements; focused on
reducing the size of test suites; did not specify the kinds of web
faults nor their classification

Sampath et al. [96] Clustered logged user session to selectively generate test
requirements; did not specify the kinds of web faults nor their
classification

Sprenkle et al. [99] Focused on reducing test suites by clustering logged usage
information based on users’ access privileges; relied heavily on
the users’ privilege definitions; restricted to web apps with
similar definitions of users’ privileges; did not specify the kinds
web faults nor their classification

35



Among the earlier work in web testing, Kung et al. [49] and Liu et al. [59] presented

a web app testing approach based on the object-oriented paradigm. Their approaches

consisted of multiple models, each of which targeted a different level of the web apps.

These models represented interactions between web components as control flow graphs. To

support integration testing, the authors considered HTML documents as objects (i.e., web

components). The graphs represent data flow interactions between HTML documents. The

research’s focus was on data interactions rather than control flow.

Although both models describe interactions between web components, constructing mul-

tiple models to represent the app’s flow of execution can increase complexity and may result

in a scalability problem. Moreover, the models representing the web apps are derived solely

from source code, i.e., static or known interactions. There is no guarantee that interactions

generated dynamically (while the app is running) are covered. Furthermore, the authors

particularly concentrate on HTML documents, thereby possibly excluding other features in

web apps such as state maintenance challenges.

Ricca and Tonella [91] proposed a UML-based analysis model to facilitate test case

generation for static web pages. The model captures transitions based on HTML links and

sequences of URLs. The authors applied several coverage criteria (page, hyperlink, def-

use, all-uses, and all-paths) pertaining to the data dependences obtained from the models.

Later, Ricca and Tonella [92] applied their UML-based model to support integration testing

which took into account the states of web apps under test. However, this UML-based

model representation of a web app is constructed from a static web page. Therefore, it

seems uncertain how this approach could support dynamic validation including links or

interactions as well as web components that are generated dynamically. Additionally, user’s

abilities to control execution flow via operational transitions are omitted in this work.

Lucca et al. [61] extended a traditional path-based test generation technique and ap-

plied data flow coverage to testing web apps. Later, Lucca and Penta incorporated op-

erational transitions, specifically focusing on the transitions caused by pressing the back

and the forward buttons [62]. They modeled interactions between web pages (i.e., state

36



transitions) with a UML statechart. Four states of the back and the forward buttons

are defined: back-disabled-forward-disabled, back-enabled-forward-disabled, back-enabled-

forward-enabled, and back-disabled-forward-enabled. This approach focused on revealing

inconsistencies caused by the use of browser features. While both studies show some advan-

tages for data flow web app testing, other challenges related to server-side and client-side

state management are not addressed. Indeed, internal states of web apps are not taken into

account.

Andrews et al. [8] developed a web app testing technique by modeling web apps with

finite state machines (FSMs). By applying coverage criteria based on FSM test sequences,

test requirements were derived as sequences of states. Then, test sequences were combined

to generate test cases. The authors did not address how to handle dynamic aspects of web

apps, such as transitions introduced by the users through the web browsers (i.e., operational

transitions).

Liu [60] adapted traditional data flow testing techniques to support JSP-based web app

testing. Control flow graphs were annotated with def-use information (of variables, implicit

objects, and action tags of interest) to represent data interactions caused by the user’s

navigation paths. Three levels of data interactions were considered. Firstly, the intrapro-

cedural data flow (the lower level model) signified interactions between statement blocks of

a JSP. Secondly, the interprocedural data flow depicted interactions between functions or

JSPs. Thirdly, the sessional data flow (the top level model) described interactions among

JSPs introduced by a particular session object. This sessional data flow aggregated the

other two data flow models. In general, a specific object, called a session object, was used

to store information (parameter name-value pairs) of a user session. Different JSP pages

within a user session shared and accessed this information for state management purpose.

To deal with a user session, a control flow graph was annotated with def-use information

corresponding to a particular session object. This approach does not address challenges due

to operational transitions.

37



Communications among web components are implicit and hence information (i.e., a

request with parameter-value pairs) sent from a component (a caller) and information

(parameter-value pairs) that the target component (a callee) expects may be inconsistent.

To try to detect this inconsistency, Halfond and Orso [37] introduced a static analysis tech-

nique to extract web app request parameters (i.e., sets of named input parameters and

relevant or potential values) for Java source code. A year later, Halfond et al. [36] extended

their work to detect a specific kind of faults that were due to mismatches of parameters

used in communication between web components. Three kinds of mismatches included (i)

missing parameters (a caller sending fewer parameters than a callee expecting), (ii) optional

parameters (a caller sending more parameters than a callee expecting), and (iii) syntax er-

rors (misspelling parameters’ names or inappropriate formatting). Execution paths of web

apps were represented with control flow graphs. All paths were assumed to be feasible. The

graph was derived from source code. The authors considered these inconsistencies to be

web faults regardless of the compatibility of data type or the corresponding values being

transmitted or expected.

Later, Andrews et al. [7] extended their approach to deal with dynamic aspects and to

reduce the state space explosion. They modeled the states of web apps by using hierarchical

finite state machines (FSMs). The authors partitioned a web app into clusters, each of

which implemented some logical functions and was represented with a FSM. Aggregated

FSMs described entire web apps. Testing strategies dealt with how web components were

connected and interacted. Test requirements were derived as sequences of states in the

FSMs. Then, by integrating the test sequences, they generated test cases. To cope with the

state space explosion issue, the FSMs were annotated with input constraints. This approach

supports dynamically generated web components and deals with challenges related to state

management. The authors suggested modeling operational transitions with hierarchical

FSMs but it could be very expensive due to nondeterministic states of the apps.

Mesbah and Deursen [72] incorporated their AJAX-based web crawler [71] to test AJAX-

based web apps. As the user interacted with the apps, the DOM tree was dynamically

38



updated. The crawler captured the states of the user interface as a result of changes

in the DOM tree and represented them in a state flow graph. Test cases were derived

from the state flow graph and were written in JUnit as the sequences of events from the

initial state to a target state. Fault detection came from checking the output (HTML

instance) after each state change against the apps’ invariants. Broken links or URLs were

taken into account. The authors also considered the inconsistency of the user interface

(screen) when the browser back button was used. It is particularly useful to determine

inconsistency though verification of the states against the apps’ invariants. However, to

ensure the correctness and completeness of the invariants might be challenging.

2.4.2 Mutation-based Testing

Existing web testing techniques pertaining to mutation analysis focus on mutating source

code of web apps. Some researchers used mutation analysis to test web apps to govern

information policies and for security purposes [70]. Up until now, there is limited empirical

work that applies mutation analysis to test web apps.

Among earlier empirical work on mutation-based testing, Lee and Offutt [54] demon-

strated the applicability of mutation testing to verify XML-based data interactions between

individual pairs of web components. They introduced an interaction specification model

using DTDs (Document Type Definitions) to describe interaction messages between web

components. A set of mutation operators were defined to mutate the interaction specifica-

tion and thereby to alter XML messages. Unlike this dissertation where source code was

mutated, Lee and Offutt mutated XML messages being transmitted between web compo-

nents. As a result, instead of creating a variation of source code, Lee and Offutt generated

variations of interaction data. To determine whether the test cases detected these changes,

test cases were generated iteratively where an initial set was derived from the original XML

constraints. Additional test cases were generated with an attempt to kill all mutants. If

a mutant produced different responses from the original version of interaction data, it was

said to have failed (and marked dead). If a mutant produced the same responses from the

39



original version of interaction data, it was considered equivalent and was excluded from

the testing. The iteration terminated if restrictions (such as time or budget limitations)

applied.

Mansour and Houri [68] presented three groups of mutation operators to test .NET

web apps. The focus was on event features in .NET code. The first group of operators,

adopted from mutation operators used for testing traditional software presented by Kim

et al. [48], dealt with method and class levels. The second set of operators mutated the

presentation level of web apps, i.e., URIs or contents of the HTML documents. Thirdly,

the event-level mutation operators tested interactions between web components. This was

to ensure that the effect of the triggered event was implemented correctly. For instance,

the operator removed hyperlinks, replaced the name of a method call, or deleted a line of

code that implemented a transaction. This approach neither addresses how it would handle

state management issues nor mentions challenges due to browser’s features.

Smith and Williams [98] conducted an empirical study to evaluate the effectiveness of us-

ing mutation analysis to augment test cases. They applied mutation testing to a healthcare

web app at the unit level, using the Jumble mutation tool (a class level mutation testing tool

that mutates Java Byte Code (http://jumble.sourceforge.net/). The authors evaluated

the applicability of mutation testing to web apps with traditional (statement-level) muta-

tion operators, including mutation operators to negate conditions, replace binary arithmetic

operators, replace increment with decrement, replace assignment values, alter return values,

and modify the case in switch statements. Despite that the experiment shows effectiveness

of mutation analysis to web apps, the authors’ focus tends to be mainly on unit testing.

Neither interactions nor transitions between web components are addressed.

2.4.3 Input Validation-based Testing

Most web apps’ control flow are governed by the users’ interactions through a web browser.

Inappropriate data entry can result in data corruption, security vulnerabilities, or web app

failures. Hence, to avoid or minimize these unexpected behavior of web apps, web inputs

40



must be validated [83].

Input validation ensures that data entered by the web users enter are appropriate and

can be processed by web apps. For instance, an email address must contain an “@” sign;

credit card information must be a combination of a credit card number, an expiration date,

and a security code; a bank account consists of a routing number and an account number;

and all required form fields are entered and they are of the correct types.

Several researchers have attempted to propose web app testing with a focus to ensure

valid data and to control users’ interactions with the software interfaces. Some techniques

perform validation on the client while some run on the server.

Offutt et al. [83, 84] are among the pioneering researchers in input validation-based

testing. They introduced an input validation technique called bypass testing. The idea

was to submit invalid inputs directly to the server by bypassing client-side validation to

evaluate whether a web app sufficiently checked these invalid data. It went further by also

creating data that should be invalid but that may not be checked. To generate invalid inputs

(i.e., test cases), the authors defined rules to violate constraints (HTML constraints and

scripting constraints) that were applied to web apps under test. The authors divided bypass

testing into three levels: value-level, parameter-level, and control flow-level. The value-

level attempts to check whether a web app adequately evaluated invalid inputs (including

restrictions on data types, value boundaries, and formats). The parameter-level verified

whether related values or constraints meets the app’s requirements. Because a web user

had control over the app’s control flow, the control flow-level intended to verify the app

when a flow of execution was broken.

The original bypass testing rules [83] have been modified and additional rules have been

added to address other HTML features used in real world, commercial web apps [80,85].

Adopting the concept of bypass testing [83], Tappenden et al. [101] applied it to data

stored in cookies. They also considered whether the names of files being uploaded to

the web app were too long as well as whether the types of files were appropriate. Their

main concern was to detect faults with a focus on security issues. It is unclear how their

41



extension deals with challenges discussed in Section 1.1 such as target URLs, state scopes

of web components, and users’ capability to control the app’s execution flow. No rules or

guidelines for testing are given explicitly and no empirical validation is provided.

Papadimitriou et al. [85] extended the bypass testing rules [83] and conducted empirical

validation. His feasibility study proves that bypass testing can help reveal failures in numer-

ous commercial web apps. To facilitate bypass testing, a prototype tool called AutoBypass

was implemented to accept a URL to a web app under test and to automatically generate

test cases.

Li et al. [56] generated invalid test inputs by perturbing valid inputs with an emphasis

on security issues. They proposed six rules to alter the regular expression of valid inputs;

(i) removing the mandatory sets from an expression, (ii) reordering the sequence of sets,

(iii) changing the repetition time of selecting elements, (iv) selecting elements next to the

boundary of the input domain, (v) inserting invalid characters into an expression, and (vi)

inserting special patterns into an expression. Although this approach is complementary to

testing web apps, it relies on static analysis and does not address the challenges due to state

management and operational transitions.

Mouelhi et al. [74] addressed the problem that user input validation on the client was

not adequate at preventing security attacks on web apps. Hackers may modify HTML and

scripting code to bypass the client-side input validation. Malicious data may be sent to the

server directly. The authors extended the concept of bypass testing [83]. However, unlike

the original bypass testing that creates tests to validate inputs to web apps, they create

an input validation software on the server-side to duplicate the input validation. They

focused solely on the security issues and validated their tool using four small custom-built

web apps. They did not consider operational transitions nor addressed the challenges due

to state management and state scope handling.

Offutt et al. [80] demonstrated the applicability of bypass testing to web applications

in practice. They refined and extended the bypass testing concept and tested widely used

commercial web apps.

42



Offutt et al. [80, 83] and Papadimitriou [85] cover many of the challenges discussed

in Section 1.1. Even though issues related to state management and state scope of web

components are not addressed, bypass testing shows feasibility with additional rules.

This dissertation adopts several ideas from bypass testing [83] to define web-specific

mutation operators. Note that this dissertation attempts to mimic potential faults (via

mutants) and evaluate effectiveness of test cases but bypass testing intends to help design

invalid inputs to evaluate adequacy of a web app’s input validation. Another difference to

note is that this dissertation requires source code of web apps under test (i.e., white-box

testing) while bypass testing does not (i.e., black-box testing).

2.4.4 User-Session-based Testing

User-session-based testing approaches extract usage information from previously recorded

users’ sessions to model a web application and generate test cases. The key idea of using

the logged information is to ensure that test cases are derived from real users’ behavior

(including how users navigate and interact with web apps). Information about each user

session contains a sequence of a user’s requests, which in turn indicates the base requests.

The base requests, which are the request types and the target URLs to which the requests

are sent, are used for test case generation.

Kallepalli and Tian [45] and Li and Tian [57] presented alternative use of user ses-

sion information. They transformed logged usage information into Unified Markov Models

(UMMs) that represented the users’ navigational patterns. Then, both sets of authors ap-

plied statistical analysis to identify faults and failures as well as to evaluate the reliability

of the app under test. It is unclear what kinds of web faults being considered. Furthermore,

this approach suffers from the fact that information used to analyze and model the usage

of a web app depends solely on web logs. Only parts of the app interactions were observed.

No internal states were taken into consideration. It does not provide any guarantees of

completeness nor indications for how to improve the test quality.

43



Elbaum et al. [29] presented a user-session-based testing approach by transforming

logged user’s requests into HTTP requests. The HTTP requests (i.e., test cases) con-

tained the request types and the URLs along with additional corresponding information

(parameter name-value pairs). The authors chose test inputs by considering the user data

captured from HTML forms along with data from the previous user sessions. Elbaum et

al. handled faults related to the states of web apps by breaking down logged user session

information into snapshots. State-related values from each snapshot were considered to

determine state changes. While this comparison may potentially indicate source of failures,

the analysis only applies to users with similar operational profiles. Indeed, it is unclear how

their technique may be generalized when other domain apps are considered.

Later, Elbaum et al. [30] demonstrated that user-session-based testing could be comple-

mentary to some existing white-box testing techniques. However, there appeared tradeoffs.

While more user sessions could improve the fault coverage, maintaining and analyzing a

large amount of logged information was crucial and costly. Elbaum et al. [28] reduced the

number of test cases needed by applying constraints on the input parameters of the HTML

form.

Sampath et al. [95] introduced a strategy to customize test requirements with a focus

on reducing test suites. They illustrated that constructing test requirements solely from the

base requests was not effective. This was because the associated data that were omitted

might affect the app’s execution flow. Indeed, test requirements that captured associated

data (parameter names and values) resulted in test cases that revealed more faults than test

cases derived from the base requests. It is unclear what kinds of web faults being considered

and how the faults are classified.

The effectiveness of user-session-based testing depends primarily on the quality of usage

data. However, collecting, maintaining, and analyzing large amount of user-session data

can be very costly and increase the number of test cases. To reduce the testing cost while

maintaining fault coverage, Sampath et al. [96] clustered logged user sessions based on

concept analysis with a consideration of base requests and common subsequence of base

44



requests. Then, they applied test selection strategies to the clustered information. Their

experiment revealed that decreasing the size of test suites lower fault detection capability.

Different test selection strategies resulted in tradeoffs between the number of tests and the

fault coverage. Sampath et al. recommended that data associated with the request and the

sequences of requests should be taken into account when clustering the user sessions.

In another attempt to reduce the size of user sessions, Sprenkle et al. [99] proposed to

cluster the logged usage information based on users’ access privileges. The access privileges

presumably reflected how the users navigated the apps. Rather than creating a navigation

model from each user session, only one navigation model was needed to represent the usage

pattern for each group. However, there were issues due to representativeness of the infor-

mation used to derive tests. Also, the quality of tests depended significantly on the users’

privilege definitions. Classifying user sessions based on privileges may not be applicable to

some app domains; for example, web apps that do not require registration or authorization

prior to access or web apps with vague definitions of access privileges. It may reduce the

number of test cases needed but more information is required prior to classification.

One limitation of user-session-based testing is that it mainly relies on the usage data

from previous sessions. User interactions with web apps may be subjective and be specific to

certain tasks. Hence, there is no guaranteed coverage of the input domain and no systematic

exploration of domain inputs. Though there is a possibility that unexpected interactions

may be collected in the usage data (for example, the user pressed the back button), the

logged data will probably not cover many unintended flow of executions. Unlike user-

session-based testing research, this dissertation intends to provides systematic exploration

of unintended execution flow through the use of web mutation operators.

45



Chapter 3: A Web Fault Categorization

Well designed mutation operators are based on realistic faults. The effectiveness of mutation

testing depends primarily on the mutation operators. Hence, understanding potential web

faults is mandatory prior to designing web-specific mutation operators.

Several researchers have attempted to classify faults in web apps [26,35,69,93]. However,

up until now, no standard or agreement on web fault models is available. The existing

categorizations overlap without being complete or consistent. Furthermore, they do not

particularly consider interaction faults such as faults that are due to the use of web browser’s

features (back and forward) or faults that are caused by improper use of control connections

(forward and redirect). Therefore, in the absence of a widely accepted fault model, this

dissertation uses a structural approach based on web modeling theory as presented in Section

2.3. To accomplish this, the nature of web apps and how web development technologies

can introduce faults and how the technologies affect the testing process were investigated.

Related faults from existing models [26,35,69,93], and information from online bug reports

were also considered. Faults from existing models that are irrelevant to interaction faults

were excluded; for instance, faults associated with arithmetic calculation problems. Web

faults were modeled to ensure coverage of faults that may occur in communications between

web components (i.e., interaction faults).

The fault model used in this dissertation is categorized into seven groups with respect to

the challenges from Section 1.1. It is important to note that though there exist many web

development frameworks and languages, due to the availability of web apps used to validate

web mutation testing, the faults listed here are J2EE-specific. The underlying ideas could

be adapted for faults in other frameworks or languages such as .Net or PHP with modest

changes. Focusing on server-side web apps, faults related to JavaScript and AJAX are out

46



Table 3.1: Summary of web faults
Challenges Potential faults

1. Users’ ability to control web apps Unintended transitions caused by the user via a web
browser or intentionally bypass the app validation

2. Identifying web resources with URLs Incorrect or inappropriate URLs

3. Communication depending on Incorrect transfer mode (GET vs POST)
HTTP requests

4. Communication via data exchanges Mismatched parameters

5. Novel control connections Incorrect use between redirect and forward transitions
(for Java servlets)

6. Server-side state management Incorrect scope setting
Not initializing a session object when it should be
Omitting necessary session info

7. Client-side state management Omitting necessary info about hidden form fields
Submitting incorrect info about hidden form fields
Omitting necessary read-only info

of scope. A summary of potential faults is presented in Table 3.1. This fault model is later

used to design web mutation operators in Chapter 4.

1. Faults introduced by the users’ ability to control web apps: Web browsers

allow users to circumvent normal execution flow of a web app through the web browser

back, forward, and refresh (or reload) buttons. Also, users may re-enter the URLs

directly or bookmark a URL for future visit. Failures may occur when the users use

these browser features. Faults triggered by the use of the browser features can either

propagate (resulting in noticeably unexpected behaviors or failures of web apps) or

impact the internal states of web apps. Faults that propagate can be detected by

simply evaluating the apps’ behaviors or the outputs (i.e., HTML representations or

responses). However, although these faults can be easily detected, testers are fre-

quently unaware of them. On the other hand, faults related to internal states are not

easily detected. Simply comparing the outputs is not a good indication. The app may

still behave the same until a certain change to the app’s state is triggered. Hence,

testers need to examine all possible data and state of the app and then design tests

that will trigger the changes of the states.

47



2. Faults related to identifying web resources with URLs: In web apps, all

resources can be accessed by identifying URLs. J2EE allows web developers to

specify web resources through several features, such as the href attribute of an

<A> tag, the action attribute of a <form> tag, the sendRedirect() method of

a HttpServletResponse object, the file attribute of an include directive, and the

page attribute of a JSP include action and a JSP forward action. Faults are often

due to the use of incorrect or non-existent URLs.

3. Faults due to communication between web components through HTTP

requests: Form data can be conveyed using several transfer modes specified via

the method attribute of a <form> element. Faults may occur when an inappropriate

HTTP transfer mode is specified. This research considers faults that are due to the

most commonly used HTTP transfer modes, GET and POST.

GET and POST modes package data to be conveyed to the server differently. In

general, a GET mode is used to request data from a specified URL (i.e., a web resource)

while a POST mode is used to submit data to be processed to a specified URL. Faults

are improper use of the transfer modes.

Using a GET instead of a POST for sensitive data can reveal confidential information

and possibly lead to unauthorized access or misuse of information. Moreover, for large

form data, some of the data may be lost due to the size restriction of a GET method.

Using a POST instead of a GET hinders the ability to bookmark and thus can affect the

usability of web apps.

4. Faults in communication via data exchanges: Interactions between web com-

ponents usually involve data exchanges in the form of parameter-value pairs. Potential

faults in data exchanges are mismatches of these parameters. If the expected informa-

tion and the information actually received are inconsistent (for instance, the number

of parameter-value pairs is wrong, value types of parameters are incorrect, and param-

eters’ names are inaccurate), errors may occur. Mismatched parameters may cause

48



unexpected behaviors of web apps, data anomalies, and web app failures.

5. Faults introduced by misuse of novel control connections: Web apps use

several new control connections that do not exist in traditional software development.

The general idea of using control connections is to transfer control flow from one web

component (the source) to another web component (the target). Once the target

web component finishes executing, some control connections (such as J2EE include

connections) cause the control to return to the original web component while some

do not (such as J2EE forward and redirect connections). HTML allows redirect

transitions by using an HTTP-EQUIV attribute and specifying a forward destination

using a URL attribute of a <META> command. Java servlets implement redirect tran-

sitions with the sendRedirect() method from a HttpServletResponse object and

implement forward transitions with the forward() method of a RequestDispatcher

object. Faults are misuse of control connections; for instance, using a forward tran-

sition instead of a redirect transition when a target web component is on a different

server or when a request affects an internal state of web app or makes an update to

a database.

6. Faults due to server-side state management: To achieve certain tasks, com-

munications between a web user and a web app usually involves a series of related

interactions. To maintain the state, persistent data are stored in an object (called

a session object in J2EE) and its accessibility is identified via its scope. Different

scopes determine different accessibility. For example, in J2EE, a request scope ob-

ject is accessible by the component initially receiving the request and by other web

components used or referred to in the same request, but a page scope object is only

accessible within the component initially receiving the request. Potential faults are

inappropriate scope setting of the object.

7. Faults related to client-side state management: Because of the stateless prop-

erty of the HTTP, several mechanisms are used to maintain state information of web

49



apps. One common client-side state management technique is to store data in hidden

form fields, which are sent to the server with the next request. Faults are omissions

of necessary information and submissions of inappropriate information via hidden

controls.

Other kinds of web faults relate to the use of scripting languages (such as JavaScript)

and AJAX. Web apps use scripting languages to enhance their functionality. JavaScript

allows developers to write function calls so that certain executions (e.g., input validation)

may be performed. Potential faults are the use of incorrect or unavailable functions and

mismatches of parameters. Removing a transition from the original web component to

a target component skips an intended execution. For example, if a statement that calls

another component (or a function in JavaScript) to filter a search result is deleted from the

code, the search result may be processed and displayed unexpectedly.

Since this research focuses on server-side web apps, JavaScript and AJAX related faults

are excluded for our fault model.

50



Chapter 4: Mutation Testing for Web Applications

This chapter presents an overview of web mutation testing and a new collection of web

mutation operators targeting faults that can occur in interactions between web components.

4.1 Web Mutation Testing Process

Figure 4.1: Overview of a web mutation testing process

The underlying concept of web mutation testing is based on mutation analysis, as de-

scribed in Section 2.1. Figure 4.1 illustrates an overview of a web mutation testing process.

Web mutation operators are applied to the server-side source code of a web app under test

to generate web mutants. A set of tests is designed and executed on the original version

of the web app and on the mutants. The outputs (in this research, HTML responses) of

running the tests on the original version of the app and of running the tests on the mutants

are compared to determine if the tests can distinguish the outputs. If the tests detect the

differences, the mutants are said to be killed. Otherwise, more tests are generated and

repeatedly executed to identify the differences between the outputs until all non-equivalent

mutants are killed or the mutation scores reach a preferred threshold.

51



4.2 Web Mutation Operators

This section presents fifteen new source-code, first-order, mutation operators for web apps.

Table 4.1 summarizes the web mutation operators, categorized according to the seven chal-

lenges from Section 1.1. These operators are designed to help testers to create tests that

examine interactions between web components. The main emphasis is on mimicking faults

that can occur in the transitions.

As mentioned earlier, this research focuses on server-side web apps. JavaScript and

AJAX are out of scope.

Although many web development frameworks exist, the mutation operators designed in

this research were implemented to test J2EE JSPs and Java servlets. This is due to several

reasons. First, mutation testing requires source code to be available but the availability of

web apps used as subjects in experiments is limited. Second, the J2EE platform has been

widely used and has proven to provide various benefits. For instance, J2EE technology

simplifies web development by providing infrastructures for developing web components,

for managing communications between web components, and for handling sessions of the

apps. Many organizations use the J2EE framework and have created many web apps and

components. Additionally, J2EE web apps can be integrated in a loosely coupled, asyn-

chronous way. Based on the Top Programming Languages 2016 survey1, J2EE is one of

high demand programming languages for web apps. Therefore, in the following section,

examples illustrating the mutation operators are based on the implementation of JSPs and

Java servlets.

By convention, the mutation operator names start with “W”, indicating mutation op-

erators dealing with web-specific features, and end with a “D” or “R”, indicating whether

the operators delete or replace something.

1IEEE Spectrum, http://spectrum.ieee.org/static/interactive-the-top-programming-languages-2016

52



T
a
b

le
4.

1:
S

u
m

m
ar

y
of

w
eb

fa
u
lt

s
an

d
w

eb
m

u
ta

ti
on

op
er

at
o
rs

C
h
a
ll
e
n
g
e
s

P
o
te

n
ti
a
l
fa
u
lt
s

W
e
b

m
u
ta

ti
o
n

o
p
e
ra

to
rs

1
.

U
se

rs
’

a
b
il
it

y
U

n
in

te
n
d
ed

tr
a
n
si

ti
o
n
s

F
O

B
In

se
rt

a
d
u
m

m
y

U
R

L
to

th
e

b
ro

w
se

r
h
is

to
ry

b
ef

o
re

to
co

n
tr

o
l

w
eb

ca
u
se

d
b
y

th
e

u
se

r
v
ia

th
e

cu
rr

en
t

U
R

L
(o

r
sc

re
en

)
a
p
p
li
ca

ti
o
n
s

a
w

eb
b
ro

w
se

r
o
r

in
te

n
ti

o
n
a
ll
y

b
y
p
a
ss

th
e

a
p
p
li
ca

ti
o
n

va
li
d
a
ti

o
n

2
.

Id
en

ti
fy

in
g

w
eb

In
co

rr
ec

t
o
r

W
L

U
R

R
ep

la
ce

U
R

L
o
f
h
r
e
f

a
tt

r
o
f

a
n
<

A
>

ta
g

re
so

u
rc

es
in

a
p
p
ro

p
ri

a
te

U
R

L
s

W
L

U
D

R
em

ov
e

U
R

L
o
f
h
r
e
f

a
tt

r
o
f

a
n
<

A
>

ta
g

w
it

h
U

R
L

s
W

F
U

R
R

ep
la

ce
U

R
L

o
f
a
c
t
i
o
n

a
tt

r
o
f

a
<

fo
rm

>
ta

g
W

R
U

R
R

ep
la

ce
U

R
L

o
f
s
e
n
d
R
e
d
i
r
e
c
t

m
et

h
o
d

o
f

a
n
H
t
t
p
S
e
r
v
l
e
t
R
e
s
p
o
n
s
e

W
C

U
R

R
ep

la
ce

U
R

L
o
f
p
a
g
e

a
tt

r
o
f

J
S
P

fo
rw

a
rd

a
ct

io
n

a
n
d

J
S
P

in
cl

u
d
e

a
ct

io
n
,

a
n
d
f
i
l
e

a
tt

r
o
f

J
S
P

in
cl

u
d
e

d
ir

ec
ti

v
e

3
.

C
o
m

m
u
n
ic

a
ti

o
n

In
co

rr
ec

t
tr

a
n
sf

er
W

F
T

R
R

ep
la

ce
a

tr
a
n
sf

er
m

o
d
e

w
it

h
a
n
o
th

er
tr

a
n
sf

er
m

o
d
e

d
ep

en
d
in

g
o
n

m
o
d
e

(G
E

T
v
s

P
O

S
T

)
H

T
T

P
re

q
u
es

ts

4
.

C
o
m

m
u
n
ic

a
ti

o
n

v
ia

M
is

m
a
tc

h
ed

p
a
ra

m
et

er
s

W
P

V
D

R
em

ov
e

a
p
a
ra

m
et

er
-v

a
lu

e
p
a
ir

fr
o
m

J
S
P

in
cl

u
d
e

a
ct

io
n

d
a
ta

ex
ch

a
n
g
es

5
.

N
ov

el
co

n
tr

o
l

In
co

rr
ec

t
u
se

b
et

w
ee

n
W

C
T

R
R

ep
la

ce
a

re
d
ir

ec
t

tr
a
n
si

ti
o
n

w
it

h
a

fo
rw

a
rd

tr
a
n
si

ti
o
n

co
n
n
ec

ti
o
n
s

re
d
ir

ec
t

a
n
d

fo
rw

a
rd

a
n
d

a
fo

rw
a
rd

tr
a
n
si

ti
o
n

w
it

h
a

re
d
ir

ec
t

tr
a
n
si

ti
o
n

tr
a
n
si

ti
o
n
s

(f
o
r

J
av

a
se

rv
le

ts
)

6
.

S
er

v
er

-s
id

e
st

a
te

In
co

rr
ec

t
sc

o
p

e
se

tt
in

g
W

S
C

R
R

ep
la

ce
sc

o
p

e
o
f
<

js
p
:u

se
B

ea
n
>

w
it

h
a
n
o
th

er
se

tt
in

g
m

a
n
a
g
em

en
t

(p
a
g
e,

re
q
u
es

t,
se

ss
io

n
,

a
p
p
li
ca

ti
o
n
)

N
o
t

in
it

ia
li
zi

n
g

a
se

ss
io

n
W

S
IR

C
h
a
n
g
e

a
se

ss
io

n
o
b

je
ct

in
it

ia
li
za

ti
o
n

to
th

e
o
p
p

o
si

te
o
b

je
ct

w
h
en

it
sh

o
u
ld

b
e

b
eh

av
io

r
(i

.e
.,

w
h
et

h
er

to
cr

ea
te

a
n

in
st

a
n
ce

)
O

m
it

ti
n
g

n
ec

es
sa

ry
W

S
A

D
R

em
ov

e
s
e
t
A
t
t
r
i
b
u
t
e

m
et

h
o
d

o
f

a
s
e
s
s
i
o
n

o
b

je
ct

se
ss

io
n

in
fo

7
.

C
li
en

t-
si

d
e

st
a
te

O
m

it
ti

n
g

n
ec

es
sa

ry
in

fo
W

H
ID

R
em

ov
e

a
h
id

d
en

fo
rm

fi
el

d
m

a
n
a
g
em

en
t

a
b

o
u
t

h
id

d
en

fo
rm

fi
el

d
s

S
u
b
m

it
ti

n
g

in
co

rr
ec

t
in

fo
W

H
IR

R
ep

la
ce

va
lu

e
o
f

a
h
id

d
en

fo
rm

fi
el

d
w

it
h

a
n
o
th

er
va

lu
e

a
b

o
u
t

h
id

d
en

fo
rm

fi
el

d
s

in
th

e
sa

m
e

a
p
p
li
ca

ti
o
n

d
o
m

a
in

O
m

it
ti

n
g

n
ec

es
sa

ry
W

O
ID

R
em

ov
e

a
re

a
d
-o

n
ly

in
p
u
t

co
n
tr

o
l

re
a
d
-o

n
ly

in
fo

53



4.2.1 Operator for Faults due to Users’ Ability to Control Web Apps

For simplicity, an exception on a naming convention is applied to the failOnBack operator,

whose abbreviation is derived straightforwardly as “FOB”.

failOnBack (FOB): The FOB operator mutates the browser history by inserting a

dummy URL into the browser history before the current URL is loaded (an onload event).

This history manipulation creates a reference to an incorrect URL when the browser back

button is clicked, rather than navigating to the previously viewed screen. FOB mutants can

be killed by tests that include pressing the browser back button. While FOB mutants are

not particularly hard to kill, they force testers to try the back button. Testers frequently

overlook testing the back button and many testers are unaware that clicking the browser

back button is an input to the web apps. Indeed, using any web browser features (e.g.,

pressing the forward or the reload buttons) are inputs to the apps under tests. The

purpose of this operator is to ensure that the web apps properly handle the situation when

the browser back button is pressed.

Original Code FOB Mutant
<html> <html>

... ...

<body> 4 <body onload="manipulatehistory()">

... <script src="failOnBack.js"></script>

... ...

</html> </html>

The following JavaScript code manipulates the browser history and is used by the FOB

operator.

54



failOnBack.js

function manipulatehistory()

{
var currentpage = window.document.toString();

var currenturl = window.location.href;

var pageData = window.document.toString();

// add a dummy url right before the current url

history.replaceState(pageData, "dummyurl", "failonback.html");

history.pushState(currentpage, "currenturl", currenturl);

}

// update the page content

window.addEventListener(‘popstate’, function(event) {
window.location.reload();

});

Note on the failOnForward operator

Conceptually, the idea of the FOB operator can be applied to define a web mutation

operator that checks against the use of the browser forward button (referred to as failOn-

Forward operator).

The failOnForward operator inserts a dummy URL into the browser history right after

the current URL, i.e., at the top of the browser history stack. Thus, when the browser

forward button is clicked, this history manipulation causes a reference to an incorrect URL

instead of navigating to the next screen (as specified by the URL at the top of the browser

history stack). To kill a failOnForward mutant, test cases must contain a series of navigation

between screens and must include pressing the browser forward button.

However, technical difficulties appeared when designing a mutation operator for forward

transitions. This is due to how the browser history manipulation methods work. To be

specific, two methods to manipulate the browser history, which are available in HTML5,

are the replaceState() and pushState() methods of the history2 object.

The replaceState() method replaces the current URL with a new URL (let URL′

denotes the new URL) in the browser history stack and the browser address bar, but does

2The history object contains the URLs visited within a browser.

55



not cause the browser to load the given URL′. It is important to note that when experi-

menting with the replaceState() method using the actual web browsers (including Firefox

and Safari), the browser’s address bar changes as described. Pressing the browser reload

button causes the browser to load the URL′ and render its content on the screen. When

experimenting with the replaceState() method using a virtual browser (or a simulated

browser) in Eclipse3, the address bar does not change. Pressing the reload button causes

the URL′ to be loaded and its content is rendered on the screen. The inconsistent behav-

ior is because the replaceState() method is relatively new in HTML5. The actual web

browsers support it whereas the virtual browser does not.

The pushState() method adds the new URL (let URL′ denotes the new URL) at the

top of the browser history stack, does not change the URL in the browser address bar,

and does not cause the browser to load the given URL′. The method causes the current

URL of the browser to be set to the URL specified at the top of the browser history

stack (which is now URL′). Therefore, the href property of the location4 object, which

specifies the current URL of the browser, is set to URL′. The browser back button becomes

enabled but the forward button is disabled, as there are multiple URLs in the history

stack and the stack pointer points to the top of the stack. It is important to note that

when experimenting with the pushState() method using the actual web browsers (Firefox

and Safari), the method causes the behavior as described. This is because the actual

web browsers support the pushState() method which is relatively new in HTML5. On

the other hand, Eclipse’s virtual browser does not properly support the method. When

experimenting with the pushState() method using the virtual browser that runs on Java

1.7, the pushState() method causes an UnsupportedOperationException. When using

the virtual browser that runs on Java 1.8, the URL′ is added at the top of the browser

history stack, the address bar does not change, and the back button is disabled.

3In this research, web mutation operators were implemented using Eclipse Java EE IDE for Web Devel-
opers, Kepler Service Release 2.

4The location object contains information about the current URL. The location object is part of the
window object, which represents an open window in a browser.

56



With the pushState() method, the browser’s current URL is always set to the URL

specified at the top of the browser history stack; hence the browser forward button is

always disabled. The failOnForward operator intends to mutate the program such that the

forward button is enabled to force testers to press it. For these reasons, it is impossible to

implement the failOnForward operator, thereby excluded from this research.

Note on the failOnReload operator

Upon completion of the experiments (as presented in Section 5), it appears that a web

mutation operator that checks against the use of the browser reload button is needed. Thus,

an additional web mutation operator, named failOnReload, was designed and implemented.

Although, it has not been empirically validated, its implication potentially follows the same

direction as the failOnBack operator as they both are the browser’s features. Future plan

on validating this operator is later discussed in Section 6.

For simplicity, an exception on a naming convention is applied to the failOnReload

operator, whose abbreviation is derived straightforwardly as “FOR”.

failOnReload (FOR): The FOR operator mutates the browser history by replacing

the current URL in the browser history with a dummy URL before the current URL is

loaded (an onload event). This history manipulation creates a reference to an incorrect

URL. When the browser reload button is clicked, the browser loads an incorrect URL

rather than reloading the current screen. FOR mutants can be killed by tests that include

pressing the browser reload button. While FOR mutants are not particularly hard to kill,

they force testers to try the reload button. Testers frequently overlook testing the reload

button and many testers are unaware that clicking the browser reload button is an input

to the web apps. The purpose of this operator is to ensure that the web apps properly

handle the situation when the browser reload button is pressed.

57



Original Code FOR Mutant
<html> <html>

... ...

<body> 4 <body onload="manipulatehistory()">

... <script src="failOnReload.js"></script>

... ...

</html> </html>

The following JavaScript code manipulates the browser history and is used by the FOR

operator.

failOnReload.js

function manipulatehistory()

{
var pageData = window.document.toString();

// replace the current url with a dummy url

history.replaceState(pageData, "dummyurl", "failonreload.html");

}

// update the page content

window.addEventListener(‘popstate’, function(event) {
window.location.reload();

});

4.2.2 Operators for Faults due to Identifying Web Resources with URLs

In addition to the naming convention mentioned earlier, the second letter of the operator

names indicates whether the operators deal with simple links (“L”), form links (“F”), redi-

rection transitions (“R”), or control connections (“C”). The third letter of the name (“U”)

indicates that the operators mutate URLs. To be previse, these operators modify URLs in

servlets and JSPs.

Simple link replacement (WLUR): The WLUR operator replaces a destination

of a simple link transition <A> with another destination in the same domain of the web app

under test. The change causes a reference to an incorrect or a nonexistent destination, and

possibly leads to dead code. WLUR mutants can be killed by tests that include clicking

58



the links. While this mutant is not particularly difficult to kill, testers often focus on the

main functionality (or “happy path”) and overlook the links that are not part of the main

functionality of the web apps under test. This operator ensures that all links are tried

during testing.

Original Code WLUR Mutant
<html> <html>

... ...

<A href=URL1>... 4 <A href=URL2>...
<A href=URL2>... <A href=URL2>...
... ...

</html> </html>

Simple link deletion (WLUD): The WLUD operator removes the destination of a

simple link transition <A>, hence breaking the normal execution flow. Similar to the WLUR

operator, the objective of this operator is to ensure that the destination is specified properly.

Original Code WLUD Mutant
<html> <html>

... ...

<A href=URL1>... 4 <A href="">...
<A href=URL2>... <A href=URL2>...
... ...

</html> </html>

Form link replacement (WFUR): The WFUR operator alters the destination of

a form link transition <form> to another destination in the same domain of the web app

under test. The modification causes a reference to a destination that does not exist or to

a destination that cannot process the request. WFUR mutants can be killed by tests that

submit a form with the inputs that impact the response of the request. The purpose of

this operator is to guide testers to design test inputs to ensure that form submission is

appropriately handled.

59



Original Code WFUR Mutant
<html> <html>

... ...

<form action=URL1 method="POST"> 4 <form action=URL2 method="POST">

... ...

<input type="text" name="pname1" ... <input type="text" name="pname1" ...

<input type="text" name="pname2" ... <input type="text" name="pname2" ...

<input type="text" name="pname3" ... <input type="text" name="pname3" ...

... ...

</form> </form>

</html> </html>

Redirect transition replacement (WRUR): The WRUR operator changes the

destination of a redirect transition that is specified in a sendRedirect() method of a

HttpServletResponse object to another destination in the same domain of the web app

under test. Again, the change causes a reference to an incorrect or a nonexistent destination.

WRUR mutants can be killed by tests that submit requests to the URL that triggers the

sendRedirect method. This operator helps testers verify the correctness of the destination

of the redirect transitions.

Original Code WRUR Mutant
public class logout extends HttpServlet public class logout extends HttpServlet

{ {
... ...

public void doGet(... ) public void doGet(... )

{ {
... ...

response.sendRedirect(URL1); 4 response.sendRedirect(URL2);

} }
} }

Control connection replacement (WCUR): As discussed in Section 1.1, web

software technologies use novel control connections. Web components can be imported

into other web components through a server-side include directive, JSP include directives,

and JSP include actions. Control can also be handed off (without a return) through

JSP forward actions. The WCUR operator changes the target web component of forward

60



and include connections to other components in the same domain of the web app under

test. This operator guides testers to design test inputs to ensure that the web component’s

destination is specified properly.

The following example shows a WCUR mutant that modifies a file attribute of a

server-side include directive.

Original Code WCUR Mutant
<html> <html>

... ...

<--#include file=URL1 --> 4 <--#include file=URL2 -->

... ...

<A href=URL2>... <A href=URL2>...
... ...

</html> </html>

The following example shows a WCUR mutant that replaces the destination of a file

attribute of a JSP include directive with another destination.

Original Code WCUR Mutant
<html> <html>

... ...

<%@ include file=URL1 %> 4 <%@ include file=URL2 %>

... ...

<A href=URL2>... <A href=URL2>...
... ...

</html> </html>

The following example shows a WCUR mutant that changes the destination of a page

attribute of a JSP include action to another destination.

Original Code WCUR Mutant
<html> <html>

... ...

<jsp:include page=URL1 /> 4 <jsp:include page=URL2 />

... ...

<A href=URL2>... <A href=URL2>...
... ...

</html> </html>

61



The following example shows a WCUR mutant that modifies the destination of a forward

transition specified in <jsp:forward> with another destination.

Original Code WCUR Mutant
<html> <html>

... ...

<jsp:forward page=URL1 /> 4 <jsp:forward page=URL2 />

... ...

<A href=URL2>... <A href=URL2>...
... ...

</html> </html>

WCUR mutants can be killed by tests that include submitting requests to the URLs

that trigger the control connections. The intent of this operator is to guide testers to design

test inputs to ensure that the web component’s destination is specified appropriately.

4.2.3 Operator for Faults due to Invalid HTTP Requests

In addition to the naming convention mentioned earlier, the second letter of this operator

name indicates that it deals with form links (“F”) whereas the third letter indicates that it

mutates the transfer mode (“T”).

Transfer mode replacement (WFTR): The transfer mode determines how the

user’s data are packaged when they are sent to the server. A method attribute of a <form>

tag sets the transfer mode. The WFTR operator replaces all GET requests with POST requests

and all POST requests with GET requests.

Original Code WFTR Mutant
<html> <html>

... ...

<form action=URL1 method="POST"> 4 <form action=URL1 method="GET">

... ...

<input type="text" name="pname1" ... <input type="text" name="pname1" ...

<input type="text" name="pname2" ... <input type="text" name="pname2" ...

<input type="text" name="pname3" ... <input type="text" name="pname3" ...

... ...

</form> </form>

</html> </html>

62



A POST mode (or method) constructs the form data as an HTML message sent to the

action URL. An example of the request sent with a POST mode is shown below.

POST web compoent HTTP/1.1

Host: URL1
pname1=value1&pname2=value2&pname3=value3 ...

A GET mode (or method) causes form data to be appended to the URL as

URL1/web component ?pname1=value1&pname2=value2&pname3=value3 ...

WFTR mutants can be killed by tests that submit forms with inputs that impact the

response of the request. For instance, for tests that submit forms with large data (including

files being uploaded), some of the data is dropped if the data size exceeds the limitation

of a GET request. Moreover, since GET requests can be cached and remain in the browser

history, tests that click a browser back button or reload button will cause the GET requests

to be re-executed; but the tests will cause the browser to alert the users (in some forms of

pop-up windows) that the data needs to be re-submitted. An alternative way to verify is

to examine the URLs to ensure that confidential information is not exposed. The purpose

of the WFTR operator is to guide testers to generate test inputs to ensure that transfer

modes are specified appropriately.

4.2.4 Operator for Faults due to Data Exchanges between Web Compo-

nents

In addition to the naming convention mentioned earlier, the second and the third letters of

the operator name indicates that it mutates a parameter-value pair used in data exchange

(“PV”).

63



Parameter-value deletion (WPVD): The WPVD removes a parameter-value pair

from a JSP include action. WPVD mutants can be killed by tests that submit requests to

the URL that trigger the JPS include action whose parameter-value pair is mutated. The

WPVD operator helps testers to verify that the target web component receives all needed

data. The purpose of this operator is to guide testers to generate tests that exercise an

input that is used to communicate between web components.

Original Code WPVD Mutant
<html> <html>

... ...

<jsp:include page=URL1 /> <jsp:include page=URL1 />

<jsp:param name=pname1 4
value = value1 />

<jsp:param name=pname2 <jsp:param name=pname2
value = value2 /> value = value2 />

... ...

</html> </html>

4.2.5 Operator for Faults due to Novel Control Connections

In addition to the naming convention mentioned earlier, the second and the third letters of

the operator name indicates that it mutates a control transition (“CT”) of the app under

test.

Control transition replacement (WCTR): The WCTR operator replaces re-

direct transitions with forward transitions and replaces forward transitions with redirect

transitions. This operator serves two purposes. First, as a forward transition only allows

destinations on the same server, this operator helps ensure that the destination to be for-

warded (or redirected) to is correct. Second, since the objects executed in the original

request remain available when a forward transition is used, this operator helps ensure that

the app handles the objects in the original request and the forward (or redirect) request

properly to avoid data anomalies.

The following example shows a WCTR mutant that replaces a redirect control connec-

tion with a forward control connection in a J2EE servlet.

64



Original Code WCTR Mutant
public class logout extends HttpServlet public class logout extends HttpServlet

{ {
... ...

public void doGet(... ) public void doGet(... )

{ {
... ...

response.sendRedirect(URL1); 4 getServletContext()

.getRequestDispatcher(URL1)

.forward(request, response);

} }
} }

The following example shows a WCTR mutant that replaces a forward control connec-

tion with a redirect control connection in a J2EE servlet.

Original Code WCTR Mutant
public class logout extends HttpServlet public class logout extends HttpServlet

{ {
... ...

public void doGet(... ) public void doGet(... )

{ {
... ...

getServletContext() 4 response.sendRedirect(URL1);

.getRequestDispatcher(URL1)

.forward(request, response);

} }
} }

WCTR mutants can be killed in two ways. The first is when the target web component

is on a different server. Another is when the target component is on the same server and

a request affects the app’s output or internal state. To kill WCTR mutants, tests must

submit requests to a URL that triggers the control transition. When redirect transitions

are used, the redirect transitions instruct the browsers to create new requests and send

them to the target components. Since the browsers are aware of the transition, tests that

click the browser back button or reload button have no affect on the output (for instance,

no duplicate data when a request involves data manipulation). On the other hand, when

65



forward transitions are used, the browsers are unaware that the controls have been trans-

ferred. Tests that use the browser back button or reload button cause duplication of

data.

An alternative way to kill WCTR mutants is to examine the URLs. When a forward

is used, the browser address bar shows the original URL (not the forwarded URL) since

the browser is unaware of the control transfer. When a redirect is used, the address bar

shows the redirected URL as the browser is involved in the redirection.

4.2.6 Operators for Faults due to Server-Side State Management

In addition to the naming convention mentioned earlier, the second and the third letters of

the operator names indicate whether the operator mutates session objects’ scope (“SC”),

session objects’ initialization (“SI”), or session objects’ attribute setting (“SA”).

Scope replacement (WSCR): Web apps can be used by multiple users at once.

To handle each user’s transactions, persistent data are stored in in-memory objects, called

the session objects. Accessibility of the object must be specified to ensure that persistent

data are valid and the user’s requests are properly processed. Based on J2EE, the WSCR

operator alters a scope attribute of a <jsp:useBean> to each other possible scope setting

(page, request, session, and application). This operator helps testers design tests that

ensure the scope of an object is set properly so that data are accessible when they should

be and unavailable otherwise. WSCR mutants can be killed by tests that verify the data

stored in the session object.

Original Code WSCR Mutant
<html> <html>

... ...

<jsp:useBean id=id1 4 <jsp:useBean id=id1
scope="session" scope="request"

class=class1 /> class=class1 />

... ...

</html> </html>

66



Session initialization replacement (WSIR): Since a new connection to the web

server is opened every time a client retrieves a web page, information about the user session is

stored in in-memory objects (session objects in J2EE). When a session object is initialized

and there is no current session object, either a new object is created or null is returned. The

WSIR operator changes the initialization of the session object to the opposite behavior. This

operator guides testers to design tests that ensure that the web app manages the session’s

initialization suitably. For example, when a user starts a session (which normally involves a

series of requests to accomplish a certain task), a new instance of a session object should be

created. This session object should remain in memory until the user completes the task or

ends the session. No additional session object should be created for this user. Improperly

managing the session’s initialization can create extra instances of session objects. On the

other hand, a new instance should be created for each user to avoid overlapping users’ data

and violating data integrity of the app. WSIR mutants can be killed by tests that verify

whether a new session is created after the current session is expired.

Original Code WSIR Mutant
public class logout extends HttpServlet public class logout extends HttpServlet

{ {
... ...

public void doGet(... ) public void doGet(... )

{ {
... ...

session=request.getSession(true); 4 session=request.getSession(false);

if (session != null) if (session != null)

... ...

} }
} }

Session setAttribute deletion (WSAD): When a client (or a browser) retrieves

a web page, a new connection to the web server is opened. Users’ data are stored as

attributes in session objects to be available throughout a session. The WSAD operator

deletes a session object’s setAttribute() statement from the code. The purpose of this

operator is to guide testers to design tests to verify that the web app functions properly

67



when necessary information is omitted. WSAD mutants can be killed by tests that access

and verify the data stored in session objects.

Original Code WSAD Mutant
public class logout extends HttpServlet public class logout extends HttpServlet

{ {
... ...

public void doGet(... ) public void doGet(... )

{ {
... ...

session.setAttribute(attr1, value1); 4 //session.setAttribute(attr1, value1);

session.setAttribute(attr2, value2); session.setAttribute(attr2, value2);

... ...

} }
} }

4.2.7 Operators for Faults due to Client-Side State Management

Hidden form input deletion (WHID): The WHID operator removes a hidden input

tag. The purpose of this operator is to guide testers to generate test inputs to ensure that

data submitted to the server are properly handled. WHID mutants can be killed by tests

that include a form submission and that access and verify the data stored in hidden form

fields.

Original Code WHID Mutant
<html> <html>

... ...

<form action=URL1 method="POST"> <form action=URL1 method="POST">

<input type="hidden" 4 <!-- input type="hidden"

name=name1 value=value1> name=name1 value=value1-->

<input type="hidden" <input type="hidden"

name=name2 value=value2> name=name2 value=value2>

... ...

</form> </form>

</html> </html>

Hidden form input replacement (WHIR): The WHIR operator changes the

value of a hidden form field with another value in the same domain of the web app under

test. Similar to the WHID operator, this operator helps to ensure that data submitted to

68



the server are handled appropriately. WHIR mutants can be killed by tests that include a

form submission and that access and verify the data placed in hidden form fields.

Original Code WHIR Mutant
<html> <html>

... ...

<form action=URL1 method="POST"> <form action=URL1 method="POST">

<input type="hidden" 4 <input type="hidden"

name=name1 value=value1> name=name1 value=value2>

<input type="hidden" <input type="hidden"

name=name2 value=value2> name=name2 value=value2>

... ...

</form> </form>

</html> </html>

Read-only input deletion (WOID): The WOID operator removes an <input>

tag whose readonly attribute is specified. The objective of this operator is to help testers

verify that the web application handles data submission properly. WOID mutants can be

killed by tests that include a form submission and that access and verify the data put in

readonly inputs.

Original Code WOID Mutant
<html> <html>

... ...

<form action=URL1 method="POST"> <form action=URL1 method="POST">

<input type="text" readonly 4 <!-- input type="text" readonly

name=name1 value=value1> name=name1 value=value1-->

... ...

</form> </form>

</html> </html>

69



Chapter 5: Experiments

This chapter presents the research’s experiments that evaluate (1) the usefulness of web

mutation operators, (2) the fault detection capability of web mutation testing, (3) the

overlap between web mutants and traditional Java mutants, and (4) the redundancy among

web mutation operators. These experiments address the research questions in Section 1.3.

This chapter starts with Section 5.1, which discusses the design and implementation of

an experimental tool, webMuJava. This tool was developed to demonstrate the applicability

of web mutation testing. After that, the experiment in Section 5.21 evaluates the usefulness

of web mutation operators by examining how well tests designed with traditional software

testing criteria (referred to as traditional tests) kill web mutants. It also analyzes web

mutation operators that can improve the quality of traditional tests (research questions

RQ1 and RQ2 in Section 1.3). The experiment in Section 5.3 examines the applicability

of web mutation testing in terms of fault detection capability and analyzes the kinds of

web faults that can and cannot be detected (research questions RQ3 and RQ4 in Section

1.3). The experiment in Section 5.4 analyzes how effective web mutation adequate tests

kill traditional Java mutants, and then assesses the differences and overlaps between web

mutants and traditional Java mutants (research questions RQ5 and RQ6 in Section 1.3).

Finally, after evaluating the applicability of web mutation testing, the experiment in Section

5.52 focuses on analyzing the redundancy in web mutation operators to reduce the number

of test requirements; i.e., decreasing the testing costs (research questions RQ7, RQ8, and

RQ9 in Section 1.3).

1Published in Mutation 2016 [90]
2Published in Mutation 2017 [89]

70



5.1 Experimental Tool

An automated tool is very crucial and necessary to use in web mutation testing to facilitate

the experiments. This is because web mutation testing is centered around the idea of

injecting web faults and producing test cases to revealing the seeded faults. Manually

inserting and executing web faults becomes extremely time consuming and costly.

This research aims to develop a mutation testing tool that utilizes traditional muta-

tion operators while providing an ability to test web apps. Several mutation testing tools

were investigated. This research adopted muJava [66] (available at https://cs.gmu.edu/

~offutt/mujava/) as a base prototype, based on the availability of web apps used in the

experiments, the familiarity, and the human support of the mutation testing tools.

muJava is a mutation analysis tool for Java software apps that allows users to generate

syntactic faults (i.e., mutants), run tests against mutants, and view mutants. The latest

version of muJava supports JUnit tests and Java 1.6. muJava provides fifteen selective

method-level mutation operators [64]. In this research, an experimental tool, named web-

MuJava, implementing the web-specific mutation operators defined in Chapter 4, was built

as an extension of muJava. webMuJava is implemented in Java and its architecture is sim-

ilar to the architecture of muJava with additional web mutation operators. In addition to

JUnit, webMuJava allows tests to be automated in HTMLUnit [1], JWebUnit [3], and Sele-

nium [2], all of which allow the tests to make HTTP calls to the web apps. webMuJava also

controls various aspects of the web execution, including operational transitions such as using

the browser back and forward buttons. webMuJava is a semi-automated mutation testing

tool as it requires testers to supply test cases (i.e., test inputs). Functionality, structure,

assumptions and designs of webMuJava are discussed in the following subsections.

5.1.1 Functionality of webMuJava

The tool allows the testers to select program files to test, specify web mutation operators to

use, and view the original program and web mutants. The tool allows the testers to specify

71



a test set, executes mutants, and analyzes how well the test set can distinguish the mutants

from the original program.

Figure 5.1: webMuJava - Screen for generating mutants

Figure 5.1 shows the webMuJava screen for generating mutants. The testers can select

multiple files to test. Presumably, the testers choose files from a single web app. This

ensures that the replacement code, URLs, and objects used to create mutants are from the

same domain application, i.e., the replacements are meaningful. Then, the testers specify

web mutation operators to apply. Once the tester clicks the Generate button, webMuJava

automatically generates mutants from the selected operators, compiles Java servlet mutants,

and organizes both servlet mutants and JSP mutants for use during execution.

72



Figure 5.2: webMuJava - Screen for viewing mutants

The mutants can be viewed and compared with the original source program in the

Web Mutants Viewer panel, as shown in Figure 5.2. The tester can view each mutant by

selecting the mutant names. In this example, from 18 mutants generated for a target file

calculategpa.jsp, FOB 1 mutant is chosen. FOB 1 mutant shows the source code being

mutated at line 98. Summary information about the mutant is presented above the original

source code.

Figure 5.3 displays the webMuJava screen for executing mutants. The tester selects a

target file. Accordingly, mutants generated for the chosen file are listed on the left portion

of the screen. The tester supplies a set of test cases; in this example, a collection of tests

named calculategpa mutantTest. Figures 5.4 and 5.5 present examples of test cases for

an FOB mutant and a WSCR mutant. Each test case is a sequence of requests made by a

73



Figure 5.3: webMuJava - Screen for executing mutants and showing test results

user via a web browser or requests made between web components.

Generally, a test set consists of one or more test cases. To prepare and clean up the

test environment, a test set usually comprises a test setup and a tear down. Testers may

developed tests with JUnit, JWebUnit, HtmlUnit, and Selenium. Because webMuJava runs

test cases in threads, testers must not assume that the test cases will be executed in the

order they are written. Thus, testers must ensure that each test case has proper pre-state

and post-state.

Then, the tester may specify a time-out constraint (a default time-out is 3 seconds),

which is used to interrupt infinite loops, non-responsive servers3, and other executions that

may not terminate. Clicking the RUN button executes the selected tests against the mutants.

3A server connection timeout occurs when a web server is taking too long to reply to a request.

74



Figure 5.4: Example test case for a FOB mutant

Once the time-out constraint is reached, a mutant being executed is marked as killed.

Once a target file and a test set are provided, webMuJava executes the mutants. Test

evaluation is based on responses from the server, usually in the form of HTML documents,

and is done automatically. webMuJava compares the outputs i.e., the HTML document

created by the original version of the web app under test to the HTML document pro-

duced by the mutant. If the HTML responses from the original program and from the

mutant can be distinguished, the mutant is marked as killed. It is important to note that

testers can tailor their test cases to target specific content on of the HTML responses.

Testers can choose to verify whether the HTML response contains particular contents in-

stead of considering an entire response. For example, the test case in Figure 5.4 verifies the

existence of the string “Calculates the current GPA and the minimum GPA needed in

the remaining classes” in the HTML responses. Then, the tool computes the mutation

scores and lists the mutants that are killed and live.

75



Figure 5.5: Example test case for a WSCR mutant

5.1.2 Overview Structure of webMuJava

webMuJava is composed of four major modules: parser, mutant generator, test executor,

and result analyzer, as highlighted in Figure 5.6.

Parser

webMuJava was based on muJava, which supports only Java .class files. Thus an ad-

ditional module (the parser) was implemented in webMuJava to parse and analyze JSPs

and HTMLs. The parser is responsible for analyzing web specific features, to which the

mutation operators can apply. It also extracts information from a web app under test. The

information includes all URLs from all transitions and all values of hidden form fields (or

hidden inputs) and readonly inputs appearing in JSPs and servlets of the targeted web app

along with their frequency of reference. Frequency of reference is the number of occurrences

76



Figure 5.6: Structure of webMuJava

of the URLs (or the values of hidden inputs or readonly inputs) in the targeted web app.

When the parser parses web components’ source code, it keeps track of each URL (or value)

and increments the frequency measurement as the URL (or the value) appears in the com-

ponents. The frequency of reference helps to determine which URLs (or values) to use as

replacements when creating mutants.

Mutant Generator

The mutant generator accepts program files under test. Prior to creating mutants for the

given files, the mutant generator triggers the parser module to analyze and extract in-

formation to be used for replacement. Then, the mutant generator applies the tester’s

selected web mutation operators to the source code of the target files, creating a copy of

each mutant. Each mutated file is stored in a directory indexed by its name, its muta-

tion operator, and its mutant number; under the webMuJava’s results directory. For

instance, an FOB 1 mutant of a target file calculategpa.jsp is organized and stored as

/results/calculategpa.jsp/web mutants/FOB 1/calculategpa.jsp where a results

directory contains mutants generated; calculategpa.jsp is a target file; a web mutants

77



directory maintains the generated web mutants; FOB 1 indicates the first web mutant cre-

ated by the FOB operator; and the last calculategpa.jsp is the mutated file’s name.

The reason why the mutated file’s name remains the same as the target file’s name is to

ensure the same test case can access both the original program and the its variation without

changes. It is important to note that file extensions are attached to support a circumstance

when a web app consists of multiple files of different extension with the same names.

To avoid producing equivalent mutants and redundant mutants, several design decisions

were incorporated in the implementation of the tool. Further discussion on the design

decisions is presented in Section 5.1.3.

Subsequently, to ensure the mutants generated are syntactically correct, the mutant

generator compiles all Java servlet mutants. The corresponding .class files are stored

in the same directory as the mutated Java files. The uncompiled Java servlet mutants

are excluded from the testing process. Unlike the original muJava where each mutants

is compiled right after it is created, webMuJava compiles all Java servlet mutants after

all files and all web mutation operators are applied. This is because muJava does not

support Java servlet and the compilation of Java servlet mutants required a specific library

(servlet-api.jar4) and other applicable Java classes from the web app under tests to

be included. For simplicity, webMuJava delays the compilation process until all mutants

are created. It is also important to note that webMuJava does not compile JSPs. JSPs

are transformed into Java servlets by the web container (Apache Tomcat, in this research),

then compiled into Java servlet classes when they are requested. As a consequence, mutated

JSPs that contain syntax errors must be analyzed and filtered manually.

Mutant Executor

The mutant executor runs each test case on the original and each live mutant. The executor,

first, retrieves the original web app under test and then stores it in a web container. A web

container is a component of a web server that handles servlets and JSPs, such as creating

4http://www.java2s.com/Code/Jar/s/servlet.htm

78



instances of the requested servlets and JSPs, loading and unloading the servlets and JSPs,

and creating and managing request and response objects used in web apps. This research

used Apache Tomcat/7.0.67 as a web container. Then, the executor runs all test cases on

the original web app and records the results with respect to each test case.

The mutant executor copies each live mutant from the webMuJava’s results directory

and then successively replaces the original file with the mutant in a web container. By

design, a web container loads the newest version of a JSP or a servlet when it is requested

via a URL. However, since all servlet mutants are compiled at the end of the mutant

generating process, there is no guarantee whether their time stamps are in the order that

is consistent with the time when they are executed. Similarly, the time stamps of the JSP

mutants may be older than the instances of the files under test in a web container. To

ensure the mutant being considered is properly reloaded by a web container, the mutant

executor updates its time stamp to the current time when it replaces the original file.

In addition to updating the mutant’s time stamp, this research configures Apache Tom-

cat to monitor and automatically reload the incoming mutant by setting the reloadable

attribute of the Context element to true. The Context element represents a web app

and can be set in the file /tomcat/conf/context.xml, where tomcat is Apache Tomcat

directory. That is, the <Context> is set to <Context reloadable=“true”>, instructing the

container to reload the web app if a change is detected.

The mutant executor runs test cases in threads on the target file. For each target file,

the executor opens a new web browser every time a test case is run and closes it when the

test execution is completed. Launching and closing a browser for each test case introduces

an overhead. To ensure the same instance of a mutant is executed by all test cases (until

the mutant is killed), the executor delays copying each mutant to Tomcat. Based on a

feasibility study where some test cases rely on a real browser (such as Firefox) and some

rely on a virtual browser (such as a simulated browser via Eclipse), this research concludes

that 10 seconds is suitable to ensure that a particular mutant is executed by all test cases.

Notwithstanding, a potential drawback can be that an additional time may delay the testing

79



process.

For each mutant, the mutant executor triggers the result analyzer to evaluate whether

the mutant is killed. If the mutant is marked as killed, it is then excluded from the testing

process. The execution is repeated until all mutants and all test cases are executed.

Finally, the mutant executor computes the mutation scores based on the number of

killed mutants and the number of generated mutants. Note that, the tool currently does

not include any heuristics to help identify equivalent mutants. Thus, equivalent mutants

must be analyzed and excluded manually.

Result Analyzer

This research uses strong mutation to determine whether a given test set can distinguish

mutants from the original program, That is, the infected state must propagate to output.

The result analyzer compares the outputs of running the test cases on mutants and on the

original program. If they are distinguishable, the mutant is marked as killed. Otherwise,

the mutant is marked as live.

5.1.3 Assumptions and Design Decisions

This research has made several assumptions and design decisions to ensure that the mutation

operators use proper replacements which are in the same domain of the targeted web apps

and to minimize the chance of creating equivalent mutants.

• Mutant generation:

Mutants will be generated for one web app at a time, regardless of the number of its

web components. This is to ensure meaningful replacements. This decreases perfor-

mance, which has been decided to be less important for this research.

• URL replacement:

To ensure that the mutation operators use a proper destination that is in the same

domain as the targeted web app, only one web app is tested at a time. webMuJava

80



extracts all URLs appearing in all selected files of the web app under test. The

frequency of each URL’s use is analyzed. This information is recorded and later used

by the operators that modify URLs in servlets and JSPs. The most frequently used

URL is applied as a replacement. However, to avoid creating an equivalent mutant,

if the most frequently used URL is exactly the file under test itself (for WLUR) or

exactly the URL originally appearing in the form transition (for WFUR), the second

most frequently used URL is selected. If there are multiple URLs with the same

frequency, the first URL in the list is used. On the other hand, if a web app under

test contains only one URL, a dummy URL is picked. To minimize the number of

mutants created, only one URL is used for each destination replacement. The reasons

webMuJava do not replace the original destination with all possible URLs are that

many such mutants would be trivial and that incorrect URLs will almost always

result in different behavior of the web app. Hence, a selective approach is preferred

to reduce the number of mutants being created. While analyzing the frequency of

use and testing one web app at a time decreases performance, they offer meaningful

replacements which is more important for this research.

• URL deletion:

For the operator that removes a destination of a simple link transition, no mutant is

generated if the URL is exactly the file under test itself. This is because clicking the

link with non-specified destination leads to the current screen, i.e., the file under test

itself. This design decision reduces the likelihood of creating equivalent mutants.

• Form hidden control replacement:

A similar design decision has been made for the operator that mutates hidden form

fields. webMuJava extracts all hidden inputs and their values; and records the fre-

quency of each hidden input’s use. This information is later used by the operators

that mutate the value of hidden inputs. The most frequently used value is selected

as a replacement. If the replacement is the same as the original value, the second

most frequently used value is chosen to avoid generating an equivalent mutant. For

81



the same reason as the destination replacement, only one value is made for each value

replacement to minimize the number of mutants generated. Analyzing the frequency

of use and testing one web app at a time decreases performance. However, they offer

meaningful replacements which is more important for this research.

5.1.4 Known Limitations and Possible Improvement

The current implementation of webMuJava supports only servlets and JSPs. To support

other web programming languages and technologies (such as JavaScript, PHP, and AJAX),

some details of the implementation may need to be adapted.

The locations that store mutants and tests are predefined. Additionally, the locations

that deploy web apps under test are pre-specified. Modifying the locations must be made

directly to the source code of the tool. The tool must be recompiled and redeployed. To

improve the tool’s usability, an option allowing the testers to easily update the locations

without recompiling the tool should be offered.

This research relies on Apache Tomcat 7 and Java 1.8 to deploy web apps under test.

As a result, Apache Tomcat must be properly set up and maintained to ensure availability

and accessibility of the apps under test. Furthermore, since the experiments conducted in

this research are based on Java-based web apps, ensuring compatibility of Apache Tomcat

and Java version is vital.

Delay time between each mutant is added to the mutant execution process. This in-

troduces an overhead and can decrease performance depending on the number of mutants

being executed.

The current implementation of the parser module treats all hidden inputs as string type.

To make the replacement even more meaningful, improvement on semantic analysis of the

data type should be incorporated.

webMuJava mutates source code of the target file. Therefore, time to generate mutants

depends on time to alter the source code and time to compile necessary files. To make

mutation more efficient, webMuJava could be modified to use program schema [104], which

82



embeds multiple mutants into each line of source code so that one source file contains all

mutants.

Furthermore, webMuJava primarily follows the usual mutation testing process where

killed mutants are excluded from the remainder of the testing process. To evaluate the re-

dundancy in the mutation operators or comparing the effectiveness of the operators against

each other (illustrated in an experiment is presented in Section 5.5), source code of the

mutant executor module must be modified directly. The tool must then be recompiled and

redeployed. This adds excise tasks, requires extra effort, and can be inflexible from the

testers’ perspective. To improve the usability of the tool, an option that determines an

exclusion of the killed mutants should be provided on the interface for executing mutants

(Figure 5.3). This allows testers to customize how the mutation testing process should be

based on their interests.

Conceptually, testers may write test cases using almost any Java-based test automation

frameworks (such as JUnit, HtmlUnit, HttpUnit, JWebUnit, and Selenium). However, the

current implementation of the FOB operator relies on manipulating a browser history using

the pushState() and replaceState() functions of a history object, which are supported

by HTML5. Test cases developed with test automation frameworks that do not support

these new functions or that use virtual browsers when executing web mutants will result

in an exception (e.g., UnsupportedOperationException when running tests written with

JWebUnit through Eclipse). Consequently, these test cases will always kill FOB mutants,

regardless of whether these tests exercise the browser back button; thus distorting the

testing result. The FOB operator should not be used in these situations.

5.2 Experimental Evaluation of Web Mutation Operators

To evaluate the usefulness of web mutation operators, this experiment focuses on answering

the following research questions (previously listed in Section 1.3):

RQ1: How well do tests designed for traditional testing criteria kill web mutants?

RQ2: Can hand-designed tests kill web mutants?

83



The usefulness of the operators is evaluated empirically based on the number of web mu-

tants detected by test sets that are designed with traditional software testing techniques and

generated independently of mutants. This research considers traditional testing techniques

that are widely used in industry such as functional requirements, input space partitioning,

logic coverage, and random testing.

The underlying hypothesis was that web mutation testing can reveal more interaction

faults than existing software testing techniques can. If true, the new operators can lead to

improvement of test sets.

5.2.1 Experimental Subjects

In this research, web apps under test are referred to as subjects and testers are referred to

as participants. Web mutation testing requires source code to be available, which limited

choices for experimental subjects. In addition, tests were created by hand, further limiting

the choices and the number of subjects that could be tested. Source code of web apps with

existing developer-written test suites and commercial web apps were unavailable to this

experiment. There were no open source or commercial web apps that had the necessary

characteristics available. Therefore, this experiment took the subject web apps from exam-

ples and exercises used in web app development courses at George Mason University, and

from projects by undergraduate students and graduate students.

The subject web apps were thoroughly examined and chosen to ensure that they contain

various web aspects, specifically the features that can affect communication between web

components and the state of web apps. The subjects had to be small enough to allow

extensive hand analysis, yet large and complex enough to include a variety of interactions

among web components.

Table 5.1 presents descriptive statistics of eleven Java-based web applications 5. Compo-

nents are JSPs and Java Servlets, excluding JavaScript, HTML, and CSS files. All subjects

are available online at http://github.com/nanpj. BSVoting, HLVoting, and KSVoting are

5LOC, non-blank lines of code, was measured with Code Counter Pro (http://www.geronesoft.com/).

84



Table 5.1: Subject web apps
Subjects Components LOC

BSVoting (S1) 11 930

check24online (S2) 1 1619

computeGPA (S3) 2 581

conversion (S4) 1 388

faultSeeding (S5) 5 1541

HLVoting (S6) 12 939

KSVoting (S7) 7 1024

quotes (S8) 5 537

randomString (S9) 1 285

StudInfoSys (S10) 3 1766

webstutter (S11) 3 126

Total 51 9736

online voting systems, which allow users to maintain their assertions and vote on other

users’ assertions. check24online allows users to play the card game 24, where users enter

four integer values between 1 and 24 inclusive and the web app generates all expressions

that have the result 24. computeGPA accepts credit hours and grades and computes GPAs,

according to George Mason University’s policy. conversion allows users to convert measure-

ments. faultSeeding facilitates fault seeding and maintains the collection of faulty versions

of software. quotes allows users to search for quotes using keywords. randomString allows

users to randomly choose strings with or without replacement. StudInfoSys allows users

to maintain student information. webstutter allows users to check for repeated words in

strings. All these subjects use features that affect the interactions between web compo-

nents and the states of web apps, including form submission, redirect control connection,

forward control connection, include directive, and state management mechanisms.

5.2.2 Experimental Procedure

To measure the usefulness of web mutation operators in terms of how well they can improve

the quality of test sets, two types of tests were developed. The independent variable is the

type of tests. In this scenario, a test (interchangeably referred to as a test case or a test

input) is a sequence of requests made by a user via a web browser or requests made between

web components. The first type of tests is generated to be adequate for web mutation

85



testing (as defined in Section 4.2), and the other is hand-designed tests using traditional

testing criteria. Tests manually-designed with traditional testing criteria represent the most

common way that web app tests are created in industry. The dependent variables are the

number of equivalent mutants, the number of test cases required, the number of mutants

generated from each operator, the mutation scores, and the usefulness of each operator.

The usefulness of an operator is the ratio of the number of mutants from that operator not

killed by the tests over the total number of mutants from that operator.

Four steps in conducting the experiment:

1. Generate mutants: For each subject, all fifteen operators were applied to generate

fifteen kinds of mutants. Mij represents mutants of the ith subject that are created by the

jth operator. webMuJava [88] was built as an extension of muJava [65] to generate the

mutants. webMuJava mutates JSPs and Java servlets. The mutated components are then

compiled and integrated with the web app under test during execution.

2. Generate tests: This experiment generated two types of testes and compared their

ability to detect web mutants.

Web mutation tests: A test set Tmi was designed to kill the web mutants for each

subject i. Tests were added until all web mutants were killed. Tests were created manually

as sequences of requests and were automated in HtmlUnit, JWebUnit, and Selenium. To

the best of our knowledge, no automated test generation tools specifically for web apps are

currently available. Therefore, in this experiment, tests were created by hand.

Traditional tests: Traditional tests were generated independently from the mutation

tests using the standard industrial practice of designing tests by hand from requirements.

Tik represents the kth set of independent tests for the ith subject. The tests were devel-

oped manually as sequences of requests and then automated in HtmlUnit, JWebUnit, and

Selenium.

To avoid bias, this experiment took into accounts several requirements on the testers.

86



First, testers were not familiar with the web mutation operators. Second, testers were knowl-

edgeable of software testing and web app development. They all had completed a software

testing course, and several had industrial experience testing web apps. All but two were, or

had been, professional web app software developers. Third, testers were not given specific in-

structions, thus were free to design tests according to their best abilities. The guide that was

provided to the participants is available at https://cs.gmu.edu/~uprapham/experiment/

compareTests.html. Two independent testers were PhD students with industrial experi-

ence. The remaining independent testers included seven teams of two part-time industrial

graduate students, and three teams of two fourth year undergraduate students.

The 12 test teams design their tests independently. Each test team developed 11 test

sets for 11 subjects, yielding 12 test sets for each subject web app. The testers reported

that, on average, for each subject, they spent 4-6 hours to understand the subject, and

design and develop test cases by hand. One test set was designed with a combination of

input space partitioning and functional requirements, one with a combination of input space

partitioning and logic coverage, three with a combination of logic coverage criteria and

functional requirements, one with a combination of functional requirements and random

testing strategies, and six with functional requirements. These tests were referred to as

traditional tests.

3. Execute tests: Each test set was executed on all of mutants. N(Tmi,Mij) denotes

the number of mutants of type j of subject i that were killed by tests Tmi. N(Tik,Mij)

denotes the number of mutants of type j of subject i that were killed by the kth independent

test set of subject i, Tik. Equivalent mutants were identified manually and excluded from

the testing process.

4. Compute the usefulness of the operator: The usefulness of the jth operator,

Uj , is computed as the ratio of the number of mutants of type jth (Mj) that are not killed

by the tests:

87



Table 5.2: Summary of mutants generated and killed by web mutation adequate tests
Subjects Mutants Equivalent Killed Tests

S1 27 0 27 26

S2 8 0 8 5

S3 18 0 18 14

S4 3 0 3 2

S5 115 16 99 34

S6 103 3 100 31

S7 34 0 34 17

S8 11 0 11 7

S9 5 0 5 5

S10 9 0 9 6

S11 4 0 4 2

Total 337 19 318 149

Uj =

∑n
i Mij −

∑n
i N(Tik,Mij)∑n

i Mij
(5.1)

The usefulness (Uj) ranges from 0 to 1, where 1 indicates that all mutants have not

been killed (i.e., the jth operator is very useful).

5.2.3 Experimental Results and Analysis

For each subject web app, Table 5.2 summarizes the number of mutants generated, the

number of equivalent mutants, the number of mutants killed, and the number of tests

generated with web mutation testing. Table 5.3 shows detail information on the number of

mutants generated and killed by web mutation adequate tests. The upper half of the table

5.3 lists the numbers of mutants generated for each subject web app by each operator. The

number of mutants created by each operator are different depending on whether the web

app under test has web-specific features the operators can apply. The bottom half presents

the number of web mutation adequate tests for each subject (the Tests column), along with

the number of mutants killed by the tests (the Mutants killed). Since some tests killed more

than one mutant, the number of tests is smaller than the number of mutants killed.

For each subject, all 15 web mutation operators were applied, generating a total of 337

mutants. Tests designed with web mutation testing criteria were able to kill 318 mutants.

88



Table 5.3: Number of mutants generated and killed by web mutation adequate tests
Mutants generated

Subjects F
O

B

W
C

T
R

W
C

U
R

W
F

T
R

W
F

U
R

W
H

ID

W
H

IR

W
L

U
D

W
L

U
R

W
O

ID

W
P

V
D

W
R

U
R

W
S
A

D

W
S
C

R

W
S
IR

Total

S1 1 7 0 5 5 0 0 0 0 0 0 3 5 0 1 27

S2 1 0 0 1 1 0 0 2 3 0 0 0 0 0 0 8

S3 1 0 0 1 1 2 2 1 1 0 0 0 6 3 0 18

S4 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 3

S5 2 3 3 4 3 0 0 1 1 0 2 1 76 0 3 99

S6 4 9 0 12 12 5 5 9 9 1 0 9 17 0 8 100

S7 3 6 0 7 7 0 0 0 0 0 0 0 11 0 0 34

S8 1 0 0 2 2 0 0 2 2 0 0 0 2 0 0 11

S9 1 0 0 1 1 0 0 0 0 2 0 0 0 0 0 5

S10 2 0 0 1 1 0 0 2 3 0 0 0 0 0 0 9

S11 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 4

Total 18 26 3 36 35 7 7 17 19 3 2 13 117 3 12 318

Subjects Tests Mutants killed Total

S1 26 1 7 0 5 5 0 0 0 0 0 0 3 5 0 1 27

S2 5 1 0 0 1 1 0 0 2 3 0 0 0 0 0 0 8

S3 14 1 0 0 1 1 2 2 1 1 0 0 0 6 3 0 18

S4 2 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 3

S5 34 2 3 3 4 3 0 0 1 1 0 2 1 76 0 3 99

S6 31 4 9 0 12 12 5 5 9 9 1 0 9 17 0 8 100

S7 17 3 6 0 7 7 0 0 0 0 0 0 0 11 0 0 34

S8 7 1 0 0 2 2 0 0 2 2 0 0 0 2 0 0 11

S9 5 1 0 0 1 1 0 0 0 0 2 0 0 0 0 0 5

S10 6 2 0 0 1 1 0 0 2 3 0 0 0 0 0 0 9

S11 2 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 4

Total 149 18 26 3 36 35 7 7 17 19 3 2 13 117 3 12 318

89



Again using extensive hand analysis, the other 19 were equivalent. 17 equivalent mutants

were of type WSAD, one was of type WLUD, and one was of type WLUR. The WSAD

operator removes a setAttribute statement from the source code, thereby manipulating

state information of the web app. For example, one WSAD equivalent mutant (in a login

component of subject S6) was due to a mutated session’s attribute that was never accessed

by the web app. Therefore, removing the attribute setting statement had no impact on the

subject’s behavior. The remaining 16 equivalent mutants were in subject S5 and were due

to the fact that the mutated attributes were reset prior to being used. This suggests that

the developers might have unnecessarily set the session attributes. Apparently, not only

can web mutation testing criteria help detect potential faults in web apps, but it can also

help web developers improve the way they implement web apps. The equivalent WLUD and

WLUR mutants in subject S6 were changes to links to CSS files. Modifying the URLs to

CSS files affected the presentation of the web app. However, because presentation checking

was out of scope of this experiment, these WLUD and WLUR mutants were excluded.

Equivalent mutants were excluded from the experiment.

For each subject, the 12 independently generated sets of tests were executed on all

mutants. Table 5.4 presents data from each type of mutant. The upper half summarizes

the number of mutants generated from each operator for each subject along with the total

numbers of mutants. The bottom half displays the number of mutants of each type that

were killed by the traditional tests. The column Tests gives the number of tests in each test

set. The Mutants killed columns give the number of mutants that were killed by each test

set. For example, tests T1 killed 17 WCTR mutants and 2 WCUR mutants. For several

test sets, the number of tests is smaller than the number of mutants killed because some

tests killed more than one mutant. To obtain these numbers, for each subject, each test

was executed on all mutants.

The number of subjects and the number of test sets ought to be limited because the

experiment involved extensive manual effort. In fact, many of the traditional tests were

not properly prepared to automatically execute. For instance, some test sets assumed that

90



Table 5.4: Number of mutants generated and killed by traditional tests
Mutants generated

Subjects F
O

B

W
C

T
R

W
C

U
R

W
F

T
R

W
F

U
R

W
H

ID

W
H

IR

W
L

U
D

W
L

U
R

W
O

ID

W
P

V
D

W
R

U
R

W
S
A

D

W
S
C

R

W
S
IR

Total

S1 1 7 0 5 5 0 0 0 0 0 0 3 5 0 1 27

S2 1 0 0 1 1 0 0 2 3 0 0 0 0 0 0 8

S3 1 0 0 1 1 2 2 1 1 0 0 0 6 3 0 18

S4 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 3

S5 2 3 3 4 3 0 0 1 1 0 2 1 76 0 3 99

S6 4 9 0 12 12 5 5 9 9 1 0 9 17 0 8 100

S7 3 6 0 7 7 0 0 0 0 0 0 0 11 0 0 34

S8 1 0 0 2 2 0 0 2 2 0 0 0 2 0 0 11

S9 1 0 0 1 1 0 0 0 0 2 0 0 0 0 0 5

S10 2 0 0 1 1 0 0 2 3 0 0 0 0 0 0 9

S11 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 4

Total 18 26 3 36 35 7 7 17 19 3 2 13 117 3 12 318

Testers Tests Mutants killed Total

T1 86 0 17 2 22 27 5 3 3 3 0 1 9 76 1 4 173

T2 78 0 13 2 21 25 3 4 2 2 0 1 9 75 1 2 160

T3 168 0 16 2 20 27 7 6 6 6 0 0 10 59 2 4 165

T4 124 0 17 2 22 29 6 5 6 6 2 0 10 63 1 5 174

T5 102 0 11 2 19 23 6 6 5 5 1 0 8 57 1 4 148

T6 94 0 15 2 21 24 6 5 2 2 0 0 7 53 0 2 139

T7 118 0 17 2 23 28 6 6 4 4 1 0 8 51 1 3 154

T8 120 0 13 2 20 24 3 3 2 2 2 0 6 56 1 1 135

T9 93 0 17 2 25 30 6 6 6 6 1 0 11 60 1 4 175

T10 85 0 11 2 17 22 4 4 2 2 1 0 7 46 1 1 120

T11 95 0 14 2 21 25 6 6 2 2 0 1 9 76 1 4 169

T12 77 0 11 2 19 23 5 5 1 1 0 0 8 51 1 1 128

Average 103 0 14 2 20 25 5 4 3 3 0 0 8 60 1 2 153

test cases run in order as they were written. However, because tests were run in threads,

the order of tests executed is non-deterministic. Some tests left the web apps in a state

that affected the subsequent tests, causing the subsequent tests to not be able to run to

completion. Consequently, all tests were inspected by hand and modified to ensure that each

test case was automated properly with correctly functioning setup and teardown functions.

This cleaning process was time consuming and labor intensive, limiting the number of

subjects and test sets that could be used.

The mutation scores of each test on each subject are displayed in Table 5.5. The Si

column shows the mutation score of executing a test set created by tester Tk for subject

Si. For instance, test set for S1 created by test team T1 yields 0.59 mutation score. and

91



Table 5.5: Mutation Scores (Each test team developed one test set for each subject)

Mutation scores (= killed mutants / total non-equivalent mutants)
Testers Average

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 scores
by tests

T1 0.59 0.25 0.28 0.67 0.68 0.48 0.62 0.18 0.40 0.44 0.75 0.49

T2 0.67 0.25 0.44 0.67 0.68 0.36 0.44 0.18 0.40 0.44 0.75 0.48

T3 0.59 0.25 0.61 0.67 0.41 0.63 0.62 0.09 0.40 0.22 0.75 0.48

T4 0.48 0.25 0.39 0.67 0.51 0.65 0.62 0.18 0.80 0.44 0.75 0.52

T5 0.33 0.25 0.44 0.67 0.51 0.49 0.47 0.18 0.40 0.44 0.75 0.45

T6 0.59 0.25 0.28 0.67 0.39 0.41 0.71 0.18 0.40 0.22 0.75 0.44

T7 0.59 0.25 0.28 0.67 0.39 0.57 0.62 0.18 0.40 0.44 0.75 0.47

T8 0.70 0.25 0.44 0.67 0.45 0.25 0.59 0.18 0.80 0.44 0.75 0.50

T9 0.78 0.25 0.44 0.67 0.45 0.63 0.65 0.18 0.40 0.44 0.75 0.51

T10 0.52 0.25 0.44 0.67 0.35 0.28 0.56 0.18 0.40 0.44 0.75 0.44

T11 0.30 0.25 0.44 0.67 0.68 0.52 0.59 0.18 0.40 0.22 0.75 0.45

T12 0.63 0.25 0.28 0.67 0.43 0.32 0.50 0.18 0.40 0.22 0.75 0.42

Average
scores by 0.56 0.25 0.40 0.67 0.49 0.47 0.58 0.17 0.47 0.37 0.75 0.47
subjects

Average 9 11 13 18 10 9 10 4 6 8 5
tests

Tm 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

test set for S7 generated by test team T6 has 0.71 mutation score. The Average tests

indicate the average number of tests of all 12 traditional test sets created for the subject.

For example, the average number of tests designed for S4 is 18 and for subject S8 is 4. On

average, the mutation scores of the 12 traditional tests range from 0.17 (on subject S8) to

0.75 (on subject S11), as presented in the Average scores by subjects. The overall average

mutation score of all non-web mutation tests is 0.47, while the overall average mutation of

web-mutation tests (Tm) is 1.00.

Figure 5.7 shows the mutation scores of traditional tests on the 11 web apps. For subject

S11, all test sets detected 3 out of 4 mutants, yielding the same mutation scores. Similarly,

all test sets were able to distinguish WFTR and WFUR mutants of Subjects S2 and S4, but

leaving the other kinds of web mutants undetected. Hence, they all yield the same mutation

scores. For subject S9, two test sets detected all but FOB mutant while the remaining test

sets detected only WFTR and WFUR mutants. A similar distribution applied to subject

S8. In overall, most tests resulted in the same mutation scores. The deviation is relatively

92



0.0

0.2

0.4

0.6

0.8

1.0

Subjects

M
ut

at
io

n 
Sc

or
es

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11

Figure 5.7: Mutation scores of traditional tests

small. One possible reason is because the tests were designed particularly based on the

main functionality of the web apps under test. As a result, tests tended to check similar

aspects and features of the apps, and could overlooked other web features that could affect

how web apps behave.

To determine which web mutation operators would most help find web interaction faults,

this research introduced a usefulness measure to assess the value of the operators. The

usefulness measure is computed using the number of non-equivalent mutants that the tra-

ditional tests were unable to kill. Operators that created more mutants that were hard to

kill are considered to be more useful at helping the testers to design strong test cases.

Table 5.6 shows the overall usefulness of each operator with respect to how many mutants

that are not killed by each test set and the average percentages of the overall usefulness.

The overall usefulness of each operator is computed as a ratio of the cumulative number

of unkilled mutants of type i and the total number of non-equivalent mutants of type i.

For some subjects, some types of mutants were not generated because the subjects lack the

features being mutated. The distribution of the usefulness of web mutation operators is

displayed in Figure 5.8.

93



T
ab

le
5.

6:
O

v
er

al
l

u
se

fu
ln

es
s

of
w

eb
m

u
ta

ti
on

op
er

at
or

s
U

se
fu

ln
es

s
(=

u
n
k
il
le

d
m

u
ta

n
ts

o
f

ty
p

e
it

h
/

to
ta

l
n
o
n
-e

q
u
iv

a
le

n
t

m
u
ta

n
ts

o
f

ty
p

e
it

h
)

T
e
st
e
rs

T
e
st
s

FOB

WCTR

WCUR

WFTR

WFUR

WHID

WHIR

WLUD

WLUR

WOID

WPVD

WRUR

WSAD

WSCR

WSIR

T
1

8
6

1
.0

0
0
.3

5
0
.3

3
0
.3

9
0
.2

3
0
.2

9
0
.5

7
0
.8

3
0
.8

5
1
.0

0
0
.5

0
0
.3

1
0
.3

5
0
.6

7
0
.6

7

T
2

7
8

1
.0

0
0
.5

0
0
.3

3
0
.4

2
0
.2

9
0
.4

7
0
.4

3
0
.8

9
0
.9

0
1
.0

0
0
.5

0
0
.3

1
0
.3

6
0
.6

7
0
.8

3

T
3

1
6
8

1
.0

0
0
.3

8
0
.3

3
0
.4

4
0
.2

3
0
.0

0
0
.1

4
0
.6

7
0
.7

0
1
.0

0
1
.0

0
0
.2

3
0
.5

0
0
.3

3
0
.6

7

T
4

1
2
4

1
.0

0
0
.3

5
0
.3

3
0
.3

9
0
.1

7
0
.1

4
0
.2

9
0
.6

7
0
.7

0
0
.3

3
1
.0

0
0
.2

3
0
.4

6
0
.6

7
0
.5

8

T
5

1
0
2

1
.0

0
0
.5

8
0
.3

3
0
.4

7
0
.3

4
0
.1

4
0
.1

4
0
.7

2
0
.7

5
0
.6

7
1
.0

0
0
.3

8
0
.5

1
0
.6

7
0
.6

7

T
6

9
4

1
.0

0
0
.4

2
0
.3

3
0
.4

2
0
.3

1
0
.1

4
0
.2

9
0
.8

9
0
.9

0
1
.0

0
1
.0

0
0
.4

6
0
.5

5
1
.0

0
0
.8

3

T
7

1
1
8

1
.0

0
0
.3

5
0
.3

3
0
.3

6
0
.2

0
0
.1

4
0
.1

4
0
.7

8
0
.8

0
0
.6

7
1
.0

0
0
.3

8
0
.5

6
0
.6

7
0
.7

5

T
8

1
2
0

1
.0

0
0
.5

0
0
.3

3
0
.4

4
0
.3

1
0
.5

7
0
.5

7
0
.8

9
0
.9

0
0
.3

3
1
.0

0
0
.5

4
0
.5

2
0
.6

7
0
.9

2

T
9

9
3

1
.0

0
0
.3

5
0
.3

3
0
.3

1
0
.1

4
0
.1

4
0
.1

4
0
.6

7
0
.7

0
0
.6

7
1
.0

0
0
.1

5
0
.4

9
0
.6

7
0
.6

7

T
1
0

8
5

1
.0

0
0
.5

8
0
.3

3
0
.5

3
0
.3

7
0
.4

3
0
.4

3
0
.8

9
0
.9

0
0
.6

7
1
.0

0
0
.4

6
0
.6

1
0
.6

7
0
.9

2

T
1
1

9
5

1
.0

0
0
.4

6
0
.3

3
0
.4

2
0
.2

9
0
.1

4
0
.1

4
0
.8

9
0
.9

0
1
.0

0
0
.5

0
0
.3

1
0
.3

5
0
.6

7
0
.6

7

T
1
2

7
7

1
.0

0
0
.5

8
0
.3

3
0
.4

7
0
.3

4
0
.2

9
0
.2

9
0
.9

4
0
.9

5
1
.0

0
1
.0

0
0
.3

8
0
.5

6
0
.6

7
0
.9

2

A
v
e
ra

g
e

1
0
3

1
.0
0

0
.4
5

0
.3
3

0
.4
2

0
.2
7

0
.2
5

0
.3
0

0
.8
1

0
.8
3

0
.7
8

0
.8
8

0
.3
5

0
.4
9

0
.6
7

0
.6
7

94



0.0

0.2

0.4

0.6

0.8

1.0

U
se
fu
ln
es
s

FO
B
WC
TR
WC
UR

WF
TR

WF
UR

WH
ID

WH
IR
WL
UD

WL
UR

WO
ID
WP
VD
WR
UR

WS
AD

WS
CR

WS
IR

Figure 5.8: Usefulness of web mutation operators

RQ1: How well do tests designed for traditional testing criteria kill web mu-

tants?

Although seven out of 12 test teams (i.e., traditional tests) killed more than 85% of WHID

mutants, the other five test teams missed approximately half. The average usefulness of

WHID operator is 0.25. The killed mutants are mostly hidden form inputs that directly

affected the subjects’ main functionality. For example, WHID mutants removed hidden

inputs that pass user credentials through a login component of subject S6. This caused

the program to display a list of assertions from a guest user’s view, incorrectly limiting the

user’s ability to work with the software. Another example of killed WHID mutants is in

subject S3. A hidden input keeping track of the number of credit hours used to compute

GPA was removed, impacting the way grades were computed. On the other hand, the tests

missed some WHID mutants because they removed hidden inputs that had little influence

on the subjects’ behavior. For instance, a hidden input field that stored a course name was

removed from subject S3. Removing the course name did not affect the GPA calculation.

Similar analyses apply to many WHIR mutants. While many tests can detect this kind of

unexpected behaviors, many tests do not thoroughly verify the contents on the screen or

95



they only check for certain keywords and minimal portions of contents. This observation

suggests that testers do not normally include the necessary tests even though many WHID

and WHIR mutants can be easily killed.

At least 60% of WFUR mutants were killed by the traditional tests with the average

usefulness of 0.27. Because WFUR mutants modify a<form> tag, test cases that submit the

form will kill WFUR mutants. Many WFUR mutants were unkilled because they modified

data values that were unused in the subject’s main execution flow. This is a common issue

with designing tests from functional requirements; testers tend to focus on “happy paths,”

and do not fully test other requirements. Indeed, this is a strong indication that the WFUR

operator can improve test quality.

Few WLUD and WLUR mutants were killed by the traditional tests; their average

usefulness scores were 0.81 and 0.83. WLUD and WLUR mutants delete and replace URLs,

thus checking for broken links. The high usefulness scores indicate that testers tend not

to check all static links (<A> tags). This is a strong indication that these operators can

improve test quality.

On average, 58% of WFTR mutants were killed by the traditional tests. WFTR mutants

replace transfer modes in <form> tags; therefore, a killing test must submit the form. Since

WFUR mutants also modify <form> tags (by replacing the target URL), it seems possible

that tests that kill WFUR mutants could also kill WFTR mutants. However, based on the

experimental results, this assumption does not apply. Tests that killed WFUR mutants

did not usually kill WFTR mutants on the same form. Thus, WFTR’s usefulness score is

higher than WFUR’s usefulness score.

WSCR’s average usefulness score is 0.67. WSCR mutants change the scope of JSP

beans. WSCR mutants that decreased the scope (for example, from session to page

scope) required tests that verified the bean was available. WSCR mutants that increased

the scope could only be killed by tests that made multiple requests. For example, changing

an object from session scope to application scope in subject S3 caused the number of

credit hours to be cumulatively incorrect, thereby influencing the GPA computation. The

96



experimental results show that most traditional tests did neither of these actions. Again,

this is a strong indication that WSCR can improve test quality.

Finally, the results show that none of the traditional tests killed any FOB mutants. In

fact, none of the tests used the browser’s back button.

In conclusion, these results clearly indicate that tests designed for traditional testing

criteria miss many web mutants. They do not do well on killing web mutants.

RQ2: Can hand-designed tests kill web mutants?

This question requires test sets that were web mutation adequate. From Table 5.2, the 149

web-mutation tests for the 11 subjects killed all the web mutants. This finding answers

RQ2 in the affirmative.

Table 5.4 shows an average of 103 traditional tests. Although the traditional tests were

fewer in number, which is a major component of the testing cost, they only killed an average

of 47% of the mutants (from Table 5.5). The largest set (T3) killed 48% and the strongest

(T4) only killed 52%.

A detailed inspection of the web-mutation tests revealed that the web-mutation tests

exercised many more web-specific control features than the traditional tests. These included

using the back button (and other operational transitions), hitting all links and forms,

changing the server-side state in more ways, and stressing objects in the session object. In

turn, the traditional tests, which followed standard industrial practice of basing tests on

requirements, tended to particularly focus on the main functionality of the web apps.

In conclusion, web mutation tests can kill more web mutants (all mutants, in this ex-

periment) than traditional tests can. The experiment indicates that designing tests with

web mutation testing can improve the quality of tests.

5.2.4 Threats to Validity

Like all empirical studies, this study has some limitations that could have influenced the

experimental results. Some of these limitations may be minimized or avoidable consequences

97



while some may be unavoidable.

Internal validity: The quality of tests may vary depending upon the testers’ expe-

rience. To minimize this threat, this experiment intentionally chose testers with a wide

variety of testing knowledge and experience. Replication experiments that incorporate au-

tomatically generated tests would help confirm the result and analysis. Similarly, test values

to satisfy web mutation adequate tests were created by hand. Additional experiments with

different test values are vital to confirm the findings. Another potential threat is that this

experiment identifies equivalent mutants by hand. Also, this experiment performed manual

computation and analysis; hand analysis may introduce human errors.

External validity: While the subjects used in this experiment contained a variety

of interactions among web components, it is impossible to guarantee that they are rep-

resentative. Additionally, the subjects are Java-based; the results may differ when using

other languages. Thus, additional experiments using subjects of other web development

frameworks and languages are necessary implication for future work.

Construct validity: This experiment assumed that webMuJava worked correctly.

5.3 Experimental Evaluation for Fault Study

The previous experiment shows the ability of mutation analysis to improve the quality of

test cases. This experiment further evaluates the applicability of web mutation testing for

its fault detection ability. The following questions (previously listed in Section 1.3) are

addressed:

RQ3: How well do tests designed for web mutation testing reveal web faults?

RQ4: What kinds of web faults are detected by web mutation testing?

To understand how well web mutation testing helps reveal web faults, the following null

hypothesis H0 and an alternative hypothesis Ha are evaluated.

H0: Given the sets of web-mutation adequate tests, the average of fault coverage on

web faults is no greater than zero (that is, the tests are not effective at revealing web faults).

98



Ha: Given the sets of web-mutation adequate tests, the average of fault coverage on

web faults is greater than zero (that is, the tests are effective at revealing web faults).

5.3.1 Experimental Subjects

As this experiment is part of a series of attempts to validate the effectiveness of web mutation

testing, this experiment also used subject web apps from the previous experiment (presented

in Section 5.2). In addition to these subjects, four additional subject web apps were added

to this experiment.

This experiment used 15 subject web apps. Eleven subject web apps were taken from

the previous experiment. One web app, coverageWebApp, was taken from a tool supporting

Ammann and Offutt’s Introduction to Software Testing textbook [6]. One web app, E-

invite, was taken from projects by undergraduate students who took web app development

course at George Mason University. One web app, smallTextInfoSys, was taken from an

experimental subject used by Offutt and Wu [82] to validate the atomic sections of web app

modeling and also used in an initial experiment on applying mutation testing to web apps

[88]. One web app, WIBookMyDoc, was an open source software that supports interactions

between doctors and patients.

Table 5.7 lists the 15 Java-based web apps used in this experiments6. All subjects except

coverageWebApp and WIBookMyDoc are available online at http://github.com/nanpj;

coverageWebApp is available upon request to Ammann and Offutt [6] and WIBookMyDoc is

available at http://www.java2s.com/Open-Source/Java_Free_Code/Web_Application/

Download_BookMyDoc_Free_Java_Code.htm.

BSVoting, HLVoting, and KSVoting are online voting systems, which allow users to

maintain their assertions and vote on other users’ assertions. Information is stored in XML

files. check24online allows users to play the card game 24, where users enter four integer val-

ues between 1 and 24 inclusive and the web app generates all expressions that have the result

24. computeGPA accepts credit hours and grades and computes GPAs, according to George

6LOC refers to non-blank lines of code, measured with Code Counter Pro (http://www.geronesoft.com/)

99



Table 5.7: Subject web apps
Subjects Components LOC

BSVoting (S1) 11 930

check24online (S2) 1 1619

computeGPA (S3) 2 581

conversion (S4) 1 388

coverageWebApp (S5) 25 11043

E-invite (S6) 16 1276

faultSeeding (S7) 5 1541

HLVoting (S8) 12 939

KSVoting (S9) 7 1024

quotes (S10) 5 537

randomString (S11) 1 285

smallTextInfoSys (S12) 24 1103

StudInfoSys (S13) 3 1766

webstutter (S14) 3 126

WIBookMyDoc (S15) 57 5080

Total 173 28238

Mason University’s policy. conversion allows users to convert multiple measurements simul-

taneously. coverageWebApp, a web-based software app supporting Ammann and Offutt’s

Introduction to Software Testing textbook (http://cs.gmu.edu/~offutt/softwaretest/)

[6], allows users to enter test inputs and subsequently produces test requirements and test

paths. CoverageWebApp consists of four components: Graph Coverage, Data Flow Cover-

age, Logic Coverage, and Minimal-MUMCUT Coverage. Users can choose to produce test

requirements and test paths using these coverage criteria. It is important to note that due

to the lack of hand-seeded faults in the Minimal-MUMCUT Coverage component, this fea-

ture is excluded from the experiment; reflecting the number of components and LOC shown

in the table. E-invite helps users to maintain events and invitations. Simultaneously, it

allows other users to view and confirm whether they would attend the events or accept the

invitations. Information is stored in XML files. faultSeeding is a tool developed specifically

to facilitate the fault seeding process, compile the faulty Java files and Java servlets, and

maintain the collection of faulty versions of software. faultSeeding was also used by some

participants to introduce faults into subjects used in this experiment. quotes allows users

to search for quotes using keywords. randomString allows users to randomly choose strings

with or without replacement. smallTextInfoSys allows users to maintain text information,

100



using a MySQL database. StudInfoSys allows users to maintain student information, using

XML files. webstutter allows users to check for repeated words in strings. WIBookMyDoc

is an open source software that maintains doctor appointments and medical records, also

using a MySQL database.

All experiment subjects use features that affect the interactions between web components

and the states of web apps, including form submission, redirect control connection, forward

control connection, include directive, and state management mechanisms. These subjects

consist of combinations of JSPs, Java servlets, Java Beans, JavaScripts, HTMLs, XMLs,

CSS files, and images. It is important to note that JavaScript and CSS are out of scope.

Also, web mutation testing is not applicable to CSS, XML, and images. Therefore, this

experiment excluded all JavaScripts, HTMLs, XMLs, CSS files, and images, leaving the

number of components and LOC as displayed in the table.

5.3.2 Experimental Procedure

Two independent variables are web mutation operators (as presented in Chapter 4) and

hand-seeded fault. The dependent variables are the number of mutants, the number of

equivalent mutants, the number of test cases needed, and the mutation scores (i.e., the

fault coverage).

The experiment was conducted in five steps:

1. Generate mutants: This experiment uses webMuJava to generate web mutants.

For each subject, all fifteen operators were applied to generate fifteen kinds of mutants. Mij

represents mutants of the ith subject that are created by the jth operator.

2. Generate tests: A test set was designed specifically to kill mutants of each subject.

This yields sets of tests Ti, that is, test set created to kill mutants of the ith subject. Tests

were created manually as sequences of requests and were written in HtmlUnit, JWebUnit,

and Selenium, allowing the tests to make HTTP calls to the web apps.

101



3. Execute mutants: Each test set was executed on all mutants. N(Ti,Mij) denotes

the number of mutants of the ith subject and the jth mutant type that were killed by tests

Ti. Equivalent mutants were identified manually and excluded from the testing process.

The mutation score, i.e., indicating fault detection capability, was computed as the ratio

between the number of killed mutants of all types and the total number of non-equivalent

mutants of the subject. The mutation score ranges from 0 to 1, where 1 indicates that all

mutants have been killed (i.e., all faults represented by the mutants have been detected)

and hence the test suite is adequate. In this experiment, tests were added (repeating step

2) until the mutation score is 1, which indicates that the tests were adequate to kill all web

mutants. These tests were later referred to as mutation-adequate tests.

4. Insert faults: Web apps with real web faults were unavailable to this experiment.

Faults were hand inserted into web apps under test.

With an attempt to mimic real web faults and to avoid potential bias, certain criteria

were set prior to selecting the persons who performed hand-seeded faults. First, the persons

who would insert faults must not be otherwise involved in this research. Second, the persons

who would seed faults must be familiar with web apps and have years of experience in web

development (and possibly in software testing or web app testing). Third, no instruction or

specification on the kinds of faults were given, allowing the persons to freely introduce any

kinds of faults they had experienced in web apps. This experiment refers to the persons

who introduced faults as participants. The initial guide that was given to the participants

is available at https://cs.gmu.edu/~uprapham/experiment/faultSeeding.html.

For all subjects, the seeded faults were artificial and were based on the participants’

experience. Some participants inserted faults manually whereas others used the faultSeeding

tool (one of the experimental subjects, S7). Faults were inserted by 19 undergraduate

students who took a Web Development course, 5 graduate students who have experienced

developing web apps and 3 of them were, or had been, professional web app developers.

Hand-seeded faults were manually inspected. Faults that cause compilation errors were

discarded immediately as they were not useful at determining the fault detection of mutation

102



tests. Note that, because JSPs are automatically compiled when they are accessed through

web browsers, only faulty versions of Java files and Java servlets were compiled prior to

being executed. Faults that were exactly web mutants or looked like web mutants were also

excluded from the experiment to minimize potential bias toward web mutation testing.

5. Execute hand-seeded faults: To ensure comparability of fault coverage, for each

subject, the same test set (Ti) used to execute web mutants was used to execute hand-

seeded faults. The number of faulty versions detected was recorded. For each subject, the

ratio between the number faults detected and the total number of non-mutant faults was

computed. This experiment considers this ratio as fault detection and is comparable to

mutation score.

5.3.3 Experimental Results and Analysis

This subsection presents the results and analysis on web mutants. It analyzes equivalent mu-

tants and summarizes the results from running the mutation-adequate tests on hand-seeded

faults. This subsection also presents the descriptions of faults detected and undetected and

finally concludes the findings in response to the research questions (RQ3 and RQ4).

Results and Analysis on Web Mutants

Table 5.8 summarizes the number of mutants generated and killed. For each subject, all

15 web mutation operators were applied, generating a total of 1,738 mutants. All Java

web mutants were compiled and none resulted in compilation error. JSP web mutants

were automatically compiled by Apache Tomcat (a web container used to deploy web apps)

as soon as they were accessed via web browsers. None of the JSP web mutants caused

compilation error. Tests were designed specifically for each subject, yielding 15 test sets for

15 subjects. Across all subjects, the tests killed 1,578 mutants in total. The number of tests

ranged from two to 543. On average, approximately one test killed one to three mutants.

Using extensive hand analysis, approximately 11% of generated mutants were equivalent

mutants. Twelve equivalent mutants were of type WCTR, four were WHID, four were

103



Table 5.8: Summary of mutants generated and killed
Subjects Mutants Equivalent Killed Tests Scores

S1 27 0 27 26 1.00

S2 8 0 8 5 1.00

S3 18 0 18 14 1.00

S4 3 0 3 2 1.00

S5 32 9 23 20 1.00

S6 95 0 95 46 1.00

S7 115 16 99 34 1.00

S8 103 3 100 31 1.00

S9 34 0 34 17 1.00

S10 11 0 11 7 1.00

S11 5 0 5 5 1.00

S12 205 15 190 98 1.00

S13 9 0 9 6 1.00

S14 4 0 4 2 1.00

S15 1069 117 952 543 1.00

Total 1738 160 1578 856

WHIR, 58 were WLUD, 58 were WLUR, 22 were WSAD, and two were WSIR.

Twelve WCTR equivalent WCTR mutants (nine in subject S5 and 3 in subject S15)

were due to replacing a redirect transition with a forward transition and replacing a forward

transition with a redirect transition. In subject S5, the WCTR mutants were triggered when

users click the other tool buttons (allowing users to create test requirements and test paths

using other software testing coverage). Clicking these buttons lead to a new screen without

transferring data or objects. The content on the screens and the URL of the mutated

versions were indistinguishable from the original version of the subject. Another example

of these equivalent mutants was the New Graph button of the Graph Coverage feature.

Clicking this button led to a blank form to create test requirements and test paths using

the Graph Coverage criteria. The targeted URL and the content on the screen remain

the same. In subject S15, the WCTR mutants were triggered when users failed to login

at least once (via fail admin login.jsp, fail doc login.jsp, and fail pat login.jsp) and were

allowed other attempts. The redirection led to the same URLs without transferring data

or objects. Therefore, the mutated code had no impact on the subject’s behavior.

Four equivalent WHID mutants and four equivalent WHIR mutants were in subject S12.

Three equivalent WHID mutants and three equivalent WHIR mutants dealt with changes

104



of values of non-keys of records to be updated to or deleted from the database. The others

involved changes of hidden controls of non-keys of records to be sorted. Therefore, replacing

and removing values of these hidden controls had no impact on the subject’s behavior.

Fifty-eight equivalent WLUD and WLUR mutants (one WLUD and one WLUR in

subject S8 and 57 WLUD and 57 WLUR in subject S15) involved changes to links to CSS

files. Modifying URLs to CSS files reflected the presentation and appearance on the screen

but had no impact on the subject web apps’ functionality. The presentation checking was

out of scope for this experiment; therefore, these mutants were excluded from study.

Six equivalent WSAD mutants (one in subject S8 and five in subject S12) were due

to mutated sessions’ attributes that were never accessed by the subject web apps. Thus,

removing the attribute setting statements had no effect on the subjects’ behaviors. The

other 16 equivalent WSAD mutants were in subjects S7 and S12. For these mutants, the

mutated attributes were reset prior to being accessed. This suggests that the developers

might have unnecessarily set the session attributes. This observation implies that not

only does the WSAD operator help verify whether data are maintained properly in session

objects, it also guides developers when data shall be maintained in the sessions.

The two equivalent WSIR mutants were due to a session initialization that was changed

from request.getSession(false) to request.getSession(true) in components of sub-

ject S7. Instead of not creating a new session (i.e., returning a null) if none exists, the

mutated code issued a new session. However, because these components were included in

another component, the session object was managed by its container. As a result, these

WSIR mutants had no impact on the subject’s behavior. This suggested that the WSIR

mutant is useful only when the mutated code is not included in another component.

All equivalent mutants were removed after identified. Table 5.9 presents the non-

equivalent mutants of each type. The upper half summarizes the number of mutants gen-

erated from each operator for each subject along with the total numbers of mutants. The

number of mutants created by each operator varied by the web specific features the opera-

tors can apply. The bottom half displays the number of killed mutants of each type. The

105



column Tests shows the number of tests created for each subject. The column Mutants

killed displays the number of mutants killed by each test set. The number of tests is smaller

than the number of killed mutants because some tests killed more than one mutant. The

tests that killed all web mutants are referred to as mutation-adequate tests.

Results and Analysis on Hand-seeded faults

Table 5.10 summarizes the number of hand-seeded faults and the results from executing the

mutation-adequate tests on hand-seeded faults. The column Faults inserted shows the total

number of faults introduced for each subject, excluding uncompilable faults. The number

of hand-seeded faults varies among JSPs, Java servlets, and Java files (ranging from 10 to

367) and are not equally distributed. The remaining columns are discussed in the following

paragraphs.

With an attempt to avoid potential bias toward web mutation testing, this experiment

divided the hand-seeded faults into mutant-faults and non-mutant faults. Mutant-faults are

hand-seeded faults that look like or are exactly web mutants whereas non-mutant faults

are hand-seeded faults that do not look like or cannot be described by web mutants. The

columns Mutant-faults and Non-mutant faults represent the number of mutant-faults and

the number of non-mutant faults inserted into each subject. Figure 5.9 displays an overview

of the number of mutant-faults and non-mutant faults introduced across all subjects.

Mutant-faults

Manual analysis revealed that approximately 27% of hand-seeded faults looked like or

were exactly web mutants. Most mutant-faults were due to the use of incorrect or nonex-

istent URLs in form submissions (using <form> tags), simple link transitions (using <a>

tags), and redirect transitions (using the sendRedirect() method in servlets) and for-

ward transitions (using the <jsp:forward> action tags in JSPs). Many related to changes

in form transfer mode (GET and POST). Several others were due to changes in scope set-

ting of jsp:useBeans. For example, in S12, a scope attribute was altered from session

106



T
ab

le
5.

9:
N

u
m

b
er

of
m

u
ta

n
ts

ge
n

er
at

ed
an

d
k
il

le
d

M
u
ta

n
ts

g
e
n
e
ra

te
d

S
u
b

je
ct

s

FOB

WCTR

WCUR

WFTR

WFUR

WHID

WHIR

WLUD

WLUR

WOID

WPVD

WRUR

WSAD

WSCR

WSIR

T
o
ta

l

S
1

1
7

0
5

5
0

0
0

0
0

0
3

5
0

1
2
7

S
2

1
0

0
1

1
0

0
2

3
0

0
0

0
0

0
8

S
3

1
0

0
1

1
2

2
1

1
0

0
0

6
3

0
1
8

S
4

1
0

0
1

1
0

0
0

0
0

0
0

0
0

0
3

S
5

3
0

0
3

3
0

0
0

0
0

0
9

5
0

0
2
3

S
6

7
1
2

9
7

7
0

0
8

8
0

0
1
1

2
2
4

0
9
5

S
7

2
3

3
4

3
0

0
1

1
0

2
1

7
6

0
3

9
9

S
8

4
9

0
1
2

1
2

5
5

9
9

1
0

9
1
7

0
8

1
0
0

S
9

3
6

0
7

7
0

0
0

0
0

0
0

1
1

0
0

3
4

S
1
0

1
0

0
2

2
0

0
2

2
0

0
0

2
0

0
1
1

S
1
1

1
0

0
1

1
0

0
0

0
2

0
0

0
0

0
5

S
1
2

1
6

0
3
1

1
2

1
2

7
7

3
2

3
2

0
3

0
5

3
1

2
1
9
0

S
1
3

2
0

0
1

1
0

0
2

3
0

0
0

0
0

0
9

S
1
4

1
1

0
1

1
0

0
0

0
0

0
0

0
0

0
4

S
1
5

5
0

5
8

0
2
4

2
4

1
8

1
8

3
4
4

3
6
7

0
0

2
3

2
3

0
3

9
5
2

T
o
ta

l
9
4

9
6

4
3

8
2

8
1

3
2

3
2

4
0
1

4
2
6

3
5

5
6

1
5
2

5
8

1
7

1
5
8
1

T
es

ts
M

u
ta

n
ts

k
il
le
d

T
o
ta

l

S
1

2
6

1
7

0
5

5
0

0
0

0
0

0
3

5
0

1
2
7

S
2

5
1

0
0

1
1

0
0

2
3

0
0

0
0

0
0

8

S
3

1
4

1
0

0
1

1
2

2
1

1
0

0
0

6
3

0
1
8

S
4

2
1

0
0

1
1

0
0

0
0

0
0

0
0

0
0

3

S
5

2
0

3
0

0
3

3
0

0
0

0
0

0
9

5
0

0
2
3

S
6

4
6

7
1
2

9
7

7
0

0
8

8
0

0
1
1

2
2
4

0
9
5

S
7

3
4

2
3

3
4

3
0

0
1

1
0

2
1

7
6

0
3

9
9

S
8

3
1

4
9

0
1
2

1
2

5
5

9
9

1
0

9
1
7

0
8

1
0
0

S
9

1
7

3
6

0
7

7
0

0
0

0
0

0
0

1
1

0
0

3
4

S
1
0

7
1

0
0

2
2

0
0

2
2

0
0

0
2

0
0

1
1

S
1
1

5
1

0
0

1
1

0
0

0
0

2
0

0
0

0
0

5

S
1
2

9
8

1
6

0
3
1

1
2

1
2

7
7

3
2

3
2

0
3

0
5

3
1

2
1
9
0

S
1
3

6
2

0
0

1
1

0
0

2
3

0
0

0
0

0
0

9

S
1
4

2
1

1
0

1
1

0
0

0
0

0
0

0
0

0
0

4

S
1
5

5
4
3

5
0

5
8

0
2
4

2
4

1
8

1
8

3
4
4

3
6
7

0
0

2
3

2
3

0
3

9
5
2

T
o
ta

l
8
5
6

9
4

9
6

4
3

8
2

8
1

3
2

3
2

4
0
1

4
2
6

3
5

5
6

1
5
2

5
8

1
7

1
5
8
1

107



Figure 5.9: Hand-seeded fault (mutant-faults and non-mutant faults)

to page as <jsp:useBean id=“iconst” scope=“page” class=“stis.ConstBean”>. Oth-

ers related to changes in session initialization to the opposite behavior; that is, instead

of creating an instance of a session object when none existed, no instance was created

and a null value was returned. For example, in a ControlServlet component of S15,

request.getSession(true) was altered to request.getSession(false), causing an ini-

tialization to result in a null. Fault descriptions along with the number of mutant-fault

are summarized in Table 5.11. Since participants were freely introduced faults based on

their experience, the data suggested that participants had experienced the number of faults

in web apps that can be represented by web mutants. This implies that web mutation

operators have great potential to describe and substitute web faults.

These mutant-faults were excluded from the experiment after being identified.

108



Table 5.10: Summary of hand-seeded faults
Subjects Tests Faults Mutant- Non-mutant Faults Faults Ratio

inserted faults faults undetected Found (= Faultsdetected
Faultsinserted

)

S1 26 27 8 19 2 17 0.89

S2 5 31 7 24 4 20 0.83

S3 14 29 12 17 2 15 0.88

S4 2 21 5 16 0 16 1.00

S5 20 49 10 39 7 32 0.82

S6 46 63 29 34 11 23 0.68

S7 34 58 16 42 8 34 0.81

S8 31 52 19 33 5 28 0.85

S9 17 37 8 29 3 26 0.90

S10 7 18 4 14 1 13 0.93

S11 5 10 3 7 0 7 1.00

S12 98 147 17 130 12 118 0.91

S13 6 21 6 15 2 13 0.87

S14 2 15 3 12 1 11 0.92

S15 543 367 110 257 48 209 0.81

Total 856 945 257 688 106 582 Avg=0.85

Table 5.11: Summary of mutant-faults
Fault description Number of faults

Inappropriate scope setting (page, request, session, application) 64

Inappropriate session initialization (replace true or false in getSession() 5

Incorrect form transfer mode 87

Incorrect URLs of form submissions 73

Incorrect URLs of link transitions 18

Incorrect URLs of redirect transitions 5

Incorrect URLs of forward transitions 5

Total 257

Non-mutant faults

For each subject, the mutation-adequate test set was run on non-mutant faults. The

columns Faults undetected and Faults detected in Table 5.10 present the numbers of non-

mutant faults that the tests missed and found. The experiment marked faults that crashed

the system immediately when the app under test was accessed as being killed by any tests

associating with the app. Then, the experiment computed the fault detection capability

of the tests on each subject as a ratio between the number of faults found and the total

number of non-mutant faults, as displayed in the column Ratio. This ratio was later used

to analyze for how well tests designed for web mutation testing reveal web faults. Figure

5.10 shows a visual representation of the number of faults detected by mutation-adequate

109



Figure 5.10: Non-mutant faults detected by web mutation tests

tests for each subject.

RQ3: How well do tests designed for web mutation testing reveal web faults?

According to Table 5.10, web mutation-adequate tests revealed at least 68% of hand-seeded

faults, with an average fault detection of 85% across 15 subjects. Two subjects that the

tests detected all hand-seeded faults were S4 and S11.

The majority of faults in S4 were due to changes in arithmetic operations. Some in-

volved changes in conditional operators and relational operators. Others related to variable

initialization. These faults directly affected the main functionality of the app, i.e., produc-

ing incorrect outputs and unintended behaviors. These faults were easily detected by tests

that verified the main functionality of the app or tests that focused on happy paths. In

subject S11, some faults were due to changes in Boolean comparison. These faults caused

the execution flow of the app to an opposite behavior. Some faults involved changes in

conditional operators and relational operators. Others were due to changes in initialization

in loops. These faults had an impact on the main functionality of the app and could be

detected by any tests that verified the app’s main functionality.

110



The mutation-adequate tests missed approximately 32% of faults in subject S6. Most

of the undetected faults in S6 were due to the use of inappropriate types of form input

(as indicated in <input type=“text” name=“pwd”> instead of <input type=“password”

name=“pwd”>. While these faults could have been detected, no tests considered the rep-

resentation of data entry and did not verify such content. Another example of type

changes was the use of text type for a form element that should allow multiple lines

of text entry; that is, <input type=“text” name=“description”> instead of <textarea

name=“description” rows=“3” cols=“50”>. Another fault involved changes of the num-

ber of columns in a <textarea> element. Some faults related to changes in layout and

presentation of the screen. In fact, no tests specifically considered presentation alteration of

the content. Thus, these faults were missed. One fault was due to a missing input validation

when a data entry is an empty string (“”). No tests verified an empty string data entry,

leaving this fault undetected.

Statistical Analysis of Experimental Result

To analyze how well the tests revealed web faults, this experiment, using QQplot, firstly

examined the distribution of the percentages of the fault detection. The QQplot, as pre-

sented in Figure 5.11, shows that all the plots lie closely to the line. Though some plots

may be slightly farther away from the line, they are still close enough to be considered as

normally distributed. Hence, this experiment considered the fault detection to be normally

distributed.

111



Figure 5.11: Q-Q Plot for Fault Detection

This experiment used the student’s t test [41] to evaluate the null hypothesis that web

mutation testing is ineffective in revealing web faults.

H0: µ ≤ 0

HA: µ > 0 (research hypothesis)

Based on the hypotheses, this will be a one-tailed test. The level of significance was set

to 0.05 as it has been a commonly used threshold value [41].

Table 5.12 summarizes the statistical analysis based on the fault coverage from Table

5.10. The t-value was 2.78, which is greater than the t-critical, resulting in rejection of

the null hypothesis. In other words, the alternative hypothesis that web mutation testing is

effective in finding faults holds. With 95% confidence, the average number of faults detected

by tests designed for web mutation testing can be between 14 and 63.

Table 5.12: Summary of statistical analysis using Student’s t test
Sample size 15

Sample means 38.80

Standard deviation 54.03

Standard Errors 13.95

Level of significance 0.05

Degree of freedom 14

t-value 2.78

t-critical 1.76

Confidence interval [14.23, 63.37]

112



RQ4: What kinds of web faults are detected by web mutation testing?

The non-mutant faults fall into several categories. Table 5.13 lists the descriptions of

non-mutants faults and summarizes the number of faults detected and undetected by the

mutation-adequate tests. Faults detected by the tests were faults that had direct impact on

the behaviors and functionality of the web apps under test. The majority of faults found

were due to incorrect relational operators (<, <=, >, >=, ==, and !=). With these faults,

the flow of execution of the apps was logically incorrect and resulted in incorrect outputs or

unintended behaviors. Many other faults were due to changes in arithmetic operators and

operands. These faults caused incorrect computation reflecting the behaviors of the web

apps. Others were faults that altered conditional operators (&&, ‖), which distorted the

execution flow of the apps. Some faults related to incorrect identifications of form input

elements. With these faults, the apps attempted to access non-existent form elements.

A fault related to improperly handling HTML tags in subject S7 could be detected by

tests with inputs that included </textarea> tags. Subject S7 allows users to select a file to

insert faults. It then loads the file source code and displays it in a multiple-line text area.

The multiple-line text area, which is part of the screen, is implemented with a <textarea>

tag. If the input file source code contains a </textarea> tag, this </textarea> tag overlaps

with the </textarea> tag of S7. As a result, the multiple-line text displays the input source

code up to the character where the </textarea> tag of the file source code encountered.

The remaining file source code is displayed as text outside of the multiple-line text area.

As faults can be introduced by modifying the multiple-line text area, the file source code

displayed outside of the multiple-line text area is excluded. This action changes the intended

behavior of subject S7.

Several others are due to the changes between an equals method and an equal sign (==).

An example in S12 is if (request.getParameter("userid").equals("") ‖ request

.getParameter("password").equals("")). The statement was altered to if (request

.getParameter("userid") == "" ‖ request.getParameter("password").equals("")

and if (request.getParameter("userid").equals("") ‖ request.getParameter

113



T
ab

le
5
.1

3
:

S
u

m
m

ar
y

o
f

n
on

-m
u

ta
n
t

fa
u

lt
s

d
et

ec
te

d
an

d
u

n
d

et
ec

te
d

b
y

w
eb

m
u

ta
ti

on
-a

d
eq

u
a
te

te
st

s
F
a
u
lt

d
e
sc
ri
p
ti
o
n

F
a
u
lt
s
d
e
te

c
te

d
F
a
u
lt
s
u
n
d
e
te

c
te

d

In
a
p
p
ro

p
ri

a
te

co
n
d
it

io
n

se
tt

in
g

in
lo

o
p
s

2
9

0

In
a
p
p
ro

p
ri

a
te

in
it

ia
li
za

ti
o
n

in
lo

o
p
s

1
6

3

In
a
p
p
ro

p
ri

a
te

va
ri

a
b
le

in
it

ia
li
za

ti
o
n

3
4

0

In
cl

u
d
in

g
ex

tr
a

fo
rm

el
em

en
ts

(s
u
ch

a
s
t
e
x
t

in
p
u
t,
r
a
d
i
o

b
u
tt

o
n
,

a
n
d
c
h
e
c
k
b
o
x
)

0
1
0

In
co

rr
ec

t
A

ri
th

m
et

ic
o
p

er
a
ti

o
n

(o
p

er
a
to

r
a
n
d

o
p

er
a
n
d
)

1
0
4

0

In
co

rr
ec

t
a
cc

es
s/

re
fe

re
n
ce

to
fo

rm
in

p
u
t

(w
ro

n
g

n
a
m

e
o
r

id
)

5
7

0

In
co

rr
ec

t
co

n
d
it

io
n
a
l

o
p

er
a
to

rs
(&

&
,
‖)

6
3

0

In
co

rr
ec

t
fo

rm
in

p
u
t

n
a
m

es
3
2

0

In
co

rr
ec

t
re

la
ti

o
n
a
l

o
p

er
a
to

rs
(<

,
<

=
,
>

,
>

=
,

=
=

,
!=

)
1
2
6

0

In
co

rr
ec

t
re

tu
rn

va
lu

es
1
7

0

In
co

rr
ec

t
sc

o
p

e
se

tt
in

g
in

J
av

a
(p
r
i
v
a
t
e

in
st

ea
d

o
f
p
u
b
l
i
c
)

2
0

In
co

rr
ec

t
u
p

d
a
te

to
d
a
ta

(X
M

L
a
n
d

d
a
ta

b
a
se

)
1
9

0

In
co

rr
ec

t
va

lu
es

o
f

ch
ec

k
b

ox
a
n
d

ra
d
io

b
u
tt

o
n

1
4

3

In
v
er

se
B

o
o
le

a
n

in
co

m
p
a
ri

so
n

(t
ru

e
in

st
ea

d
o
f

fa
ls

e,
a
n
d

fa
ls

e
in

st
ea

d
o
f

tr
u
e)

3
7

0

M
is

u
se

b
et

w
ee

n
e
q
u
a
l
s
I
g
n
o
r
e
C
a
s
e
(
)

a
n
d
e
q
u
a
l
s
(
)

1
3

M
is

u
se

b
et

w
ee

n
s
e
s
s
i
o
n
.
g
e
t
A
t
t
r
i
b
u
t
e
(
)

a
n
d
r
e
q
u
e
s
t
.
g
e
t
A
t
t
r
i
b
u
t
e
(
)

3
0

M
o
d
if

y
in

g
la

y
o
u
t,

fo
rm

a
t,

a
n
d

p
re

se
n
ta

ti
o
n

o
f

th
e

sc
re

en
0

4
1

N
o
t

h
a
n
d
li
n
g

im
p
ro

p
er

H
T

M
L

ta
g
s

1
0

O
m

it
ti

n
g

in
p
u
t

va
li
d
a
ti

o
n

0
9

O
m

it
ti

n
g

re
tu

rn
va

lu
es

1
1

0

O
m

it
ti

n
g

tr
y
-c

a
tc

h
b
lo

ck
s

0
2

O
m

it
ti

n
g

va
ri

a
b
le

in
it

ia
li
za

ti
o
n

1
4

0

U
si

n
g

“
”

in
st

ea
d

o
f
n
u
l
l

a
n
d
n
u
l
l

in
st

ea
d

o
f

“
”

0
5

U
si

n
g

=
=

in
st

ea
d

o
f
e
q
u
a
l
s
(
)

0
1
3

U
si

n
g

H
T

T
P

in
st

ea
d

o
f

H
T

T
P

S
w

h
en

H
T

T
P

S
is

re
q
u
ir

ed
2

0

U
si

n
g

in
a
p
p
ro

p
ri

a
te

ty
p

e
o
f

fo
rm

in
p
u
ts

(f
o
r

ex
a
m

p
le

,
t
e
x
t

fo
r

p
a
ss

w
o
rd

o
r

0
1
7

t
e
x
t

fo
r

m
u
lt

ip
le

li
n
es

fo
rm

in
p
u
t)

T
o
ta

l
5
8
2

1
0
6

114



("password") == "". However, the input validation blocked empty and null strings.

Therefore, this kind of faults was masked and no test can cause it to result in a failure.

It may be safe to ignore the masked faults. In the current software configuration, they

cannot result in failure. Nonetheless, it may be reasonable to advocate more robust testing

where the masked faults are explicitly tested for, yet that is beyond the scope of this

experiment.

5.3.4 Threats to Validity

Like any other research, this experiment has some limitations that could have influenced the

experimental results. Some of these limitations may be minimized or avoidable consequences

while some may be unavoidable.

Internal validity: One potential threat to internal validity is that hand-seeded faults

and recreated faults were used as opposed to real web faults. The experience of the persons

who inserted faults might affect the representativeness of web faults. There is no guarantee

that the seeded faults would naturally represent real web faults.

In reality, multiple faults may present simultaneously in web apps. Detecting faults

may be even more complicated. In this experiment, each individual fault was considered.

Moreover, the experiment assumed each fault had no impact on others. Therefore, fault

detection scenarios was simplified.

Another potential threat is that the quality of tests may vary depending upon the

testers’ experience. For this experiment, tests were generated manually by only one person.

To minimize this threat, multiple testers should develop tests. Alternatively, test generating

tools should be incorporated.

External validity: The application domain and representativeness of web apps under

test may reflect the coverage, thereby distorting an analysis of the results. Though the

subject web apps used in this experiment contained a variety of interactions between web

components, there is no guarantee that all possible interactions were included. Hence, the

results could be generalized only to web apps with similar domains and interactions between

115



web components. To minimize this threat, web apps with varieties of application domains

need to be considered. Replication of this experiment on other web apps will also confirm

the results and analysis.

Construct validity: The experiment assumed that webMuJava worked correctly.

5.4 Experimental Evaluation of Web Mutation Testing on

Traditional Java Mutants

Both web mutation operators and traditional Java mutation operators target Java-based

software; the former specifically deal with web-specific features. Moreover, this research

implemented an experimental tool (webMuJava) as an extension of a Java-based mutation

testing (muJava). Hence, understanding how well tests designed with web mutation oper-

ators do on Java mutants and how well tests designed with Java mutation operators do on

web mutants can beneficially improve the overall quality of tests. This experiment focuses

on examining whether web mutants and traditional Java mutants overlap. It also evaluates

if web mutation testing and traditional Java mutation testing are complementary to each

other.

This experiment answers the following questions (previously listed in Section 1.3):

RQ5: How well do tests designed for web mutants kill traditional Java mutants and

tests designed for traditional Java mutants kill web mutants?

RQ6: How much do web mutants and traditional Java mutants overlap?

While considering traditional Java mutants, the experiment’s prime concern is to un-

derstand the characteristics of faults represented by Java mutants that can be detected by

tests designed for web mutants. This experiment uses traditional method-level Java muta-

tion operators [64] implemented in muJava. These Java mutation operators target the unit

testing level and their underlying concepts are applicable to other programming languages

in general.

116



5.4.1 Experimental Subjects

Similar to previous experiments, subject web apps used in this experiment were constrained

by the source code requirements of mutation testing. The availability of source code of

web apps, existing developer-written test suites, and commercial web apps were limited.

Furthermore, writing test cases required thorough understanding of the web apps and tests

were written by hand, which further restricted the choices and the numbers of subjects that

could be tested. To ensure that the subject web apps contain various web aspects that can

affect communications between web components and state of web apps, the subjects had to

be small enough to allow extensive hand analysis, yet large and complex enough to include

variety of interactions between web components. This experiment used twelve subject web

apps from previous experiment (presented in Section 5.3), excluding three subjects due to

the lack of tests. Table 5.14 lists the twelve Java-based web apps7 used in this experiments.

Table 5.14: Subject web apps
Subjects Components LOC

BSVoting (S1) 11 930

check24online (S2) 1 1619

computeGPA (S3) 2 581

conversion (S4) 1 388

faultSeeding (S5) 5 1541

HLVoting (S6) 12 939

KSVoting (S7) 7 1024

quotes (S8) 5 537

randomString (S9) 1 285

smallTextInfoSys (S10) 24 1103

StudInfoSys (S11) 3 1766

webstutter (S12) 3 126

Total 75 10839

5.4.2 Experimental Procedure

Focusing on evaluating how well tests designed for web mutants do on traditional Java

mutants and how well tests designed for traditional Java mutants do on web mutants,

the independent variables are web mutation operators (as presented in Section 4.2) and the

7LOC refers to non-blank lines of code, measured with Code Counter Pro (http://www.geronesoft.com/)

117



traditional method-level Java mutation operators8. For simplicity, traditional Java mutation

operators and traditional Java mutants will be referred to as Java mutation operators and

Java mutants. The dependent variables are the number of web mutants and Java mutants,

the number of equivalent web mutants and equivalent Java mutants, the number of test

cases needed for web mutants and for Java mutants, the number of mutants killed by each

test set, and the mutation scores.

The experiment was conducted in four steps:

1. Generate mutants: For each subject, the experiment created two groups of mu-

tants.

Web mutants: All fifteen web mutation operators were applied to generate fifteen sets

of web mutants for the subject; let MWi represents web mutants of the ith subject.

Java mutants: All fifteen method-level Java mutation operators were applied to create

fifteen sets of Java mutants for the subject; let MJi represents Java mutants of the ith

subject.

2. Generate tests: For each subject, the experiment generated two sets of tests.

Web mutation tests: A test set TWi was designed to kill web mutants of the ith subject.

Tests were created manually as sequences of requests and were automated in HtmlUnit,

JWebUnit, and Selenium.

Java mutation tests: A test set TJi was generated independently from the web mutation

tests, specifically to kill Java mutants of the ith subject. Tests were created manually as

sequences of requests and were automated in HtmlUnit, JWebUnit, and Selenium.

3. Execute tests: For each subject, this experiment divided test executions into

four series. First, web mutation tests designed for the subject were executed on all web

mutants of the subject. The experiment keeps adding tests until all web mutants were killed.

These tests were referred to as web-mutation adequate tests. Equivalent web mutants were

identified manually and excluded from the testing process.

8The method descriptions are available at http://cs.gmu.edu/~offutt/mujava/mutopsMethod.pdf.

118



Second, Java mutation tests designed for the subject were executed on all Java mutants

of the subject. The experiment keeps adding tests until all Java mutants were killed. These

tests were referred to as Java-mutation adequate tests. Equivalent Java mutants were hand

identified and excluded from the testing process.

Third, web-mutation adequate tests were executed on all non-equivalent Java mutants

of the subject. Finally, Java-mutation adequate tests were executed on all non-equivalent

web mutants of the subject.

4. Compute the mutation scores: The mutation score, which indicates fault de-

tection capability, was computed as the ratio between the number of killed mutants and

the total number of non-equivalent mutants. To be specific, this experiment considered two

sets of the mutation scores: (i) scores from running web-mutation adequate tests on Java

mutants, and (ii) scores from running Java-mutation adequate tests on web mutants. The

mutation score ranges from 0 to 1, where 1.00 indicates that all mutants have been killed

(i.e., all faults have been detected), and hence the test suite is adequate.

5.4.3 Experimental Results and Analysis

This section presents four sets of analysis. The first set discusses an analysis of web mutants

generated and killed by tests designed specifically for web mutants. Since equivalent mutants

impact the overall mutation testing cost, equivalent web mutants across all 12 subjects were

analyzed. Then, detailed analysis on the killed web mutants are presented. The second set

discusses an analysis of Java mutants generated and killed by tests designed specifically for

Java mutants, an analysis of equivalent Java mutants, and detailed analysis on the killed

Java mutants. The third set discusses Java mutants that are killed and not killed by tests

designed for web mutants. The forth set discusses web mutants that are killed and not

killed by tests designed for Java mutants. Finally, the section concludes by responding to

the research questions.

119



Table 5.15: Summary of web mutants killed by web mutation tests
Subjects Web mutants Equivalent Killed Tests Scores

S1 27 0 27 26 1.00

S2 8 0 8 5 1.00

S3 18 0 18 14 1.00

S4 3 0 3 2 1.00

S5 115 16 99 34 1.00

S6 103 3 100 31 1.00

S7 34 0 34 17 1.00

S8 11 0 11 7 1.00

S9 5 0 5 5 1.00

S10 205 15 190 98 1.00

S11 9 0 9 6 1.00

S12 4 0 4 2 1.00

Total 542 34 508 247

Web mutants generated and killed by web mutation tests

Overview of web mutants generated and killed

Table 5.15 summarizes the results from running web mutation tests on web mutants.

This experiment generated a total of 542 mutants. Tests were designed for each subject and

killed 508 mutants. Using extensive hand analysis, the experiment identified 34 equivalent

web mutants (6.3%). Four equivalent mutants were of type WHID, four were of type WHIR,

one were of type WLUD, one were of type WLUR, twenty-two were of type WSAD, and

two were of type WSIR. All equivalent web mutants were removed after identified.

Analysis of equivalent web mutants

Four equivalent WHID mutants and four equivalent WHIR mutants were in subject S12.

Three equivalent WHID mutants and three equivalent WHIR mutants involved changes of

values of non-keys of records to be updated to or deleted from the database. The others

involved changes of hidden form fields of non-keys of records to be sorted. Therefore,

replacing and removing values of these hidden form fields had no impact on the subject’s

behavior.

The equivalent WLUD and WLUR mutants in subject S6 involved changes to links to

CSS files. As presentation checking was out of scope for this experiment, these mutants

were excluded from study.

120



Six equivalent WSAD mutants (one in subject S6 and five in subject S10) were due

to mutated sessions’ attributes that were never accessed by the subject web apps. Thus,

removing the attribute setting statements did not affect the subjects’ behaviors. The other

16 equivalent WSAD mutants were in subjects S5 and S10. For these mutants, the attributes

that were mutated were reset prior to being accessed. This suggested that the developers

might have unnecessarily set the session attributes.

The two equivalent WSIR mutants were due to a session initialization that was changed

from request.getSession(false) to request.getSession(true) in components of sub-

ject S5. The mutated code issued a new session if none exists instead of not creating a new

session if none exists. However, because these components were included in another com-

ponent, the session object was managed by its container. As a result, these WSIR mutants

had no impact on the subject’s behavior. This suggested that the WSIR mutant is useful

only when the mutated code is not included in another component.

Detail of killed web mutants

Table 5.16 shows data from running web mutation tests on web mutants. The upper half

summarizes the number of mutants created from each operator for each subject (as displayed

in the columns below Generated web mutants) along with the total number of mutants. For

example, for subject S1, webMuJava generated one FOB mutant, seven WCTR mutants,

and 27 total mutants. The number of mutants generated by each operator varied due to

the web specific features the operators can apply.

Some types of mutants are not generated for some subject web apps because they lack

the features being mutated. Some features, such as hidden form fields and readonly inputs,

are rarely used.

The bottom half of Table 5.16 presents the number of mutants of each type that were

killed by tests designed for the subject. The column Tests indicates the number of tests

created for each subject. That is, the total of 26 tests were needed to kill all 27 web mutants

of subject S1. The Killed web mutants columns present the number of web mutants that

were killed by each test set. For example, 26 tests designed for subject S1 killed one FOB

121



T
a
b

le
5.

16
:

N
u

m
b

er
of

n
on

-e
q
u

iv
al

en
t

w
eb

m
u

ta
n
ts

k
il

le
d

b
y

w
eb

m
u

ta
ti

on
te

st
s

G
e
n
e
ra

te
d

w
e
b

m
u
ta

n
ts

S
u
b

je
ct

s

FOB

WCTR

WCUR

WFTR

WFUR

WHID

WHIR

WLUD

WLUR

WOID

WPVD

WRUR

WSAD

WSCR

WSIR

T
o
ta

l

S
1

1
7

0
5

5
0

0
0

0
0

0
3

5
0

1
2
7

S
2

1
0

0
1

1
0

0
2

3
0

0
0

0
0

0
8

S
3

1
0

0
1

1
2

2
1

1
0

0
0

6
3

0
1
8

S
4

1
0

0
1

1
0

0
0

0
0

0
0

0
0

0
3

S
5

2
3

3
4

3
0

0
1

1
0

2
1

7
6

0
3

9
9

S
6

4
9

0
1
2

1
2

5
5

9
9

1
0

9
1
7

0
8

1
0
0

S
7

3
6

0
7

7
0

0
0

0
0

0
0

1
1

0
0

3
4

S
8

1
0

0
2

2
0

0
2

2
0

0
0

2
0

0
1
1

S
9

1
0

0
1

1
0

0
0

0
2

0
0

0
0

0
5

S
1
0

1
6

0
3
1

1
2

1
2

7
7

3
2

3
2

0
3

0
5

3
1

2
1
9
0

S
1
1

2
0

0
1

1
0

0
2

3
0

0
0

0
0

0
9

S
1
2

1
1

0
1

1
0

0
0

0
0

0
0

0
0

0
4

T
o
ta

l
3
4

2
6

3
4

4
8

4
7

1
4

1
4

4
9

5
1

3
5

1
3

1
2
2

3
4

1
4

5
0
8

T
es

ts
K
il
le
d

w
e
b

m
u
ta

n
ts

T
o
ta

l

S
1

2
6

1
7

0
5

5
0

0
0

0
0

0
3

5
0

1
2
7

S
2

5
1

0
0

1
1

0
0

2
3

0
0

0
0

0
0

8

S
3

1
4

1
0

0
1

1
2

2
1

1
0

0
0

6
3

0
1
8

S
4

2
1

0
0

1
1

0
0

0
0

0
0

0
0

0
0

3

S
5

3
4

2
3

3
4

3
0

0
1

1
0

2
1

7
6

0
3

9
9

S
6

3
1

4
9

0
1
2

1
2

5
5

9
9

1
0

9
1
7

0
8

1
0
0

S
7

1
7

3
6

0
7

7
0

0
0

0
0

0
0

1
1

0
0

3
4

S
8

7
1

0
0

2
2

0
0

2
2

0
0

0
2

0
0

1
1

S
9

5
1

0
0

1
1

0
0

0
0

2
0

0
0

0
0

5

S
1
0

9
8

1
6

0
3
1

1
2

1
2

7
7

3
2

3
2

0
3

0
5

3
1

2
1
9
0

S
1
1

6
2

0
0

1
1

0
0

2
3

0
0

0
0

0
0

9

S
1
2

2
1

1
0

1
1

0
0

0
0

0
0

0
0

0
0

4

T
o
ta

l
2
4
7

3
4

2
6

3
4

4
8

4
7

1
4

1
4

4
9

5
1

3
5

1
3

1
2
2

3
4

1
4

5
0
8

122



mutant, seven WCTR mutants, and five WFTR mutants. The number of tests is smaller

than the number of killed mutants because some tests killed more than one mutant. As

these tests killed all web mutants, they were referred to as web-mutation adequate tests.

Java mutants generated and killed by Java mutation tests

Overview of Java mutants generated and killed

This experiment used 15 method-level mutation operators of muJava [66], producing

36,522 Java mutants. 72 Java mutants caused syntax errors and could not be compiled. An

example of uncompilable mutants was a LOI mutant in subject S6 that changed i++ in a

statement for (int i=0; i<predictionNodes.getLength(); i++) to for (int i=0;

i<predictionNodes.getLength(); ∼i++). Another example of uncompilable mutants

was a COI mutant in subject S11 that mutated update = true; to !update = true;.

The uncompilable mutants are referred to as stillborn mutants. These stillborn mutants

are comprised of 43 AOIS mutants, 12 COI mutants, and 17 LOI mutants. Of all 72

uncompilable Java mutants, 4 are in subject S1, 28 are in S2, 8 are in S4, 12 are in S5, 7 are

in S7, and 13 are in S11. The experiment excluded them from the testing process as they

could not be executed and thus were not useful at evaluating the quality of tests, leaving

36,450 Java mutants in total.

Table 5.17 summarizes the number of Java mutants generated and the results from

running Java mutation tests on them. The number of mutants that were generated ranged

from 0 (in subject S3) to 33,224 (in subject S2). Subject S3 consists of one JSP and two

Java beans. muJava does not mutate a JSP file and the two Java beans lack features that

the mutation operators can apply. Thus, no Java mutant was generated for subject S3.

The experiment designed tests for each subject, creating 1,567 tests in total. Across

all subjects, the tests killed 27,794 mutants. The number of tests ranged from 12 to 913.

Upon execution, 327 mutants crashed the subject web apps under test as soon as the apps

were accessed. Mutants that crashed the apps are comprised of 26 AOIS, 3 AORB, 97

AOIU, 25 AORS, 23 COI, and 153 LOI mutants. The crashed mutants (or trivial mutants)

123



Table 5.17: Summary of Java mutants killed by Java mutation tests
Subjects Java mutants Equivalent Killed Tests Scores

S1 86 16 68 22 0.97

S2 33224 7958 25266 913 1.00

S3 0 n/a n/a n/a n/a

S4 1010 196 814 224 1.00

S5 118 3 115 46 1.00

S6 166 39 127 49 1.00

S7 199 57 133 59 0.94

S8 243 66 177 81 1.00

S9 54 24 30 12 1.00

S10 121 7 114 51 1.00

S11 1155 257 898 93 1.00

S12 74 22 52 17 1.00

Total 36450 8645 27794 1567 0.99

caused an HTTP 500 Internal Server Error status. These trivial mutants were marked

as being killed by any tests designed for the subjects. Eleven live Java mutants are of

type COI. With extensive hand analysis, 8,645 of generated Java mutants were equivalent

mutants (24%). The equivalent Java mutants consists of 7,926 AOIS, 4 AOIU, and 715

ROR mutants. All equivalent Java mutants were removed after identified, leaving 27,805

non-equivalent mutants in total.

Analysis of equivalent mutants

The number of equivalent AOIS mutants ranges from 0 (subject S9) to 7,334 (sub-

ject S2)9. The equivalent AOIS mutants conducted post increment and decrement after

a value was used. Most equivalent AOIS mutants involved post increment/decrement to

variables in assignment statements. For example, in subject S4, a variable n was mutated in

an assignment statement num2 = (float)(n / (float)100.0); to num2 = (float)(n--

/ (float)100.0); and num2 = (float)(n++ / (float)100.0);. Changes made to the

variable did not affect the expression. As another example, mutating a num2 variable

when converting a meter-to-centimeter measurement in S4 from n = Math.round( num2 *

(float)100.0); to n = Math.round( num2++ * (float)100.0); did not affect the com-

putation since the value was used before the change was made. Similarly, AOIS mutants

9Of all equivalent AOIS mutants, 14 are in subject S1, 7,334 in S2, 168 in S4, 2 in S5, 33 in S6, 52 in S7,
38 in S8, 20 in S9, 243 in S11, and 22 in S12.

124



in subject S7 that modified vote[1] = unsureCount; to vote[1] = unsureCount++; and

vote[1] = unsureCount--; had no impact on the assignment statement.

Many equivalent AOIS mutants involved post increment and decrement after variables

were used in conditional statements. For example, in subject S2, the AOIS operator mutated

a variable, rslt in if (rslt == 24 && rslt == (float)a - (float)b / (float)c *

(float)d) to if (rslt == 24 && rslt++ == (float)a - (float)b / (float)c *

(float)d) and mutated a variable b in the same if-statement to if (rslt == 24 && rslt

== (float)a - (float)b++ / (float)c * (float)d). The increment and decrement

changes made to rslt and b reflected the variables’ values after the expressions were eval-

uated. Therefore, they had no influence on the conditional statements.

An AOIS mutant in S6 mutated a variable arrSize in an if-statement; changing from

if (arrSize > -1) to if (arrSize-- > -1) and if (arrSize++ > -1). The variable

arrSize was not used after the changes. The statement that got executed when the

if-statement became true simply printed textual information without using the variable

(out.println("<p>Predictions ordered by the most agreed with</p>");. The out-

puts of the original version of web app and the mutated version were indistinguishable. A

similar reason applies to AOIS mutants in subject S4 that changed switch(count) to

switch(count--) and switch(count++).

Some AOIS mutants caused increment and decrement after the value was returned. For

example, in a getConvinced() method of a Java bean of subject S1, a variable convinced

indicating the number of convincing vote was increment and decrement after the value was

returned. That is, return convinced; was mutated to return convinced++; and return

convinced--;. The mutated code did not affect the app’s behavior.

The number of equivalent ROR mutants ranges from 0 (subject S12) to 624 (sub-

ject S2)10. All equivalent ROR mutants involved changes in relational statements from

>, >=, <, <=, and == to true. For example, an ROR mutant in subject S6 mutated if

(arrSize > -1) that checks if there exist predictions to if (true). Therefore, a test case

10Of all equivalent ROR mutants, 2 are in subject S1, 624 in S2, 28 in S4, 1 in S5, 6 in S6, 5 in S7, 28 in
S8, 4 in S9, 7 in S10, 10 in S11, 0 in S12.

125



that includes viewing a list of predictions does not differentiate between the original ver-

sion and this mutated version of S6. Similarly, an ROR mutant in subject S8 altered if

(searchRes.getSize() < 0) that checks for existence of quotes that meet that search cri-

teria to if (true). The mutated code did not affect the app’s behavior. Thus, test cases

that search for quote does not distinguish between the original version and the mutated

version.

Detail of killed Java mutants

Table 5.18 shows data from running the Java mutation tests on Java mutants. The

upper half summarizes the number of Java mutants that were generated from each operator

for each subject (as displayed in the columns below Generated Java mutants) along with

the total number of mutants. Thus, for subject S1, muJava generated one AODU mutant,

eight AOIS mutants, and 71 total mutants. The number of mutant generated by each

operator varied due to the specific features the operators can apply. Similar to web mutant

generation, some types of Java mutants are not generated for some subject web apps because

they lack the features being mutated.

The bottom half of Table 5.18 presents data on killing mutants. The column Tests

indicates the number of tests created for each subject. Thus, 22 tests were designed to kill

71 Java mutants of subject S1. The Killed Java mutants columns display the number of

Java mutants of each type that were killed by the test set designed for the subject. For

example, 22 tests designed for subject S1 killed one AODU mutant, eight AOIS mutants,

and three AOIU mutants. For all subjects, the number of tests is smaller than the number

of mutants killed because some tests killed more than one mutant.

Eleven live Java mutants are of type COI, two of which are in subject S1 and nine

are in subject S7. All these live mutants involved changes in try-catch blocks handling a

NullPointerException. Since the subjects (S1 and S7) perform input validation to ensure

all form inputs are entered, the input validation blocks test cases from supplying a null

data entry. For this reason, the tests missed some mutants in subjects S1 and S7; these

tests are not Java-mutation adequate tests.

126



T
a
b

le
5.

18
:

N
u

m
b

er
of

n
on

-e
q
u

iv
al

en
t

J
av

a
m

u
ta

n
ts

k
il
le

d
b
y

J
av

a
m

u
ta

ti
on

te
st

s
G
e
n
e
ra

te
d

J
a
v
a
m
u
ta

n
ts

S
u
b

je
ct

s

AODS

AODU

AOIS

AOIU

AORB

AORS

ASRS

COD

COI

COR

LOD

LOI

LOR

ROR

SOR

T
o
ta

l

S
1

0
1

8
3

1
6

3
0

0
8

2
0

1
0

0
1
9

0
7
0

S
2

0
0

7
3
3
4

6
7
6

7
4
8
8

0
0

0
9
3
6

6
2
4

0
4
4
6
4

0
3
7
4
4

0
2
5
2
6
6

S
3

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

S
4

0
0

1
6
8

9
8

2
9
6

0
0

0
4
2

2
8

0
9
8

0
8
4

0
8
1
4

S
5

0
0

2
1

6
4

0
0

0
1
6

2
2

0
1

0
9

0
1
1
5

S
6

1
0

3
3

1
8

4
4

0
2

1
2

6
0

2
8

0
1
9

0
1
2
7

S
7

0
0

2
2

1
9

8
8

0
0

2
0

4
0

2
9

0
3
2

0
1
4
2

S
8

0
0

2
8

1
3

0
4

0
3

2
8

1
4

0
2
6

0
6
1

0
1
7
7

S
9

0
0

1
2

5
0

2
0

0
0

0
0

0
0

1
1

0
3
0

S
1
0

0
0

2
0

0
0

0
4

3
6

2
6

0
1

0
4
5

0
1
1
4

S
1
1

0
0

1
3
7

8
1

8
1
3

0
1
1

1
8
5

1
7
0

0
1
7
6

0
1
1
7

0
8
9
8

S
1
2

0
0

1
8

3
1
2

3
0

0
2

0
0

1
4

0
0

0
5
2

T
o
ta

l
1

1
7
7
6
4

9
1
7

7
8
9
6

3
7

0
2
0

1
2
8
5

8
9
6

0
4
8
4
7

0
4
1
4
1

0
2
7
8
0
5

T
es

ts
K
il
le
d

J
a
v
a
m
u
ta

n
ts

T
o
ta

l

S
1

2
2

0
1

8
3

1
6

3
0

0
6

2
0

1
0

0
1
9

0
6
8

S
2

9
1
3

0
0

7
3
3
4

6
7
6

7
4
8
8

0
0

0
9
3
6

6
2
4

0
4
4
6
4

0
3
7
4
4

0
2
5
2
6
6

S
3

n
/
a

n
/
a

n
/
a

n
/
a

n
/
a

n
/
a

n
/
a

n
/
a

n
/
a

n
/
a

n
/
a

n
/
a

n
/
a

n
/
a

n
/
a

n
/
a

n
/
a

S
4

2
2
4

0
0

1
6
8

9
8

2
9
6

0
0

0
4
2

2
8

0
9
8

0
8
4

0
8
1
4

S
5

4
6

0
0

2
1

6
4

0
0

0
1
6

2
2

0
1

0
9

0
1
1
5

S
6

4
9

1
0

3
3

1
8

4
4

0
2

1
2

6
0

2
8

0
1
9

0
1
2
7

S
7

5
9

0
0

2
2

1
9

8
8

0
0

1
1

4
0

2
9

0
3
2

0
1
3
3

S
8

8
1

0
0

2
8

1
3

0
4

0
3

2
8

1
4

0
2
6

0
6
1

0
1
7
7

S
9

1
2

0
0

1
2

5
0

2
0

0
0

0
0

0
0

1
1

0
3
0

S
1
0

5
1

0
0

2
0

0
0

0
4

3
6

2
6

0
1

0
4
5

0
1
1
4

S
1
1

9
3

0
0

1
3
7

8
1

8
1
3

0
1
1

1
8
5

1
7
0

0
1
7
6

0
1
1
7

0
8
9
8

S
1
2

1
7

0
0

1
8

3
1
2

3
0

0
2

0
0

1
4

0
0

0
5
2

T
o
ta

l
1
5
6
7

1
1

7
7
6
4

9
1
7

7
8
9
6

3
7

0
2
0

1
2
7
4

8
9
6

0
4
8
4
7

0
4
1
4
1

0
2
7
7
9
4

127



RQ5: How well do tests designed for web mutants kill traditional Java mutants

and tests designed for traditional Java mutants kill web mutants?

The following discussion presents experimental results on running web-mutation adequate

tests on Java mutants and running Java mutation tests on web mutants. The analysis

includes detail on the mutants that are easily killed and the mutants that are seldom killed.

Java mutants killed by web mutation tests

Table 5.19 summarizes the results from running web mutation tests on Java mutants. Across

all twelve subjects, on average, web mutation tests killed 66% of Java mutants. For each

subject, this experiment executed web mutation tests designed for it and recorded the

number of killed Java mutants of the subject. The mutation scores range from 0.38 (subject

S4) to 0.87 (subject S12).

Table 5.19: Summary of non-equivalent Java mutants killed by web mutation tests
Subjects Java mutants Killed Tests Scores

S1 70 29 26 0.41

S2 25266 21559 5 0.85

S3 0 n/a n/a n/a

S4 814 310 2 0.38

S5 115 81 34 0.70

S6 127 77 31 0.61

S7 142 76 17 0.54

S8 177 104 7 0.59

S9 30 22 5 0.73

S10 114 86 98 0.75

S11 898 764 6 0.85

S12 52 45 2 0.87

Total 27805 23153 233 Avg=0.66

The experimental results show no particular kinds of Java mutants that web mutation

tests missed entirely. In other words, web mutation tests were able to detect all kinds of

Java mutants generated for the twelve subjects but the number of killed mutants varied.

To understand how well web-mutation adequate tests do on Java mutants, this experiment

considers two groups of killed Java mutants: (i) mutants that are easily killed and (ii)

mutants that are seldom killed.

128



Table 5.20 presents the detailed results from running web mutation tests on Java mu-

tants. The structure of this table is similar to Table 5.18, except that the column Tests

shows the number of web-mutation adequate tests designed for each subject and the bot-

tom displays the number of Java mutants killed by web-mutation adequate tests. The ratio

indicates the proportion of killed Java mutants of each type (i.e., the number of killed Java

mutants divided by the number of generated Java mutants of that type).

Java mutants that are easily killed by web mutation tests

Java mutants that are relatively easy to kill are mutants that directly affect the main

behaviors or functionalities of the subjects under test. These mutants include most of AOIS,

AOIU, AORB, AORS, COD, COI, and LOI mutants.

The AOIS operator conducts pre and post increment/decrement to variables. AOIS

mutants that interfere an execution of a loop and AOIS mutants whose mutated variables

are used immediately (or closely) after the mutated code are relatively easy to kill. For

example, in subject S6, a statement for (int i=arrSize; i >= 0; i--) was mutated

to for (int i=arrSize; i++ >= 0; i--). A post increment to a variable i caused an

infinite loop. This kind of AOIS mutants can be killed by any tests with non-empty arrays.

Other easily killed AOIS mutants are those involve use of variables after they are conducted

a post increment/decrement. For instance, a variable i in subject S6 was mutated in if (i

> -1) to if (i-- > -1). The statement out.println(predArr.get(i).getPred());,

which was executed as a result of the if-statement, was influent by the changes made to

the variable i. This AOIS mutant can be killed by tests with non-empty predArray arrays

(i.e., there exist predictions).

While most AOIS mutants are quite easy to detect, some AOIS mutants that in-

volve skipped indexes when iterating over arrays require additional verification. For ex-

ample, a statement for(int i = 0; i < predictionNodes.getLength(); i++) in sub-

ject S6 was changed to for(int i = 0; i++ < predictionNodes.getLength(); i++).

The mutated code skipped an index when iterating over a predictionNodes. Instead

129



T
ab

le
5
.2

0:
N

u
m

b
er

of
n

on
-e

q
u

iv
al

en
t

J
av

a
m

u
ta

n
ts

k
il

le
d

b
y

w
eb

m
u

ta
ti

on
te

st
s

G
e
n
e
ra

te
d

J
a
v
a
M

u
ta

n
ts

S
u
b

je
ct

s

AODS

AODU

AOIS

AOIU

AORB

AORS

ASRS

COD

COI

COR

LOD

LOI

LOR

ROR

SOR

T
o
ta

l

S
1

0
1

8
3

1
6

3
0

0
8

2
0

1
0

0
1
9

0
7
0

S
2

0
0

7
3
3
4

6
7
6

7
4
8
8

0
0

0
9
3
6

6
2
4

0
4
4
6
4

0
3
7
4
4

0
2
5
2
6
6

S
3

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

S
4

0
0

1
6
8

9
8

2
9
6

0
0

0
4
2

2
8

0
9
8

0
8
4

0
8
1
4

S
5

0
0

2
1

6
4

0
0

0
1
6

2
2

0
1

0
9

0
1
1
5

S
6

1
0

3
3

1
8

4
4

0
2

1
2

6
0

2
8

0
1
9

0
1
2
7

S
7

0
0

2
2

1
9

8
8

0
0

2
0

4
0

2
9

0
3
2

0
1
4
2

S
8

0
0

2
8

1
3

0
4

0
3

2
8

1
4

0
2
6

0
6
1

0
1
7
7

S
9

0
0

1
2

5
0

2
0

0
0

0
0

0
0

1
1

0
3
0

S
1
0

0
0

2
0

0
0

0
4

3
6

2
6

0
1

0
4
5

0
1
1
4

S
1
1

0
0

1
3
7

8
1

8
1
3

0
1
1

1
8
5

1
7
0

0
1
7
6

0
1
1
7

0
8
9
8

S
1
2

0
0

1
8

3
1
2

3
0

0
2

0
0

1
4

0
0

0
5
2

T
o
ta

l
1

1
7
7
6
4

9
1
7

7
8
9
6

3
7

0
2
0

1
2
8
5

8
9
6

0
4
8
4
7

0
4
1
4
1

0
2
7
8
0
5

T
es

ts
K
il
le
d

J
a
v
a
M

u
ta

n
ts

T
o
ta

l

S
1

2
6

0
0

7
3

0
3

0
0

6
2

0
4

0
4

0
2
9

S
2

5
0

0
7
1
1
9

6
7
6

7
2
0
1

0
0

0
9
3
6

2
6
4

0
4
4
6
4

0
8
9
9

0
2
1
5
5
9

S
3

n
/
a

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

S
4

2
0

0
9
6

2
9

1
0
4

0
0

0
1
4

7
0

4
3

0
1
7

0
3
1
0

S
5

3
4

0
0

0
0

6
4

0
0

0
1
0

3
0

0
0

4
0

8
1

S
6

3
1

1
0

3
0

6
4

3
0

2
1
1

3
0

8
0

9
0

7
7

S
7

1
7

0
0

1
2

1
3

4
3

0
0

2
4

0
1
8

0
2
0

0
7
6

S
8

7
0

0
2
0

8
0

0
0

3
1
7

6
0

1
3

0
3
7

0
1
0
4

S
9

5
0

0
1
2

5
0

0
2

0
0

0
0

0
0

3
0

2
2

S
1
0

9
8

0
0

0
0

0
0

0
1

3
6

1
5

0
1

0
3
3

0
8
6

S
1
1

6
0

0
1
3
7

8
1

8
1
3

0
1
1

1
8
2

8
8

0
1
7
6

0
6
8

0
7
6
4

S
1
2

2
0

0
1
4

3
9

3
0

0
2

0
0

1
4

0
0

0
4
5

T
o
ta

l
2
3
3

1
0

7
4
4
7

8
2
4

7
3
9
4

2
7

0
1
7

1
2
1
6

3
9
2

0
4
7
4
1

0
1
0
9
4

0
2
3
1
5
3

R
a
ti

o
1
.0
0

0
.0
0

0
.9
6

0
.8
9

0
.9
4

0
.7
3

n
/
a

0
.8
5

0
.9
5

0
.4
4

n
/
a

0
.9
8

n
/
a

0
.2
6

n
/
a

130



of accessing an array predictionNodes with index 0, 1, 2, 3, up to the size of the ar-

ray; the iterating over the array will be with index 0, 2, 4, up to the size of the ar-

ray. Another AOIS mutant in subject S6 changed a statement for (int i=arrSize; i

>= 0; i--) to for (int i=arrSize; i-- >= 0; i--). Similarly, an index was skipped.

Other AOIS mutants involved changes in assignment statements. For instance, in subject

S6, an AOIS mutant altered org.w3c.dom.Node inst = predictionNodes.item(i); to

org.w3c.dom.Node inst = predictionNodes.item(i++);. Some other AOIS mutants in-

volved changes in print statements. For example, out.println("<input type =‘hidden’

name=‘indexToDelete’ value=‘" + i + "’>" );, which is part of a for-loop in sub-

ject S7, was mutated to out.println("<input type=‘hidden’ name=‘indexToDelete’

value=‘" + i++ + "’>"); During an iteration, the post increment and decrement caused

an index to be skipped. These mutants are killed by web mutation tests that verify every

index (i.e., every element) of the arrays. Nevertheless, the experimental result shows that

because only some of web mutation tests verify every element in the arrays, the tests missed

some of AOIS mutants that resulted in skipped indexes.

The AOIU operator negates variables’ values. For instance, in subject S2, some AOIU

mutants changed a statement rslt = (a * b - c) / d; to rslt = (a * b - c) / -d;

or changed rslt = a * (b * (c / d)); to rslt = a * (b * (-c / d));. Any tests

with non-zero values of the variables d (as in the former example) and c (as in the later

example) will kill these mutants. As another example, in subject S6, some AOIU mutants

changed vote[0] = agreeCount; to vote[0] = -agreeCount;. Negating a variable in an

assignment statement is easily distinguishable.

Furthermore, some AOIU mutants caused run-time errors due to accessing a negative

index of an array. For example, an AOIU mutant in subject S6 mutated a statement

out.print(predArr.get(i).getAgree());, which is part of a for-loop (with an index i

and under a predArr < 0 condition), to out.print(predArr.get(-i).getAgree());. A

predArr is an array containing predictions. An attempt to access a prediction in an array

with a negative index results in a run-time error. Any tests that view the existing predictions

131



will kill this mutant. A similar reason applies to a change from org.w3c.dom.Note node =

predItems.item(j) to org.w3c.dom.Note node = predItems.item(-j). Another AOIU

mutant in subject S6 changed from if (username.equals(predArr.get(i).getUser()

to if (username.equals(predArr.get(-i).getUser() where i refers to an index of

an array predArr. Test cases that attempt to view every element in an array of existing

predictions will detect the mutated behavior.

The AORB operator mutates arithmetic operation. Hence, it causes the computa-

tion to be evaluated differently. For example, in subject S2, if (rslt == 24 && rslt ==

(float)a * ((float)b * ((float)c / (float)d ))) was changed to if (rslt ==

24 && rslt == (float)a / ((float)b * ((float)c / (float)d ))). In subject S6,

a statement int arrSize = predArr.size() - 1; was changed to int arrSize =

predArr.size() * 1;. Modifying the arithmetic operator distorts the computation, hence

producing incorrect outcomes. Any tests that reach the mutated statements and that with

non-zero values will kill AORB mutants.

While killing many AOIS, AOIU, and AORB mutants across all subjects, web mutation

tests missed many of them in subject S4. In this subject, all AOIS, AOIU, and AORB

mutants involved changes to measurements conversion. To exercise all conversions, all form

inputs must be entered. Web mutation tests designed for this subject included approx-

imately half of the form inputs. The tests were able to detect AOIS, AOIU, and AORB

mutants that affected the conversion of inputs the tests exercised. However, the tests missed

the remaining mutants that affected the conversion of inputs the tests did not exercise. This

suggests that web mutation tests (to be precise, the tests that were designed specifically to

kill WFUR mutants) can potentially detect these Java mutants. When designing tests to

kill WFUR mutants, tests only need to include a form submission regardless of how many

form inputs to supply. This implies that if web mutation tests supply more form inputs

and perform a form submission, they are likely to detect more of these AOIS, AOIU, and

AORB mutants. On the other hand, if web mutation tests supply fewer form inputs and

perform a form submission, they are likely to detect fewer of these Java mutants.

132



The AORS operator replaces a decrement with an increment and an increment with a

decrement. This causes an opposite behavior. For example, an AORS mutant in subject S6

mutated a statement for(int j=0; j < predItems.getLength(); j++) to for(int

j=0; j < predItems.getLength(); j--). This mutant causes an infinite loop and can

be killed by any tests with non-empty predItems. Another AORS mutant in subject S6

changed for (int i=arrSize; i >= 0; i--) to for (int i=arrSize; i>=0; i++).

This mutant also causes an infinite loop. Any tests with non-empty arrSize can kill it.

The COD operator deletes a unary conditional operator (!) from conditional expres-

sions whereas the COI operator inserts a unary conditional operator (!) into conditional

expressions. These operators reverse the execution paths of web apps. For example, a COD

mutant in subject S11 altered if (!(new java.io.File(FileName)).exists() to if

((new java.io.File(FileName)).exists(). The mutated code causes the conditional

expression to be evaluated in an opposite behavior. Any tests that reach the if-statements

will kill these mutants. An example of COI mutants in subject S6 involved a change from

for (int i=0; i < predictionNodes.getLength(); i++) in a doPost() method to

for (int i=0; !(i < predictionNodes.getLength(); i++). The change reverses the

state of the comparison and hence resulting in an incorrect execution path. Any tests that

reach the mutated code, with a HTTP POST request in this example, will kill this COI

mutant. A COI mutant in subject S11 altered a statement if (verifyStud( req, "new"

) == true) to if (!(verifyStud( req, "new" ) == true)). Another example, a COI

mutant in subject S5 changed a statement in a doPost() method from if (mask != null)

to if (!(mask != null)). These mutants change the execution flow. Hence, any tests

with a form submission will kill them.

Although many COI mutants are quite easy to kill, web mutation tests missed some COI

mutants that involve changes in try-catch blocks that handle a NullPointerException

in subjects S1 and S7. Due to the input validation of the subjects, form data entires were

filtered. The input validation blocked the tests from supplying a null input. As a result,

the tests did not kill these COI mutants.

133



The LOI operator inserts a unary logical operator ("∼"). Many LOI mutants involved

inserting a "∼" to indexes when accessing arrays. For example, a LOI mutant in sub-

ject S6 changed a statement org.w3c.dom.Node inst = predictionNodes.item(i); to

org.w3c.dom.Node inst = predictionNodes.item(∼i);. A predictionNodes, in this

example, contains information about predictions that allow users of the subject web app to

view and vote on. This LOI mutant causes a negative indexing, which results in a run-time

error. Any tests with existing predictions can kill it. Other examples of LOI mutants that

resulted in negative indexing are also in subject S6. For instance, a statement count++; was

changed to ∼count++;, a statement switch(count) was changed to switch(∼count), a

statement out.println("<input type=‘hidden’ name=‘indexToDelete’ value=‘" + i

+ "’>"); was changed to out.println("<input type=‘hidden’ name=‘indexToDelete’

value=‘" + ∼i + "’>");, and a statement out.print(predArr.get(i).getArgs());

was changed to out.print(predArr.get(∼i).getArgs());. The mutated statements

cause runtime errors. Any tests that reach the mutated code will kill them.

Java mutants that are seldom killed by web mutation tests

Java mutants that are seldom killed by web mutation tests are COR and ROR mutants.

The COR operator replaces binary conditional operators (&&, ||, and ^) with other

binary conditional operators. Web mutation tests were able to detect COR mutants that

involved changes from && to ^ whereas they missed COR mutants that replaced && with

||. For example, in subject S4, a statement if (gAsStr != null && gAsStr.length()

> 0), which checked a form input gallon prior to converting it to an ounce measurement

was mutated to if (gAsStr != null ^ gAsStr.length() > 0). Since the tests verified

that gAsStr was not null and had a value (either numeric or float), the original statement

was evaluated to true whereas the mutated statement were evaluated to false. Hence,

the tests killed this mutant. On the contrary, when a statement if (gAsStr != null

&& gAsStr.length() > 0), was mutated to if (gAsStr != null || gAsStr.length()

> 0), both original statement and the mutated statement were evaluated to true. Thus,

the tests did not kill this mutant. Similarly, web mutation tests were able to differentiate

134



a mutated statement if (CAsStr != null ^ CAsStr.length() > 0) from the original

statement if (CAsStr != null && CAsStr.length() > 0) but were unable to detect the

mutated statement if (CAsStr != null || CAsStr.length() > 0).

The ROR operator replaces relational operators (>, >=, <, <=, ==, !=) with other re-

lational operators, and replaces the entire predicate with true and false. Web mutation

tests missed many ROR mutants because the tests did not supply the form inputs that were

affected by the mutants. For example, in subject S4, the ROR operator produced seven

mutants by changing a statement that verified the form input Celsius from if (CAsStr

!= null && CAsStr > null) to (1) if (CAsStr != null && CAsStr >= null), (2) if

(CAsStr != null && CAsStr < null), (3) if (CAsStr != null && CAsStr <= null),

(4) if (CAsStr != null && CAsStr == null), (5) if (CAsStr != null && CAsStr !=

null), (6) if (CAsStr != null && true) , and (7) if (CAsStr != null && false).

Since no tests supplied the form input Celsius, the mutated conditional statements did

not affect the subject’s behavior. Therefore, the tests did not kill these ROR mutants.

Web mutants killed by Java mutation tests

Table 5.21 summarizes the results from running Java mutation tests on web mutants. Across

all twelve subjects, on average, Java mutation tests killed 41% of web mutants. For each

subject, this experiment executed Java mutation tests designed for it and recorded the

number of killed web mutants of the subject. The mutation scores range from 0 (subject

S3) to 0.67 (subject S4). This experiment does not design Java mutation tests for subject

S3 since it has no Java mutants. Hence, all web mutants of S3 were marked as unkilled.

The experimental results show Java mutation tests did not detect some kinds of web

mutants, as displayed in Table 5.22. To understand how well Java mutation tests do on

web mutants, this experiment considers three groups of killed web mutants: (i) mutants

that are easily killed, (ii) mutants that are seldom killed, and (iii) mutants that the tests

missed.

135



Table 5.21: Summary of non-equivalent web mutants killed by Java mutation tests
Subjects Web mutants Killed Tests Scores

S1 27 13 22 0.48

S2 8 2 913 0.25

S3 18 0 0 0.00

S4 3 2 224 0.67

S5 99 29 46 0.29

S6 100 51 49 0.51

S7 34 19 59 0.56

S8 11 6 81 0.55

S9 5 2 12 0.40

S10 190 93 51 0.49

S11 9 2 93 0.22

S12 4 2 17 0.50

Total 508 221 1567 Avg=0.41

Table 5.22 presents the detailed results from running Java mutation tests on web mu-

tants. The structure of this table is similar to Table 5.16, except that the column Tests

shows the number of Java-mutation tests designed for each subject and the bottom displays

the number of web mutants killed by Java-mutation tests. The ratio indicates the propor-

tion of killed web mutants of each type (i.e., the number killed web mutants divided by the

number of generated web mutants of that type).

Web mutants that are easily killed by Java mutation tests

Web mutants that directly affect the main functionality of the subject web apps are

easily killed. These mutants include WRUR, WFUR, WCUR, most WFTR, and many of

WHID and WHIR mutants.

The WRUR operator replaces a URL specified in a sendRedirect() method of an

HttpServletResponse object with another URL. Across the twelve subject web apps,

all WRUR mutants caused the execution flow to transfer from one web component to

another web component. Mutating the targeted component directly affect the behavior

of the app under test. For example, in subject S6, a WRUR mutant changed a state-

ment response.sendRedirect(http://localhost:8080/jsp/HLVoting/index.jsp); to

response.sendRedirect(http://localhost:8080/jsp/HLVoting/predict.jsp);. Thus,

136



T
ab

le
5
.2

2:
N

u
m

b
er

of
n

on
-e

q
u

iv
al

en
t

w
eb

m
u

ta
n
ts

k
il

le
d

b
y

J
av

a
m

u
ta

ti
o
n

te
st

s
G
e
n
e
ra

te
d

w
e
b

m
u
ta

n
ts

S
u
b

je
ct

s

FOB

WCTR

WCUR

WFTR

WFUR

WHID

WHIR

WLUD

WLUR

WOID

WPVD

WRUR

WSAD

WSCR

WSIR

T
o
ta

l

S
1

1
7

0
5

5
0

0
0

0
0

0
3

5
0

1
2
7

S
2

1
0

0
1

1
0

0
2

3
0

0
0

0
0

0
8

S
3

1
0

0
1

1
2

2
1

1
0

0
0

6
3

0
1
8

S
4

1
0

0
1

1
0

0
0

0
0

0
0

0
0

0
3

S
5

2
3

3
4

3
0

0
1

1
0

2
1

7
6

0
3

9
9

S
6

4
9

0
1
2

1
2

5
5

9
9

1
0

9
1
7

0
8

1
0
0

S
7

3
6

0
7

7
0

0
0

0
0

0
0

1
1

0
0

3
4

S
8

1
0

0
2

2
0

0
2

2
0

0
0

2
0

0
1
1

S
9

1
0

0
1

1
0

0
0

0
2

0
0

0
0

0
5

S
1
0

1
6

0
3
1

1
2

1
2

7
7

3
2

3
2

0
3

0
5

3
1

2
1
9
0

S
1
1

2
0

0
1

1
0

0
2

3
0

0
0

0
0

0
9

S
1
2

1
1

0
1

1
0

0
0

0
0

0
0

0
0

0
4

T
o
ta

l
3
4

2
6

3
4

4
8

4
7

1
4

1
4

4
9

5
1

3
5

1
3

1
2
2

3
4

1
4

5
0
8

T
es

ts
K
il
le
d

w
e
b

m
u
ta

n
ts

T
o
ta

l

S
1

2
2

0
0

0
5

5
0

0
0

0
0

0
3

0
0

0
1
3

S
2

9
1
3

0
0

0
1

1
0

0
0

0
0

0
0

0
0

0
2

S
3

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0

S
4

2
2
4

0
0

0
1

1
0

0
0

0
0

0
0

0
0

0
2

S
5

4
6

0
0

3
3

3
0

0
0

0
0

0
1

1
9

0
0

2
9

S
6

4
9

0
0

0
8

1
2

5
5

0
0

0
0

9
1
2

0
0

5
1

S
7

5
9

0
0

0
5

7
0

0
0

0
0

0
0

7
0

0
1
9

S
8

8
1

0
0

0
2

2
0

0
0

0
0

0
0

2
0

0
6

S
9

1
2

0
0

0
1

1
0

0
0

0
0

0
0

0
0

0
2

S
1
0

5
1

0
0

2
5

1
0

1
2

4
4

1
3

1
3

0
3

0
3

6
0

9
3

S
1
1

9
3

0
0

0
1

1
0

0
0

0
0

0
0

0
0

0
2

S
1
2

1
7

0
0

0
1

1
0

0
0

0
0

0
0

0
0

0
2

T
o
ta

l
1
5
6
7

0
0

2
8

3
8

4
6

9
9

1
3

1
3

0
3

1
3

4
3

6
0

2
2
1

R
a
ti

o
0

0
0
.8
2

0
.7
9

0
.9
8

0
.6
4

0
.6
4

0
.2
7

0
.2
5

0
0
.6
0

1
.0
0

0
.3
5

0
.1
8

0

137



instead of redirecting a user to the main function of the system after successfully log-

ging in, the mutated code redirects the user to another component that cannot provide

the intended service. This mutant can simply be killed by tests that verify the login

feature of the subject. As another example, a WRUR mutant in a login component

of subject S5 mutated a statement response.sendRedirect(faultSeedingServlet); to

response.sendRedirect(logout);. Tests that include a successful login to the subject

will kill this mutant.

The WFUR mutation operator replaces the URL of a <form> with another URL. For

example, in subject S10, a statement <p><form method="get" action="categories

.jsp"> was mutated to <p><form method="get" action="page header.jsp">. Be-

cause form submission usually has direct impact on the main functionality of web apps,

modifying the target URL causes a form to be submitted to an incorrect web component.

Hence, WFUR mutants are easily detected. Unsurprisingly, tests that include form sub-

missions can distinguish them from the original versions of web apps. Java mutation tests

killed all WFUR mutants, except the one of subject S3 due to the lack of Java mutation

tests.

The WCUR mutation operator replaces the URL of a page attribute of a JSP include

action and the URL of a file attribute of a JSP include directive with another URL. The

include action and directive cause the content of one component to be included in another

component. For instance, in a browse.jsp component of a subject S10, a statement <%@

include file="page footer.jsp" %> was changed to <%@ include file="index.jsp"

%>. The page footer.jsp component consists of menu options such as adding a new tex-

tual record, modifying a record, and adding a new category whereas the index.jsp compo-

nent comprises of a login form. Including the index.jsp instead of the page footer.jsp

causes the options to become unavailable. Any tests that access the browse.jsp component

of this subject and pressing one of the menu options will kill this mutant.

Java mutation tests kill many WFTR mutants. The WFTR mutation operator replaces

a transfer mode with another transfer mode. If WFTR mutants affect the HTTP response

138



(thus changing the HTML document rendered on the screen), tests that kill WFUR mutants

will also kill WFTR mutants. WFTR mutants that affect the HTTP response are mutants

that involved submitting forms with data entry. It is important to note that Java mutation

tests only consider the content rendered on the screen and do not verify the URL in the

browser’s address bar. If WFTR mutants do not affect the content of the screen (such

as mutants that involve form submission without data entry), Java mutation tests do not

detect them.

Java mutation tests also killed many WHID and WHIR mutants. The WHID muta-

tion operator removes a hidden form field. The WHIR mutation operator replaces a value

of a hidden form field with another value in the same application domain. WHID and

WHIR mutants that the tests detected are mutants that directly affect the subject under

test. For example, in subject S6, a statement <input type=‘hidden’ name=‘reqType’

value=‘viewSubmit’/> was removed (WHID mutant). In this subject, the hidden form

field reqType instructs the subject to redirect a users to a screen to view existing predicates

(with the value attribute equals to viewSubmit). Omitting necessary information causes

the web app to behave incorrectly. An example of WHIR mutants in the same subject

changed a statement <input type=‘hidden’ name=‘reqType’ value=‘viewSubmit’/>

to <input type=‘hidden’ name=‘reqType’ value=‘" + i + "’/>. Replacing the state

information causes the subject web app to behave inaccurately. These mutants straightfor-

wardly impact the app’s behavior; thus, they can be killed easily. On the other hand, if

the mutated hidden form fields are not part of the main functionality, the tests are likely to

miss them. For instance, a WHIR mutant in subject S10 modified a statement <input

type=‘hidden’ name=‘rec sort’ value=‘InfoCategory’> to <input type=‘hidden’

name=‘rec sort’ value=‘" + i + "’">. The hidden form field rec sort indicates how

the textual information should be sorted on the screen for viewing information. No Java

mutation tests verify the sorting feature of the subject as it is not a primary functionality

of the subject; thus, the tests missed this WHIR mutant.

139



Web mutants that are seldom killed by Java mutation tests

Web mutants that are seldom killed by Java mutation tests are mutants that do not

directly affect the main functionality of the subject web apps but are necessary to check

to ensure the apps work properly. These mutants include WLUD, WLUR, WSAD, and

WSCR mutants.

The WLUD mutation operator removes a URL of the href attribute of an HTML <A>

tag. The WLUR mutation operator replaces a URL of the href attribute of an HTML <A>

tag. Java mutation tests were able to detect WLUD and WLUR mutants whose mutated

statements influence the apps’ main functionality. For example, a WLUD mutant in subject

S10 involved a change in statement <td><a href="category edit.jsp?origCategory=

<%= cat name %>">rename</a></td> to <td><a href="page header.jsp">rename

</a></td>. A WLUR mutant changed the same statement to <td><a href="page hea

der.jsp">rename</a></td>. This <a> link allows users to edit a particular category

name. Some Java mutation tests designed for the subject include clicking the link to modify

a category name. Hence, the tests killed these WLUD and WLUR mutants.

On the other hand, if the mutated links are not part of the apps’ main functionality,

Java mutation tests tend to overlook and do not click them. For instance, in subject S10, a

statement <th><a href="javascript: sort record(‘InfoCategory’);">Category

</a></th> was mutated to<th><a href="">Category</a></th> (creating a WLUD

mutant) and to <th><a href="page header.jsp">Category</a></th> (creating a

WLUR mutant). This <a> link allows users to sort the information. However, the sorting

feature is not the main functionality of the subject. No Java mutation tests exercise the

sorting link. Therefore, the tests missed these WLUD and WLUR mutants.

While it is possible and simple to kill WLUD and WLUR mutants, many of them are

undetected. One possible reason is that they are not part of the apps’ main functionality.

Most tests focus on verifying the main service of the subjects and neglect to check for

incorrect or broken links. Hence, it is safe to conclude that the WLUD and WLUR mutation

operators can potentially improve the quality of tests.

140



The WSAD mutation operator removes the setAttribute() method of a session ob-

ject. As the setAttribute() method is used to maintain the app’s state across requests

throughout a session, removing the setAttribute() method causes the state information

to be discarded. Across all subjects, some WSAD mutants involve user login information.

For example, in subject S6, a statement session.setAttribute("loginFail","") was

removed. The loginFail attribute of a session indicates whether the user is successfully

logging in to the system. The attribute is reset upon successful login and prior to redirect

the users to the app’s main screen (index.jsp). Excluding the setAttribute() statement

directly affect the app’s behavior. Java mutation tests that verify the login feature of the

subject will detect this mutant.

Three other examples of WSAD mutants that straightforwardly influence the apps’ main

functionality are in subject S5. Statements session.setAttribute("selectedFile",

selectedFile);, session.setAttribute("orgCode", org str);, and session.set

Attribute("faultyFile", retrievedFile); were removed. The attribute selected

File keeps track of the source file’s name to insert faults. The attribute orgCode maintains

the source code used in the fault seeding process. The attribute faultyFile indicates the

faulty file to be updated. Neglecting the necessary information causes inconsistencies in the

app under test. Tests that verify the main functionality of the app will detect the mutated

behavior.

In contrast, Java mutation tests do not detect WSAD mutants that involve sessions’

attributes not directly affecting the main content of the apps’ functionality. For example,

in subject S5, as the faulty version of source code get compiled, the subject maintains

the compilation status through session attributes. One WSAD mutant caused a statement

session.setAttribute("compileError", "Yes"); to be removed. Another excluded a

statement session.setAttribute("errorCode", err msg); from the app. These at-

tributes provide additional information on a fault being introduced to the input source

code. If the faulty version can be compiled, the subject S5 produces a faulty source file and

a faulty class file and stores them in the file system. Otherwise, the subject displays the

141



attributes’ information on the screen. The subject creates a faulty source file but does not

produce its corresponding class file. To kill these WSAD mutants, tests must verify either

the compilation status on the screen or the existence of the class file. No Java mutation

tests verify the supplemental information nor the class file. Hence, the tests missed these

WSAD mutants.

The WSCR mutation operator replaces a scope of a Java bean object with another

setting. If the mutated scope is more restricted than the original scope, information main-

tained in the object becomes inaccessible within the session. For example, in a login.jsp

component of subject S10, a statement <jsp:useBean id="iconst" scope="session"

class="stis.ConstBean"> was mutated to <jsp:useBean id="iconst" scope="page"

class="stis.ConstBean">. The mutated code limits the bean object to be available only

within the current web component instead of throughout the session. Hence, information

maintained in the bean object is unavailable to other components and requests in the same

session. Due to the nature of this subject web app, the user’s login is needed to retrieve

his or her textual information. Since the user’s login becomes unavailable to other web

components or requests in the same session, his or her information cannot be retrieved.

This directly affects the subject’s behavior. Java mutation tests that attempt to login and

view the information killed this mutant. Nonetheless, for WSCR mutants in a component

that edits a category or a component that adds information, the state information stored in

a bean object has no impact on the main functionality as these components directly update

the changes to the database. Other components or requests retrieve information from the

database. To kill these mutants, tests must specifically verify information maintained in the

bean objects. The experiment found that no Java mutation tests verify the bean objects,

hence they missed these WSCR mutants.

On the contrary, if the mutated scope is less restricted than the original scope, infor-

mation maintained in the bean object becomes cumulative throughout the session. For

instance, in subject S10, <jsp:useBean id="iconst" scope="session" class="stis.

ConstBean"> was mutated to<jsp:useBean id="iconst" scope="application" class=

142



"stis.ConstBean">. To kill the bigger scoped WSCR mutants, tests must include a series

of requests and verify the data stored in the object. The experiment found that no Java

mutation tests killed these WSCR mutants. Therefore, it is safe to conclude that WSCR

mutants are essential to improve the quality of tests.

Web mutants that Java mutation tests missed

Web mutants that Java mutation tests missed are mutants that involve a series of

interaction with the subjects and that involve operational transitions (such as transitions

caused by the client). These mutants include FOB, WCTR, and WSIR mutants.

The FOB mutation operator inserts a dummy URL to the browser history before the

current URL. When a browser back button is pressed, the dummy URL is loaded instead

of the previously viewed screen. For example, in subject S7, the FOB mutation operator

inserts an onload function call to the <body> tag and include a JavaScript failOnBack.js,

which manipulates the browser history to the program. That is, <body> was mutated to

<body onload="handleBack()"> and a statement <script src="http://localhost:

8080/experiment/js/failOnBack.js"></script> was included in the code. To kill the

FOB mutants, tests must include pressing the browser back button. The experiment found

that no Java mutation tests clicked the browser back button. Hence, across twelve subject

web apps, the tests missed all FOB mutants.

While it is possible to kill FOB mutants, the experimental results show all FOB mutants

were undetected. One possible reason why the browser features are overlooked is that the

Java mutation tests target Java mutants and focus on verifying the main functionality of

the subject. These tests do not consider interactions caused by the browser features as

inputs to the apps. Therefore, FOB mutants are important to improve the quality of tests.

The WCTR mutation operator replaces a redirect transition with a forward transi-

tion and a forward transition with a redirect transition. If the targeted URL (i.e., des-

tination of the redirect and the forward transition) is on the same server as the URL

currently rendered on the screen, the contents on the screen are most likely indistinguish-

able between the original program and the mutated program. As a result, the redirect

143



transition and the forward transition can be differentiated by examining the URL in the

browser address bar. The experiment finds that, across the twelve subjects, all WCTR

mutants involve the URLs on the same server. For example, in subject S1, a statement

getServletContext().getRequestDispatcher("/BSVoting/assertion.jsp").forward

(request, response); was changed to response.sendRedirect("/BSVoting/assertion

.jsp");. Another WCTR mutant in the same subject involved a change in a statement

response.sendRedirect("dispatcher.jsp"); to getServletContext().getRequestDis

patcher("dispatcher.jsp").forward(request,response);. Since Java mutation tests

verified the contents on the screen but not the URLs in the address bar, the tests missed

all WCTR mutants.

The WSIR mutation operator changes a session object initialization to the opposite be-

havior. For instance, in subject S5, a statement HttpSession session = req.getSession

(true); was mutated to HttpSession session = req.getSession (false);. As a re-

sult, instead of creating a session object when none exists, the false boolean indicates that

a null is returned. To kill WSIR mutants, tests must invalidate the session object. The

experiment found that no Java mutation tests kill WSIR mutants. Therefore, this implies

that WSIR mutants can potentially improve the quality of tests.

In conclusion, the experimental results suggest that Java mutants help design tests that

check all form inputs and verify individual web components whereas web mutants help

design tests that focus on interactions between web components. Using both Java mutants

and web mutants can improve the quality of tests.

RQ6: How much do web mutants and traditional Java mutants overlap?

Based on the ratio indicating Java mutants that were killed by web mutation tests in Table

5.20 and the ratio indicating web mutants that were killed by Java mutation tests in Table

5.22, the overlap between web mutants and traditional mutants is affirmative. The visual

views illustrating the ratios are presented in Figures 5.12 and 5.13.

144



While web mutation tests were able to detect many Java mutants (including AOIS,

AOIU, AORB, AORS, COD, COI, and LOI mutants), the tests missed many COR and ROR

mutants. Likewise, Java mutation tests were able to detect many web mutants (including

WRUR, WFUR, WCUR, most WFTR, and many of WHID and WHIR mutants). However,

the tests seldom killed WLUD, WLUR, WSAD, and WSCR mutants and missed all FOB,

WCTR, and WSIR mutants. The experimental results reveal that web mutation operators

can potentially improve the quality of tests designed with traditional mutation testing and,

at the same time, traditional Java mutation operators can help improve the quality of tests

designed with web mutation testing. In conclusion, web mutation testing and traditional

Java mutation testing are complementary.

Figure 5.12: Ratio of killed Java mutants by operators (number of killed Java mutants /
number of generated Java mutants)

5.4.4 Threats to Validity

Similar to any other research, this experiment has some limitations that could have influ-

enced the experimental results. Some of these limitations may be minimized or avoided

while some may be inevitable.

Internal validity: This experiment relies on tests manually created by only one

person. As the quality of tests depends upon the testers’ experience, the results may differ

145



Figure 5.13: Ratio of killed web mutants by operators (number of killed web mutants /
number of generated web mutants)

with different tests. Furthermore, some of the computation and analysis such as identifying

equivalent mutants was performed by hand and hence may introduce human errors.

External validity: Though the subjects used in this experiment contained a variety

of web component interactions, it is impossible to guarantee that they are representative.

The results may differ with other web apps. This is a threat that is prevalent in almost all

software engineering studies.

Construct validity: The experiment assumed that webMuJava worked correctly.

5.5 Experimental Evaluation of Redundancy in Web Muta-

tion Operators

The findings from previous experiments demonstrated that web mutation testing can help

create tests that are effective at finding web faults. While mutation testing has been shown

to be effective at improving the quality of test cases, the testing costs can be very expensive

depending on the number of mutants and the percentage of equivalent mutants generated.

To reduce the cost, this research focuses on using effective mutation operators (a do-fewer

146



approach). The goal of this experiment is to analyze the redundancy in web mutation oper-

ators to recommend which operators are to exclude; i.e., the fewer the mutants generated,

the fewer the tests needed. This experiment answers the following research questions:

RQ7: How frequently can web mutants of one type be killed by tests generated

specifically to kill other types of web mutants?

RQ8: Which types of web mutants are seldom killed by tests designed to kill other

types of web mutants?

RQ9: Which types of web mutants (and thus the operators that create them) can be

excluded from the testing process without significantly reducing fault detection?

To analyze the redundancy in web mutation operators, this experiment applies all op-

erators to generate mutants. All mutants generated by the same operator are said to be of

the same mutation type (or type). If different types of mutants can be killed by the same

tests, they are said to be overlapping. That is, there is redundancy in the operators that

create them.

5.5.1 Experimental Subjects

Web mutation testing requires that source code is available and some of the analysis are

necessarily done by hand. Similar to the previous experiments, this experiment chose sub-

jects that are small enough for reasonable hand analysis, yet large and complex enough to

include a variety of interactions among web components. Thus this experiment shared a

set of subject web apps used in previous experiments.

Table 5.23 lists the twelve Java-based web apps used in this experiments11. Components

are JSPs and Java Servlets, excluding JavaScript, HTML, and CSS files. All subjects are

available online at http://github.com/nanpj. BSVoting, HLVoting, and KSVoting are on-

line voting systems, which allow users to maintain their assertions and vote on other users’

assertions. check24online allows users to play the card game 24, where users enter four in-

teger values between 1 and 24 inclusive and the web app generates all expressions that have

11LOC refers to non-blank lines of code, measured with Code Counter Pro (http://www.geronesoft.com/)

147



the result 24. computeGPA accepts credit hours and grades and computes GPAs, according

to George Mason University’s policy. conversion allows users to convert measurements.

faultSeeding facilitates fault seeding and maintains the collection of faulty versions of soft-

ware. quotes allows users to search for quotes using keywords. randomString allows users

to randomly choose strings with or without replacement. smallTextInfoSys allows users to

maintain text information, using a MySQL database. StudInfoSys allows users to maintain

student information. webstutter allows users to check for repeated words in strings. All

these subjects use features that affect the interactions between web components and the

states of web apps, including form submission, redirect control connection, forward control

connection, include directive, and state management mechanisms. These subjects consist

of combinations of JSPs, Java servlets, Java Beans, JavaScripts, HTMLs, XMLs, CSS files,

and images. JavaScript, XML, CSS, and images are out of the research’s scope. Therefore,

they were excluded from the experiment, leaving the number of components and LOC as

displayed in the table.

Table 5.23: Subject web apps
Subjects Components LOC

BSVoting (S1) 11 930

check24online (S2) 1 1619

computeGPA (S3) 2 581

convert (S4) 1 388

faultSeeding (S5) 5 1541

HLVoting (S6) 12 939

KSVoting (S7) 7 1024

quotes (S8) 5 537

randomString (S9) 1 285

smallTextInfoSys (S10) 24 1103

studInfoSys (S11) 3 1766

webstutter (S12) 3 126

Total 75 10,839

5.5.2 Experimental Procedure

The independent variables are web mutation operators (as presented in Section 4.2). The

dependent variables are the number of equivalent mutants, the number of test cases required,

148



the number of mutants (generated from each operator) killed by each test set, and the

redundancy among web mutation operators.

The experiment was conducted in four steps:

1. Generate mutants: For each subject, all fifteen operators were applied. This yields

sets of mutants Mij , that is, mutants of the ith subject created by the jth operator.

2. Generate tests: Tests were designed independently and specifically to kill all mu-

tants of each types for each subject. The set Tij contains tests of the ith subject

that target the jth mutation type. Test cases were created manually as sequences of

requests and were written in HtmlUnit, JWebUnit, and Selenium.

3. Execute tests: For each subject, this experiment executed each test set on all mu-

tants of the subject. N(Tij ,Mik) represents the number of mutants of the kth type

of the ith subject that were killed by test Tij . Equivalent mutants were identified by

hand and excluded from the testing process. For each mutation type of the subject,

the mutation score was computed as the ratio between the number of killed mutants

and the total number of non-equivalent mutants. This experiment kept adding tests

until all mutants of the given type were killed; i.e., the mutation score is 1. These

tests were referred to as mutation-adequate tests.

4. Compute the redundancy of the operator: The redundancy of the jth operator,

RTj , is computed as the percentage of the mutants of the ith type (mi) that are killed

by tests designed specifically to kill mutants of the jth operator, Tj : RTj = mi
Mi
× 100.

5.5.3 Experimental Results and Analysis

This section presents an overview of mutants generated and killed. Since equivalent mutants

impact the overall mutation testing cost, this section analyzes and discusses the equivalent

mutants across all 12 subjects. Then it presents detailed analysis on the killed mutants,

149



discusses the redundancy in web mutation operators, and finally concludes by responding

to the research questions.

Overview of mutants generated and killed

Table 5.24 summarizes the number of mutants generated, the number of equivalent mutants,

the number of mutants killed, and the number of tests created by subjects. Figure 5.14

provides a visual summary of non-equivalent mutants of each mutation type.

Table 5.24: Summary of web mutants generated and killed
Subjects Mutants Equivalent Killed Tests

S1 27 0 27 26

S2 8 0 8 8

S3 18 0 18 17

S4 3 0 3 3

S5 115 16 99 65

S6 103 3 100 99

S7 34 0 34 30

S8 11 0 11 10

S9 5 0 5 5

S10 205 15 190 140

S11 9 0 9 9

S12 4 0 4 4

Total 542 34 508 416

Figure 5.14: Non-equivalent web mutants generated

150



All 15 web mutation operators were applied to 12 subject web apps, generating a total

of 542 mutants. Tests were designed and killed 508 mutants. With extensive hand analysis,

this experiment determined that the other 34 mutants were equivalent (6.3%). Twenty-two

equivalent mutants were of type WSAD, two were of type WSIR, four were of type WHID,

four were of type WHIR, one was of type WLUD, and one was of type WLUR. All equivalent

mutants were removed after being identified.

Analysis of equivalent mutants

Six WSAD equivalent mutants (one in subject S6 and five in subject S10) mutated attributes

of sessions that the web apps never accessed. Hence, removing the attribute setting state-

ments had no affect on the subjects’ behaviors. The other 16 equivalent WSAD mutants,

in subjects S5 and S10, mutated attributes that were reset being being accessed. This

suggested that the developers might have unnecessarily set the session attributes. Straight-

forward static analysis could have found those mutants to be equivalent, and might even

indicate unnecessary code or attributes that are not needed.

The two equivalent WSIR mutants were due to a session initialization in components

of subject S6. These mutants modified a session initialization behavior (specified as a

boolean parameter of the getSession() method) from request.getSession(false) to

request.getSession(true). Instead of not creating a new session if none exists, the

mutated code created a new session if none exists. However, because these components

were included in another component, the session object was managed by its container. As a

result, these WSIR mutants had no impact on the subject’s behavior. This suggests that the

WSIR mutant is useful only when the mutated code is not included in another component.

The four equivalent WHID mutants and four equivalent WHIR mutants were in subject

S10. Three of these equivalent WHID mutants and three of these equivalent WHIR mutants

changed values that were either not used or were being deleted from the database. The

others changed hidden form fields of non-keys of records that were to be sorted. Therefore,

replacing or removing values of these hidden form fields did not affect the subject’s behavior.

151



The equivalent WLUD and WLUR mutants in subject S6 involved changes to links to

CSS files. As presentation checking was out of scope for this research, these mutants were

excluded from study.

Detailed analysis of killed mutants and redundancy

Table 5.25 displays data from running the tests on mutants. The upper half summarizes

the number of mutants generated from each operator for each subject (as displayed in the

columns below Mutants) along with the total numbers of mutants by subject by operator.

For example, webMuJava generated one FOB mutant, seven WCTR mutants, and 27 total

mutants for subject S1.

The bottom half of Table 5.25 presents data on killing mutants. The column Tests

shows the number of tests needed to kill all mutants of each type. That is, across all 12

subject web apps, the total of 34 tests were created to kill all FOB mutants. This test set

is called test FOB, and is listed on the left. The Killed mutants columns give the number

of mutants that were killed by the test set that killed all of the mutants of the type on the

left. For example, 24 tests were needed to kill all 26 of the WCTR mutants. Those same

tests killed 12 WRUR mutants and 8 WSAD mutants. For several operators, the number

of tests is smaller than the number of mutants killed because some tests killed more than

one mutant. That is, the numbers on the diagonal are at least as big as the numbers on

the left under Tests.

To obtain these numbers, for each subject, this experiment executed each test set on all

mutants and recorded the number of killed mutants of each type. This was a total of 39,847

executions. Table 5.26 shows the overall redundancy of each operator based on the formula

in Subsection 5.5.2. The overall redundancy of each operator is based on cumulative num-

bers of killed mutants of all 12 subjects and is computed as
∑

1≤i≤12mi/
∑

1≤i≤12Mi where

mi denotes the number of mutants of the ith operator killed by tests designed specifically to

kill mutants of the jth operator, and Mi denotes the total number of mutants of the ith op-

erator. The diagonal cells are 1, indicating the tests adequate to kill mutants created from

152



T
ab

le
5.

25
:

N
u

m
b

er
of

m
u

ta
n
ts

ge
n

er
at

ed
an

d
k
il

le
d

M
u
ta

n
ts

S
u
b
je
c
t

FOB

WCTR

WCUR

WFTR

WFUR

WHID

WHIR

WLUD

WLUR

WOID

WPVD

WRUR

WSAD

WSCR

WSIR

T
o
ta

l

S
1

1
7

0
5

5
0

0
0

0
0

0
3

5
0

1
2
7

S
2

1
0

0
1

1
0

0
2

3
0

0
0

0
0

0
8

S
3

1
0

0
1

1
2

2
1

1
0

0
0

6
3

0
1
8

S
4

1
0

0
1

1
0

0
0

0
0

0
0

0
0

0
3

S
5

2
3

3
4

3
0

0
1

1
0

2
1

7
6

0
3

9
9

S
6

4
9

0
1
2

1
2

5
5

9
9

1
0

9
1
7

0
8

1
0
0

S
7

3
6

0
7

7
0

0
0

0
0

0
0

1
1

0
0

3
4

S
8

1
0

0
2

2
0

0
2

2
0

0
0

2
0

0
1
1

S
9

1
0

0
1

1
0

0
0

0
2

0
0

0
0

0
5

S
1
0

1
6

0
3
1

1
2

1
2

7
7

3
2

3
2

0
3

0
5

3
1

2
1
9
0

S
1
1

2
0

0
1

1
0

0
2

3
0

0
0

0
0

0
9

S
1
2

1
1

0
1

1
0

0
0

0
0

0
0

0
0

0
4

T
o
ta

l
3
4

2
6

3
4

4
8

4
7

1
4

1
4

4
9

5
1

3
5

1
3

1
2
2

3
4

1
4

5
0
8

T
e
st
s

K
il
le
d

m
u
ta

n
ts

T
o
ta

l

te
st

F
O

B
3
4

3
4

0
0

0
0

0
0

0
0

0
0

0
0

0
0

3
4

te
st

W
C

T
R

2
4

0
2
6

0
0

0
0

0
0

0
0

0
1
2

8
0

0
4
6

te
st

W
C

U
R

3
1

0
0

3
4

0
0

0
0

0
0

0
0

0
3

0
0

3
7

te
st

W
F

T
R

4
7

0
2

1
3

4
8

4
6

9
9

0
0

0
3

0
0

0
0

1
3
0

te
st

W
F

U
R

4
7

0
2

1
3

4
1

4
7

1
2

1
2

1
1

0
3

0
0

0
0

1
3
2

te
st

W
H

ID
1
0

0
0

0
0

1
0

1
4

1
4

1
1

0
0

0
0

0
0

4
0

te
st

W
H

IR
1
1

0
0

0
0

1
1

1
4

1
4

1
1

1
0

0
2

2
0

4
6

te
st

W
L

U
D

4
9

0
0

0
1

2
2

2
4
9

4
9

0
0

0
0

0
0

1
0
5

te
st

W
L

U
R

5
1

0
0

0
2

3
2

2
4
9

5
1

0
0

0
0

0
0

1
0
9

te
st

W
O

ID
3

0
0

0
0

1
0

0
0

0
3

0
0

0
0

0
4

te
st

W
P

V
D

2
0

0
0

0
1

0
0

0
0

0
5

0
0

0
0

6

te
st

W
R

U
R

1
3

0
1
2

0
0

0
0

0
0

0
0

0
1
3

8
0

0
3
3

te
st

W
S
A

D
5
7

0
9

0
6

8
4

0
0

0
0

0
9

1
2
2

0
0

1
5
8

te
st

W
S
C

R
2
3

0
0

0
7

8
6

5
0

0
0

3
0

2
3
4

0
6
5

te
st

W
S
IR

1
4

3
2

9
4

4
1

1
6

6
0

0
4

9
0

1
4

6
3

153



operator j. Figure 5.15 provides a visual summary of overall redundancy of web mutation

operators.

Some types of mutants are not generated for some subject web apps because they lack

the features being mutated. Some features, such as hidden form fields and readonly inputs,

are used quite rarely.

Figure 5.15: Overall redundancy of web mutation operators

To analyze the overlap between web mutation operators, this experiment considers how

effective each set of tests kills other types of mutants for each subject. The higher the

percentage of mutants killed by tests designed for other types of mutants, the more likely

the operator that generates them is redundant.

The average redundancy is obtained from an average of
∑

1≤i≤j
mi
Mi

, where j is the

number of subjects containing the type of mutants being considered. That is, for subject

Sk, if there exists tests Tj and mutants Mi, tests Tj are executed on Mi and the number of

mutants killed by the tests (mi) is recorded. The effectiveness of tests Tj on mutants Mi

for subject Sk is then computed, reflecting the redundancy of the mutation operator i. This

experiment computes the effectiveness for all subjects to obtain an average effectiveness of

tests Tj on mutants Mi, giving the average redundancy of the operator i. Otherwise, for

154



T
a
b

le
5.

26
:

O
v
er

al
l

re
d

u
n

d
an

cy
of

w
eb

m
u

ta
ti

on
op

er
at

o
rs

K
il
le

d
M

u
ta

n
ts

FOB

WCTR

WCUR

WFTR

WFUR

WHID

WHIR

WLUD

WLUR

WOID

WPVD

WRUR

WSAD

WSCR

WSIR

te
st

F
O

B
1

0
0

0
0

0
0

0
0

0
0

0
0

0
0

te
st

W
C

T
R

0
1

0
0

0
0

0
0

0
0

0
0
.9

2
0
.0

7
0

0

te
st

W
C

U
R

0
0

1
0

0
0

0
0

0
0

0
0

0
.0

3
0

0

te
st

W
F

T
R

0
0
.0

8
0
.3

8
1

0
.9

8
0
.5

0
0
.5

0
0

0
0

0
.6

0
0

0
0

0

te
st

W
F

U
R

0
0
.0

8
0
.3

8
0
.8

5
1

0
.9

3
0
.9

3
0
.0

2
0
.0

2
0

0
.6

0
0

0
0

0

te
st

W
H

ID
0

0
0

0
0
.2

1
1

1
0
.0

2
0
.0

2
0

0
0

0
0

0

te
st

W
H

IR
0

0
0

0
0
.2

3
1

1
0
.0

2
0
.0

2
0
.3

3
0

0
0
.0

2
0
.0

6
0

te
st

W
L

U
D

0
0

0
0
.0

2
0
.0

4
0
.1

4
0
.1

4
1

0
.9

6
0

0
0

0
0

0

te
st

W
L

U
R

0
0

0
0
.0

4
0
.0

6
0
.1

4
0
.1

4
1

1
0

0
0

0
0

0

te
st

W
O

ID
0

0
0

0
0
.0

2
0

0
0

0
1

0
0

0
0

0

te
st

W
P

V
D

0
0

0
0

0
.0

4
0

0
0

0
0

1
0

0
0

0

te
st

W
R

U
R

0
0
.4

6
0

0
0

0
0

0
0

0
0

1
0
.0

7
0

0

te
st

W
S
A

D
0

0
.3

5
0

0
.1

3
0
.1

7
0
.2

9
0

0
0

0
0

0
.6

9
1

0
0

te
st

W
S
C

R
0

0
0

0
.1

5
0
.1

7
0
.4

3
0
.3

6
0

0
0

0
.6

0
0

0
.0

2
1

0

te
st

W
S
IR

0
.0

9
0
.0

8
0
.2

7
0
.0

8
0
.0

9
0
.0

7
0
.0

7
0
.1

2
0
.1

2
0

0
0
.3

1
0
.0

7
0

1

155



all subjects, if neither Tj nor Mi exists, the average effectiveness of tests Tj on mutants Mi

is recorded as unable to determine if the given test set is effective at killing this type of

mutants (n/a). The average redundancy of each operator is presented in Table 5.27 and its

visual summary is displayed in Figure 5.16.

RQ7: How frequently can web mutants of one type be killed by tests generated

specifically to kill other types of web mutants?

The experimental results show that some types of mutants were often killed by tests that

were not designed specifically to kill them.

On average, almost all WFUR mutants were killed by WFTR-adequate tests (test WFTR

in Table 5.27). Both WFUR mutants and WFTR mutants are created by modifying <form>

tags. It seems logical that tests adequate to kill either group should also be effective at killing

another group. However, this experiment observed that test WFUR misses WFTR mutants

when a blank form or a form that does not allow data entry is submitted. Test WFTR

misses WFUR mutants when the mutated URL12 causes a similar HTML response. Note

that to determine whether a test distinguishes a mutant from the original app, the HTML

responses of the mutant and of the original app are compared.

Almost all WHID and WHIR mutants were killed by test WFUR. Since WHID and

WHIR mutants manipulate the subject’s hidden inputs, form submissions that use these

hidden inputs will affect the subject’s behavior.

The test set test WLUR kills all WLUD mutants. The WLUD and the WLUR operators

mutate <a> tags, so it is reasonable to expect tests that exercise the <a> tag will distinguish

WLUD and WLUR mutants from the original app. In the experiment, however, test WLUD

missed two WLUR mutants. There was no WLUD mutant for the <a> tags of these two

WLUR mutants, and thus no corresponding tests. This is because applying the WLUD

operator to these particular <a> tags would have created equivalent mutants, and thus were

12The mutation tool webMuJava extracts all URLs used in the subject web app and statistically records
their frequency of reference. The URL that is used the most frequently is used for URL replacement. If the
most frequently used URL is the same as the original, the second most frequently used URL is used.

156



T
a
b

le
5.

27
:

A
v
er

ag
e

re
d

u
n

d
an

cy
of

w
eb

m
u

ta
ti

on
op

er
at

o
rs

K
il
le

d
M

u
ta

n
ts

FOB

WCTR

WCUR

WFTR

WFUR

WHID

WHIR

WLUD

WLUR

WOID

WPVD

WRUR

WSAD

WSCR

WSIR

te
st

F
O

B
1

0
0

0
0

0
0

0
0

0
0

0
0

0
0

te
st

W
C

T
R

0
1

0
0

0
0

0
0

0
0

0
0
.6

7
0
.1

2
n
/
a

0

te
st

W
C

U
R

0
0

1
0

0
0

0
0

0
n
/
a

0
0

0
.3

0
0

0

te
st

W
F

T
R

0
0
.0

7
0
.2

1
1

0
.9

9
0
.3

3
0
.3

3
0

0
0

0
.5

0
0

0
0

0

te
st

W
F

U
R

0
0
.0

7
0
.2

1
0
.6

5
1

0
.9

3
0
.9

3
0
.1

4
0
.1

4
0

0
.5

0
0

0
0

0

te
st

W
H

ID
0

0
0

0
0
.5

8
1

1
0
.3

3
0
.3

3
1

0
0

0
0

0

te
st

W
H

IR
0

0
0

0
0
.6

1
1

1
0
.3

3
0
.3

3
1

0
0

0
.1

1
0
.3

3
0

te
st

W
L

U
D

0
0

0
0
.1

4
0
.2

9
0
.3

3
0
.3

3
1

0
.9

1
0

0
0

0
0

0

te
st

W
L

U
R

0
0

0
0
.2

9
0
.4

3
0
.3

3
0
.3

3
1

1
0

0
0

0
0

0

te
st

W
O

ID
0

0
n
/
a

0
0
.5

0
0

0
0

0
1

n
/
a

0
0

n
/
a

0

te
st

W
P

V
D

0
0

0
0

0
.2

1
0

0
0

0
n
/
a

1
0

0
0

0

te
st

W
R

U
R

0
0
.4

8
0

0
0

0
0

0
0

0
0

1
0
.1

6
n
/
a

0

te
st

W
S
A

D
0

0
.2

5
0

0
.1

6
0
.1

9
0
.2

7
0

0
0

0
0

0
.3

3
1

0
0

te
st

W
S
C

R
0

n
/
a

0
0
.2

9
0
.7

9
0
.7

9
0
.5

4
0

0
n
/
a

1
n
/
a

0
.1

7
1

0

te
st

W
S
IR

0
.0

5
0
.0

7
0
.1

5
0
.2

0
0
.2

0
0
.1

0
0
.1

0
0
.0

6
0
.0

6
0

0
0
.1

5
0
.2

0
0

1

157



Figure 5.16: Average redundancy of web mutation operators

not generated.

RQ8: Which types of web mutants are seldom killed by tests designed to kill

other types of web mutants?

The experimental results show that no tests adequate for other types of mutants kill WSIR

mutants. One possible reason is that WSIR mutants manipulate the existence of the session

object that maintains information about the user and client. Tests must invalidate the

session to kill WSIR mutants. For this experiment, other types of mutants can be killed

without exercising the validity of the session. The experimental result suggests that WSIR

mutants are important to improve the quality of tests.

The other types of mutants were sometimes killed by tests designed to kill other types

of mutants. However, the effectiveness varies.

A very small number of FOB mutants were killed by test WSIR. The investigation

revealed that the test WSIR tests that killed FOB mutants imitate clicking of the browser

back button after intentionally terminating the session. This experiment infers that other

tests did not kill FOB mutants because the other tests do not exercise the browser back

button.

158



While it is possible to kill FOB mutants with tests designed for other types of mutants,

testers may have overlooked some browser features. Most test cases do not verify if the app

under test behaves properly when the back button is used. Therefore, using FOB mutants

can potentially improve the quality of tests.

RQ9: Which types of web mutants (and thus the operators that create them)

can be excluded from the testing process without significantly reducing fault

detection?

On average, test WFTR was 99% effective at killing WFUR mutants, while test WFUR

was only 65% effective at killing WFTR mutants. This suggests an overlap between WFTR

mutants and WFUR mutants. Therefore, this experiment concludes that WFUR mutants

can be excluded without significantly reducing fault detection capability.

Test WHID was 100% effective at killing WHIR mutants and test WHIR was 100%

effective at killing WHID mutants. This implies a strong overlap between WHID and

WHIR mutants. To determine which mutants can be removed with minimal loss in fault

detection capability, this experiment considered their effectiveness at killing other types of

mutants. It is important to note that because the WHID and WHIR operators mutate

relatively rarely used elements, only 14 WHID and 14 WHI mutants were generated on

three subjects. On average, test WHIR was more effective at killing mutants of other types

than test WHID was. Hence, WHIR mutants are stronger than WHID mutants. This

experiment concludes that WHID mutants can be excluded.

WLUD and WLUR mutants also overlapped. Tests adequate to kill WLUD mutants

were 91% effective at killing WLUR mutants, and tests adequate to kill WLUR mutants

were 100% effective at killing WLUD mutants. In addition, test WLUD was less effective

at killing other types of mutants than test WLUR was. This suggests that WLUD mutants

can be excluded.

Additionally, the experimental results indicate that WOID can be excluded. As shown

in Table 5.25, only three WOID mutants were generated on two subjects. This implies

159



that not many web apps contain a readonly input. 100% of WOID mutants were killed

by test WHID and test WHIR. Although this could indicate that WOID mutants can be

excluded, the savings would be small.

Similar to WOID mutants, in this experiment, only one subject had WPVD mutants,

all of which were killed by tests adequate to kill WSCR mutants. Again, it might be safe

to exclude WPVD mutants, but the savings would be small.

Another interesting pair of mutant types that might overlap are WCTR and WRUR mu-

tants. Test WCTR, on average, killed 67% of WRUR mutants and test WRUR killed 48%

of WCTR mutants. Although this is significant overlap, again, the numbers are relatively

small.

In conclusion, the experiment recommends excluding the WFUR, WHID, and WLUD

operators. Because the numbers of WOID, WPVD WCTR, and WRUR mutants generated

are small and the savings would be minimal, the experimental results are not strong enough

to recommend removing the operators that create them.

5.5.4 Threats to Validity

As in all software engineering studies, this study has limitations that could have influenced

the experimental results. Some of these limitations were minimized or avoided while some

may be unavoidable.

Internal validity: The quality of tests may vary depending upon the testers’ expe-

rience. This experiment relies on tests manually created by only one person. The results

may differ with different tests. Another potential threat is that some of the computation

and analysis such as identifying equivalent mutants was performed by hand and hence may

introduce human errors.

External validity: Though the subjects used in this experiment contained a variety

of web component interactions, it is impossible to guarantee that they are representative.

The results may differ with other web apps. This is a threat that is prevalent in almost all

software engineering studies. Technologically, this experiment was limited to asynchronous

160



Java-based web apps.

Construct validity: The experiment assumed that webMuJava worked correctly.

161



Chapter 6: Conclusions and Future Work

This chapter revisits the research problems and the RQs and draws on the findings to verify

the research hypothesis (Section 6.1). The chapter then restates the contributions (Section

6.2). Finally, the chapter concludes with future research directions (Section 6.3).

6.1 Research Problem and RQs Revisited

Web apps continue to have widespread failures. Traditional software testing techniques

are insufficient for testing web apps due to the nature of web app technologies. Improperly

implementing and testing the communications between web components is a common source

of faults in web apps. While many new technologies have been created to develop and

enhance the functionality of web apps, they introduce new challenges in testing. This

research investigated and classified seven challenges in testing web apps and categorized

web faults. Based on the fault model, the research designed web mutation testing with

the goal to improve the quality of web apps and reduce the cost of testing web apps. The

research hypothesis

Mutation testing can be used to reveal more web interaction faults

than existing testing techniques can in a cost-effective manner.

was validated with nine RQs. Four experiments were conducted to answer these RQs.

The first experiment (Section 5.2) verified whether web mutation testing can help im-

prove the quality of tests developed with traditional testing criteria (addressing RQ1 and

RQ2). The experiment evaluated the usefulness of web mutation operators based on the

number of killed mutants of each operator.

162



• RQ1: How well do tests designed for traditional testing criteria kill web mutants?

– The experiment revealed that none of the traditional tests were able to kill a

high percentage of web mutants. The mutation scores ranged from 17% to 75%,

with a mean of only 47%. The wide range of mutation scores suggested that

some testers produced much higher quality test sets than others.

• RQ2: Can hand-designed tests kill web mutants?

– The web mutation-based tests killed all the mutants generated in the experiment.

Therefore, to answer this question, hand-designed tests can kill web mutants.

Designing tests with web mutation testing can improve the quality of tests.

The second experiment (Section 5.3) examined the applicability of web mutation testing

to detecting web faults (addressing RQ3 and RQ4). The experiment evaluated the mutation

scores from executing the web mutation-based tests on hand-seeded faults. The experiment

also identified the characteristics of faults that were detected.

• RQ3: How well do tests designed for web mutation testing reveal web faults?

– The web mutation-based tests detected 68% to 100% of hand-seeded faults, with

an average fault detection of 85%.

• RQ4: What kinds of web faults are detected by web mutation testing?

– Web mutation testing detected various kinds of hand-seeded faults. The majority

of faults detected were faults due to incorrect relational operators and incorrect

arithmetic operation. These kinds of faults directly impact the main functionality

of web apps. The web mutation-based tests that verified the apps’ functionality

could easily detect these faults. Many other detected faults involved incorrect

conditional operators and accessing non-existent form elements.

The third experiment (Section 5.4) studied whether web mutation testing and traditional

Java mutation testing are complementary (addressing RQ5 and RQ6). The experiment

163



executed tests designed with web mutation testing on Java mutants and executed tests

designed with traditional Java mutation testing on web mutants, and then analyzed the

number of killed mutants.

• RQ5: How well do tests designed for web mutants kill traditional Java mutants and

tests designed for traditional Java mutants kill web mutants?

– The mutation scores of running the web mutation-based tests on Java mutants

ranged from 38% to 87%, with a mean of 66%. The percentages of Java mutants

of each operator killed by the web mutation-based tests ranged from 26% to

98%. The findings excluded the percentages of killed AODS and AODU mutants

because too few mutants were created (only one AODS mutant and one AODU

mutant).

– The mutation scores of running the Java mutation-based tests on web mutants

ranged from 0% to 67%, with a mean of 41%. The percentages of web mutants of

each operator killed by the Java mutation-based tests ranged from 0% to 100%.

– The wide range of mutation scores suggested that some kinds of mutants were

easily detected while some were not.

• RQ6: How much do web mutants and traditional Java mutants overlap?

– The experiment revealed an overlap between web mutants and Java mutants,

especially the mutants that had direct impact on the main functionality of the

subjects under test. However, some kinds of web mutants were left undetected.

The experimental results suggested that Java mutants helped design tests that

checked all form inputs and verified individual web components whereas web

mutants helped design tests that verified interactions between web components.

Using both Java mutants and web mutants can improve the quality of tests.

164



While powerful, one major concern when applying mutation analysis is cost, and a major

factor in cost is the number of mutants. Every additional mutant increases both compu-

tational and human cost. The last experiment (Section 5.5) concentrated on decreasing

the testing cost by reducing the number of mutants generated (addressing RQ7, RQ8, and

RQ9). For each subject web app, the experiment designed 15 sets of tests adequate to kill

15 types of mutants (i.e., 15 mutation operators), executed them on all mutants, and com-

puted an average effectiveness of each set of tests on each type of mutants. The effectiveness

of the test sets were used to analyze redundancy among web mutation operators.

• RQ7: How frequently can web mutants of one type be killed by tests generated

specifically to kill other types of web mutants?

– The overall redundancy of web mutation operators ranged from 0% to 25%, with

a mean of only 9%. The other tests did not kill WSIR mutants while WSIR-

adequate tests killed several other types of mutants. This is encouraging because

it indicates that WSIR mutants may be particularly strong.

• RQ8: Which types of web mutants are seldom killed by tests designed to kill other

types of web mutants?

– No tests adequate for other types of mutants killed WSIR mutants. WSIR-

adequate tests, the only tests of all fifteen kinds of web mutants, killed very few

FOB mutants (5%). The other types of mutants were sometimes killed by tests

designed to kill other types of mutants but the redundancy varied.

• RQ9: Which types of web mutants (and thus the operators that create them) can be

excluded from the testing process without significantly reducing fault detection?

– The experimental results strongly indicated that three mutation operators were

largely redundant and could be removed with minimal loss in the fault detection

capability: WFUR, WHID, and WLUD.

165



In conclusion, since the design of web mutation operators was based on interaction faults

derived according to the seven challenges, the findings confirmed that tests generated for

web mutation testing can reveal more interaction faults than existing testing techniques

can.

6.2 Summary of Contributions

With the ultimate goal to improve the quality of web apps and reduce the testing cost

by using effective web mutation operators for test case design and generation, the global

contribution of this research is the testing criterion for web apps, specifically a set of web

mutation operators. The specific contributions are listed below:

• Classified challenges in testing web apps

• Modeled faults in web apps to ensure interaction fault coverage

• Defined a set of web mutation operators

• Implemented a web mutation testing tool

• Experimentally evaluated the effectiveness of web mutation testing to improve the

quality of tests designed with traditional testing criteria

• Experimentally examined the applicability of web mutation testing to detect web

faults

• Experimentally investigated an overlap between web mutation testing and traditional

Java mutation testing, and identified whether they can be complementary

• Experimentally analyzed the redundancy in web mutation operators to provide rec-

ommendation for cost reduction

This research retrofitted web-specific mutation operators into the Java mutation testing

system, hence developing a web mutation testing tool. Most of these implementation ideas

can be transferred into other mutation testing tools with slight modification.

166



Throughout this dissertation, the design details of web mutation operators were dis-

cussed in terms of J2EE-based web apps. The underlying concepts of the operators can be

applied to other web development languages and frameworks with slight modifications.

The list below shows the publications based on this dissertation:

• Upsorn Praphamontripong and Jeff Offutt. Finding Redundancy in Web Mutation

Operators. 13th IEEE Workshop on Mutation Analysis. Tokyo, Japan, April 2017.

• Upsorn Praphamontripong, Jeff Offutt, Lin Deng, and JingJing Gu. An Experimental

Evaluation of Web Mutation Operators. 11th IEEE Workshop on Mutation Analysis.

Chicago IL, April 2016.

• Upsorn Praphamontripong. Web Mutation Testing. The Ph.D. Symposium of 5th

IEEE International Conference on Software Testing, Verification and Validation. Mon-

treal, Quebec, Canada. April 2012.

• Upsorn Praphamontripong and Jeff Offutt. Applying Mutation Testing to Web Ap-

plications. 6th Workshop on Mutation Analysis, Paris, France, April 2010.

The list below shows my other publications:

• Jeff Offutt, Vasileios Papadimitriou, and Upsorn Praphamontripong. A Case Study

on Bypass Testing of Web Applications. Springer’s Empirical Software Engineering,

19(1):69-104, 2014.

• Garrett Kent Kaminski, Upsorn Praphamontripong, Paul Ammann, and Jeff Offutt.

A Logic Mutation Approach to Selective Mutation for Programs and Queries. Infor-

mation and Software Technology, 53(10):1137-1152, 2011.

• Garrett Kent Kaminski, Upsorn Praphamontripong, Paul Ammann, Jeff Offutt. An

Evaluation of the Minimal-MUMCUT Logic Criterion and Prime Path Coverage. Soft-

ware Engineering Research and Practice, 205-211, 2010.

167



• Nan Li, Upsorn Praphamontripong and Jeff Offutt. An Experimental Comparison of

Four Unit Test Criteria: Mutation, Edge-Pair, All-uses and Prime Path Coverage. 5th

Workshop on Mutation Analysis, Denver, Colorado, April 2009.

• Upsorn Praphamontripong, Swapna Gokhale, Aniruddha Gokhale, and Jeff Gray.

An Analytical Approach to Performance Analysis of an Asynchronous Web Server.

Simulation: Transactions of the Society for Modeling and Simulation, 83(8):571-586,

August 2007.

• Upsorn Praphamontripong, Swapna Gokhale, Aniruddha Gokhale, and Jeff Gray.

Performance Analysis of a Middleware Demultiplexing Pattern. 40th Hawaiian Inter-

national Conference on System Sciences (HICSS), Big Island, Hawaii, January 2007.

• Upsorn Praphamontripong, Swapna Gokhale, Aniruddha Gokhale, and Jeff Gray.

Performance Analysis of an Asynchronous Web Server. 30th Annual International

Computer Software and Applications Conference, September 2006.

• Swapna Gokhale, Aniruddha Gokhale, Jeff Gray, Paul Vandal, Upsorn Praphamon-

tripong. Performance Analysis of the Reactor Pattern in Network Services. 5th

Workshop on Performance Modeling, Evaluation, and Optimization of Parallel and

Distributed Systems, Rhodes Island, Greece, April 2006.

• Arundhati Kogekar, Dimple Kaul, Aniruddha Gokhale, Paul Vandal, Upsorn Prapha-

montripong, Swapna Gokhale, Jing Zhang, Yuehua Lin, Jeff Gray. Model-driven

Generative Techniques for Scalable Performability Analysis of Distributed Systems.

Next Generation Software Workshop, held at IPDPS, Rhodes Island, Greece, April

2006.

• Upsorn Praphamontripong and Gongzhu Hu. XML-Based Software Component Re-

trieval with Partial and Reference Matching. IEEE International Conference on In-

formation Reuse and Integration, Las Vegas, Nevada, November 2004.

168



6.3 Future Research Directions

This dissertation believes that web mutation testing can be complementary to other testing

techniques and can be further turned and augmented to target other web-specific features

and technologies. In addition to the web mutation testing concept, although functional, the

web mutation testing tool is subject to further improvement. The research described in this

document can be continued in several directions:

• Web apps are built with multiple technologies, both synchronous and asynchronous.

This requires more mutation operators and complicates tool building. This research

plans to expand the web mutation operator set to test for asynchronous faults (based

on JavaScript and AJAX) and other programming languages such as PHP. Several

ideas from the current set of operators such as URL manipulation and parameter

mismatch may be applied to other frameworks; for instance, calling an unintended

function in JavaScript, swapping parameters, mis-typing parameters, or dropping pa-

rameters in JavaScript function calls.

• The experiment described in Section 5.3 evaluated fault detection ability of web muta-

tion testing. Future work should examine the correlation between the kinds of faults

and the operators, thus being useful when substituting real faults with mutants in

software testing research.

The fault study can be further analyzed to understand the severity of faults. Fault

severity information can be useful for maintenance; i.e., deciding which faults should

be fixed immediately and which can be postponed. Future work should include metrics

to determine the correlation between the severity of faults and the effectiveness of the

mutation operators. This information can also be useful when incorporating into an

automated software repair system.

Moreover, the correlation may be useful in software reliability engineering research,

which analyzes the factors that lead to software failure and estimates the mean time to

failures. Using the correlation that signifies the severity impacts and the effectiveness

169



of the operators, the estimate can be done via a series of simulations.

• The experiment described in Section 5.4 generated Java mutants using only method-

level mutation operators. Future work should include class-level mutation operators.

• The experiment described in Section 5.5 raised questions about the WOID, WPVD,

WCTR, and WRUR operators. While not strong enough to be definitive, the results

indicate that these operators at least create many redundant operators. Although

it may not be possible to exclude the operators completely, the “personalized,” or

“tailored” mutation approach of Kurtz et al. may help further reduce the cost of web

mutation [52].

• The current web mutation testing tool relies on string comparison to determine

whether mutants are killed. Identifying killed mutants can be improved with bet-

ter heuristics.

• Heuristic approaches to automatically identify equivalent mutants should be imple-

mented in the mutation testing system.

• The failOnReload mutation operator, designed after the completion of the research

experiments, needs to be validated.

• The current web mutation testing tool is semi-automated. While mutant generation

and execution are automated, tests must be designed by hand as sequences of HTTP

requests and are automated in Java, HtmlUnit, JWebUnit, and Selenium. For future

work, the concepts of neural networks and machine learning may be incorporated

to train and recognize certain sequences of HTTP requests and input constraints,

assisting in automated test case generation of web mutation testing system.

• The web mutation testing tool currently creates a different source file for each mutated

component. A more efficient approach would be to use program schema [104].

170



Bibliography

171



Bibliography

[1] HtmlUnit. [Online] http://htmlunit.sourceforge.net/, last access February 2017.

[2] Selenium. [Online] http://www.seleniumhq.org/, last access February 2017.

[3] JWebUnit, 2015. [Online] https://jwebunit.github.io/jwebunit/, last access February
2017.

[4] R. Abraham and M. Erwig. Mutation operators for spreadsheets. IEEE Transactions
on Software Engineering, 35(1):94–108, Jan 2009.

[5] Paul Ammann, Marcio Eduardo Delamaro, and Jeff Offutt. Establishing theoretical
minimal sets of mutants. In 7th IEEE International Conference on Software Testing,
Verification, and Validation (ICST 2014), pages 21–30, Cleveland, OH, 2014.

[6] Paul Ammann and Jeff Offutt. Introduction to Software Testing. Cambridge Univer-
sity Press, Cambridge, UK, November 2016. 2nd Edition, ISBN 978-1107172012.

[7] Anneliese A. Andrews, Jeff Offutt, Curtis Dyreson, Christopher J. Mallery, Kshamta
Jerath, and Roger Alexander. Scalability issues with using FSMWeb to test web
applications. Information and Software Technology, 52(1):52–66, January 2010.

[8] Anneliese Amschler Andrews, Jeff Offutt, and Roger T. Alexander. Testing web
applications by modeling with FSMs. Journal of Software and Systems Modeling,
4(3):326–345, 2005.

[9] J.H. Andrews, L.C. Briand, and Y. Labiche. Is mutation an appropriate tool for testing
experiments. In Proceeding of the International Conference on Software Engineering
(ICSE 2005), pages 402–411, St. Louis, MO, May 2005.

[10] Laura Batchelor. Bank of America explains website outage, October 2011. [On-
line] http://money.cnn.com/2011/10/06/news/companies/bank of america website/,
last access February 2017.

[11] Paul E. Black, Vadim Okun, and Yaacov Yesha. Mutation operators for specifications.
In Proceeding of the 15th IEEE International Conference on Automated Software En-
gineering (ASE 2000), pages 81–88, Washington, DC, 2000. IEEE Computer Society.

[12] Clint Boulton. Google suffers first gmail outage of 2011, February 2011. [On-
line] http://www.eweek.com/c/a/Messaging-and-Collaboration/Google-Suffers-First-
Gmail-Outage-of-2011-850632, last access February 2017.

172



[13] Stefano Ceri, Florian Daniel, and Federico M. Facca. Modeling web applications
reacting to user behaviors. Computer Networks, 50(10):1533–1546, 2006.

[14] Kelly Clay. Amazon.com goes down, loses $66,240 per minute, August
2013. [Online] http://www.forbes.com/sites/kellyclay/2013/08/19/amazon-com-
goes-down-loses-66240-per-minute/, last access February 2017.

[15] Alan Cooper and Robert Reimann. Designing for the Web, About Face 2.0: The
Essentials of Interaction Design. Wiley Publishing, 2003.

[16] U. S. Customs and Border Protection. Ace secure data portal to enhance border
security and efficiency. [Online] http://www.cbp.gov/trade/automated, last access
February 2017.

[17] Howard Dahdah. Amazon S3 systems failure downs web 2.0 sites, July 2008. [Online]
http://www.computerworld.com.au/article/253840, last access February 2017.

[18] Máarcio E. Delamaro, José C. Maldonado, and Aditya P. Mathur. Interface mutation:
An approach for integration testing. IEEE Transactions on Software Engineering,
27(3):228–247, March 2001.

[19] Márcio Eduardo Delamaro, Jeff Offutt, and Paul Ammann. Designing deletion muta-
tion operators. In 7th International Conference on Software Testing, Verification and
Validation, (ICST 2014), pages 11–20, Cleveland, OH, March 2014.

[20] M.E. Delamaro, Lin Deng, V.H. Serapilha Durelli, Nan Li, and J. Offutt. Experimen-
tal evaluation of SDL and one-op mutation for C. In 7th International Conference
on Software Testing, Verification and Validation (ICST 2014), pages 203–212, March
2014.

[21] Richard A. DeMillo, Richard J. Lipton, and Frederick G. Sayward. Hints on test data
selection: Help for the practicing programmer. Computer, 11(4):34–41, April 1978.

[22] Richard A. DeMillo and Jeff Offutt. Constraint-based automatic test data generation.
IEEE Transactions on Software Engineering, 17(9):900–910, September 1991.

[23] L. Deng, N. Mirzaei, P. Ammann, and J. Offutt. Towards mutation analysis of android
apps. In 8th Workshop on Mutation Analysis (Mutation 2015), pages 1–10, Graz,
Austria, April 2015.

[24] Lin Deng, Jeff Offutt, and Nan Li. Empirical evaluation of the statement deletion
mutation operator. In 6th IEEE International Conference on Software Testing, Ver-
ification and Validation (ICST 2013), pages 80–93, Luxembourg, March 2013.

[25] Hyunsook Do and Gregg Rothermel. On the use of mutation faults in empirical
assessments of test case prioritization techniques. IEEE Transactions on Software
Engineering, 32(9):733–752, September 2006.

[26] Kinga Dobolyi. An Exploration of User-Visible Errors in Web-based Applications to
Improve Web-based Applications. PhD thesis, University of Virginia, 2010.

173



[27] Stacey Ecott. Fault-based testing of web applications. [Online] http://dreuarchive.
cra.org/2005/Ecott/paper.pdf, last access February 2017.

[28] Sebastian Elbaum, Kalyan-Ram Chilakamarri, Marc Fisher, II, and Gregg Rothermel.
Web application characterization through directed requests. In Proceedings of the 2006
International Workshop on Dynamic Systems Analysis (WODA 2006), pages 49–56,
New York, NY, 2006. ACM.

[29] Sebastian Elbaum, Srikanth Karre, and Gregg Rothermel. Improving web application
testing with user session data. In Proceedings of the 25th International Conference on
Software Engineering, pages 49–59, Portland OR, 2003.

[30] Sebastian Elbaum, Gregg Rothermel, Srikanth Karre, and Marc Fisher II. Leveraging
user-session data to support web application testing. IEEE Transactions on Software
Engineering, 31(3):187–202, March 2005.

[31] Sandra Camargo Pinto Ferraz Fabbri, José C. Maldonado, Paulo Cesar Masiero,
Márcio E. Delamaro, and E. Wong. Mutation testing applied to validate specifications
based on Petri nets. In Proceedings of the IFIP TC6 8th International Conference on
Formal Description Techniques VIII, pages 329–337, London, UK, 1996. Chapman &
Hall, Ltd.

[32] Seth Fiegerman. Yahoo says data stolen from 1 billion accounts, December
2016. [Online] http://money.cnn.com/2016/12/14/technology/yahoo-breach-billion-
users/index.html?iid=EL, last access February 2017.

[33] Jon Fingas. Dropbox goes down following problem with routine maintenance, January
2014. [Online] http://www.engadget.com/2014/01/10/dropbox-goes-down-following-
problem-with-routine-maintenance/, last access February 2017.

[34] Kevin Granville. 9 recent cyberattacks against big businesses, February
2015. [Online] http://www.nytimes.com/interactive/2015/02/05/technology/recent-
cyberattacks.html, last access February 2017.

[35] Yuepu Guo and Sreedevi Sampath. Web application fault classification – An ex-
ploratory study. In 2nd ACM-IEEE International Symposium on Empirical Software
Engineering and Measurement (ESEM 2008), pages 303–305, 2008.

[36] William Halfond and Alessandro Orso. Automated identification of parameter mis-
matches in web applications. In Proceedings of the 16th ACM SIGSOFT International
Symposium on Foundations of Software Engineering, pages 181–191, Atlanta, GA,
2008. ACM.

[37] William G. J. Halfond and Alessandro Orso. Improving test case generation for
web applications using automated interface discovery. In Proceedings of the 6th joint
meeting of the European Software Engineering Conference and the ACM SIGSOFT
Symposium on the Foundations of Software Engineering (ESEC-FSE 2007), pages
145–154, New York, NY, 2007. ACM.

174



[38] Matthew Hicks. Paypal says sorry by waiving fees for a day, October
2004. [Online] http://www.eweek.com/c/a/Web-Services-Web-20-and-SOA/PayPal-
Says-Sorry-by-Waiving-Fees-for-a-Day/, last access February 2017.

[39] Shan-Shan Hou, Lu Zhang, Tao Xie, Hong Mei, and Jia su Sun. Applying interface-
contract mutation in regression testing of component- based software. In Proceedings
of the 23rd IEEE International Conference on Software Maintenance, ICSM 2007,
pages 174–183, Paris, France, October 2007. IEEE.

[40] Rick Hower. Web site test tools and site management tools, 2002. [Online]
http://www.softwareqatest.com/qatweb1.html, last access February 2017.

[41] Raj Jain. The Art of Computer Systems Perfornamce Analysis: Techniques for Ex-
perimental Design Measurement, Simulation, and Modeling. John Wiley & Sons,
Canada, 1991. ISBN 0-471-50336-3.

[42] Yue Jia and M. Harman. An analysis and survey of the development of mutation
testing. IEEE Transactions on Software Engineering, 37(5):649–678, Sept 2011.

[43] R. Just, G.M. Kapfhammer, and F. Schweiggert. Do redundant mutants affect the
effectiveness and efficiency of mutation analysis? In 5th International Conference on
Software Testing, Verification and Validation (ICST 2012), pages 720–725, Montréal,
Canada, April 2012.

[44] René Just, Franz Schweiggert, and Gregory M. Kapfhammer. MAJOR: An efficient
and extensible tool for mutation analysis in a Java compiler. In Proceedings of the
International Conference on Automated Software Engineering (ASE 2011), pages 612–
615, November 9-11 2011.

[45] C. Kallepalli and J. Tian. Measuring and modeling usage and reliability for statis-
tical web testing. IEEE Transactions on Software Engineering, 27(11):1023–1036,
November 2001.

[46] Garrett Kent Kaminski, Upsorn Praphamontripong, Paul Ammann, and Jeff Offutt. A
logic mutation approach to selective mutation for programs and queries. Information
and Software Technology, 53(10):1137–1152, 2011.

[47] Gary Kaminski, Paul Ammann, and Jeff Offutt. Improving logic-based testing. Jour-
nal of Systems and Software, 86(8):2002–2012, August 2013.

[48] Sunwoo Kim, John A. Clark, and John A. McDermid. Class mutation: Mutation
testing for object-oriented programs. In Proceedings of NET.ObjectDays, pages 9–12,
2000.

[49] D. Kung, C. H. Liu, and P. Hsia. An object-oriented Web test model for testing
Web applications. In Proceeding of IEEE 24th Annual International Computer Soft-
ware and Applications Conference (COMPSAC 2000), pages 537–542, Taipei, Taiwan,
October 2000.

[50] B. Kurtz, P. Ammann, M. E. Delamaro, J. Offutt, and Lin Deng. Mutant subsumption
graphs. In 10th Workshop on Mutation Analysis (Mutation 2014), pages 176–185,
Cleveland, OH, March 2014. IEEE Computer Society.

175



[51] Bob Kurtz, Paul Ammann, and Jeff Offutt. Static analysis of mutant subsumption.
In 11th Workshop on Mutation Analysis (Mutation 2015), April 2015.

[52] Bob Kurtz, Paul Ammann, Jeff Offutt, Marcio E. Delamaro, Mariet Kurtz, and Nida
Gökće. Analyzing the validity of selective mutation with dominator mutants. In 24th
ACM SIGSOFT International Symposium on the Foundations of Software Engineer-
ing, Seattle Washington, USA, November 2016.

[53] Claire Le Goues, Michael Dewey-Vogt, Stephanie Forrest, and Westley Weimer. A
systematic study of automated program repair: Fixing 55 out of 105 bugs for $8 each.
In Proceedings of the 34th International Conference on Software Engineering (ICSE
2012), pages 3–13, Zurich, Switzerland, 2012. IEEE Press.

[54] Suet Chun Lee and Jeff Offutt. Generating test cases for XML-based Web compo-
nent interactions using mutation analysis. In Proceedings of the 12th International
Symposium on Software Reliability Engineering, pages 200–209, Hong Kong China,
November 2001. IEEE Computer Society Press.

[55] Jin-Hua Li, Geng-Xin Dai, and Huan-Huan Li. Mutation analysis for testing finite
state machines. In 2nd International Symposium on Electronic Commerce and Secu-
rity (ISECS 2009), volume 1, pages 620–624, May 2009.

[56] Nuo Li, Tao Xie, Maozhong Jin, and Chao Liu. Perturbation-based user-input-
validation testing of web applications. Journal of System Software, 83(11):2263–2274,
November 2010.

[57] Zhao Li and Jeff Tian. Testing the suitability of markov chains as web usage models.
In Proceedings of the 27th Annual International Conference on Computer Software
and Applications (COMPSAC 2003), pages 356–361, Washington, DC, 2003. IEEE
Computer Society.

[58] Andrew Lipsman. Weekly online holiday retail sales in billions. [On-
line] http://www.comscore.com/Insights/Data-Mine/Weekly-Online-Holiday-Retail-
Sales-in-Billions, last access February 2017.

[59] C. H. Liu, D. Kung, P. Hsia, and C. T. Hsu. Structural testing of Web applications. In
Proceedings of the 11th International Symposium on Software Reliability Engineering,
pages 84–96, San Jose CA, October 2000. IEEE Computer Society Press.

[60] Chien-Hung Liu. Data flow analysis and testing of JSP-based web applications. In-
formation and Software Technology, 48(12):1137–1147, 2006.

[61] G. Di Lucca, A. Fasolino, and F. Faralli. Testing web applications. In Proceedings
of the International Conference on Software Maintenance (ICSM 2002), ICSM ’02,
pages 310–319, Washington, DC, USA, 2002. IEEE Computer Society.

[62] Giuseppe Di Lucca and Massimiliano Di Penta. Considering browser interaction in
web application testing. In 5th International Workshop on Web Site Evolution (WSE
2003), pages 74–84, Amsterdam, The Netherlands, September 2003. IEEE Computer
Society.

176



[63] Yu-Seung Ma, Yong-Rae Kwon, and Jeff Offutt. Inter-class mutation operators for
Java. In Proceedings of the 13th International Symposium on Software Reliability
Engineering, pages 352–363, Annapolis MD, November 2002. IEEE Computer Society
Press.

[64] Yu-Seung Ma and Jeff Offutt. Description of method-level mutation operators for
java, 2005. [Online] http://cs.gmu.edu/∼offutt/mujava/mutopsMethod.pdf, last ac-
cess February 2017.

[65] Yu-Seung Ma, Jeff Offutt, and Yong-Rae Kwon. MuJava : An automated class mu-
tation system. Wiley’s Software Testing, Verification, and Reliability, 15(2):97–133,
June 2005.

[66] Yu-Seung Ma, Jeff Offutt, and Yong-Rae Kwon. muJava home page, 2005. [Online]
http://cs.gmu.edu/∼offutt/mujava/, last access February 2017.

[67] José Carlos Maldonado, Márcio Eduardo Delamaro, Sandra C. P. F. Fabbri, Ade-
nilso da Silva Simão, Tatiana Sugeta, Auri Marcelo Rizzo Vincenzi, and Paulo Cesar
Masiero. Proteum: A family of tools to support specification and program testing
based on mutation. In W. Eric Wong, editor, Mutation Testing for the New Century,
pages 113–116. Kluwer Academic Publishers, 2001.

[68] Nashat Mansour and Manal Houri. Testing web applications. Information and Soft-
ware Technology, 48(1):31–42, January 2006.

[69] Alessandro Marchetto, Filippo Ricca, and Paolo Tonella. Empirical validation of a web
fault taxonomy and its usage for fault seeding. In 9th IEEE International Workshop
on Web Site Evolution (WSE 2007), pages 31–38, Washington, DC, USA, 2007. IEEE
Computer Society.

[70] Evan Martin and Tao Xie. A fault model and mutation testing of access control
policies. In Proceedings of the 16th International Conference on the World Wide Web
(WWW 2007), pages 667–676, New York, NY, 2007. ACM.

[71] Ali Mesbah, Engin Bozdag, and Arie van Deursen. Crawling Ajax by inferring user
interface state changes. In Proceedings of the 2008 Eighth International Conference on
Web Engineering (ICWE 2008), pages 122–134, Washington, DC, USA, 2008. IEEE
Computer Society.

[72] Ali Mesbah and Arie van Deursen. Invariant-based automatic testing of Ajax user in-
terfaces. In Proceedings of the 31st International Conference on Software Engineering
(ICSE 2009), pages 210–220, Washington, DC, USA, 2009. IEEE Computer Society.

[73] S. Mirshokraie, A. Mesbah, and K. Pattabiraman. Efficient JavaScript mutation test-
ing. In 6th International Conference on Software Testing, Verification and Validation
(ICST), pages 74–83, March 2013.

[74] T. Mouelhi, Y. Le Traon, E. Abgrall, B. Baudry, and S. Gombault. Tailored shielding
and bypass testing of web applications. In 4th International Conference on Software
Testing, Verification and Validation (ICST 2011), pages 210–219, March 2011.

177



[75] K. Nishiura, Y. Maezawa, H. Washizaki, and S. Honiden. Mutation analysis for
JavaScript web application testing. In International Conference on Software Engi-
neering and Knowledge Engineering (SEKE), pages 159–165, January 2013.

[76] A. Jefferson Offutt, Ammei Lee, Gregg Rothermel, Roland H. Untch, and Christian
Zapf. An experimental determination of sufficient mutant operators. ACM Transac-
tions on Software Engineering Methodology, 5(2):99–118, April 1996.

[77] A.J. Offutt, G. Rothermel, and C. Zapf. An experimental evaluation of selective
mutation. In 15th International Conference on Software Engineering, pages 100–107,
May 1993.

[78] Jeff Offutt. Scope and handling state in Java server pages. [Online]
http://cs.gmu.edu/∼offutt/classes/642/slides/642Lec10b-JSP-stateHandling.pdf,
last access February 2017.

[79] Jeff Offutt. Quality attributes of Web software applications. IEEE Software: Special
Issue on Software Engineering of Internet Software, 19(2):25–32, 2002.

[80] Jeff Offutt, Vasileios Papadimitriou, and Upsorn Praphamontripong. A case study
on bypass testing of web applications. Empirical Software Engineering, 19(1):69–104,
February 2014.

[81] Jeff Offutt and Roland Untch. Mutation 2000: Uniting the orthogonal. In Mutation
2000: Mutation Testing in the Twentieth and the Twenty First Centuries, pages 45–
55, San Jose, CA, October 2000.

[82] Jeff Offutt and Ye Wu. Modeling presentation layers of web applications for testing.
Software and Systems Modeling, 9(2):257–280, April 2010.

[83] Jeff Offutt, Ye Wu, Xiaochen Du, and Hong Huang. Bypass testing of Web applica-
tions. In 15th International Symposium on Software Reliability Engineering, pages
187–197, Saint-Malo, Bretagne, France, November 2004. IEEE Computer Society
Press.

[84] Jeff Offutt, Ye Wu, Xiaochen Du, and Hong Huang. Web application bypass test-
ing. In Proceedings of the 28th International Computer Software and Applications
Conference, Workshop on Quality Assurance and Testing of Web-Based Applications
(COMPSAC 2004), pages 106–109, Hong Kong, China, September 2004. IEEE Com-
puter Society.

[85] Vasileios Papadimitriou. Automating bypass testing for Web applications. Master’s
thesis, George Mason University, 2006.

[86] Nicole Perlroth. Attacks on 6 banks frustrate customers, September
2012. [Online] http://www.nytimes.com/2012/10/01/business/cyberattacks-on-6-
american-banks-frustrate-customers.html, last access February 2017.

[87] Soila Pertet and Priya Narasimhan. Causes of failure in web applications. Technical
Report CMU-PDL-05-109, December 2005. [Online] http://repository.cmu.edu/, last
access February 2017.

178



[88] Upsorn Praphamontripong and A. Jefferson Offutt. Applying mutation testing to web
applications. In 6th Workshop on Mutation Analysis (Mutation 2010), pages 132–141,
Paris, France, April 2010.

[89] Upsorn Praphamontripong and Jeff Offutt. Finding redundancy in web mutation
operators. In 13th IEEE Workshop on Mutation Analysis (Mutation 2017), Tokyo,
Japan, April 2017.

[90] Upsorn Praphamontripong, Jeff Offutt, Lin Deng, and JingJing Gu. An experimental
evaluation of web mutation operators. In 11th IEEE Workshop on Mutation Analysis
(Mutation 2016), pages 102–111, Chicago IL, April 2016.

[91] F. Ricca and P. Tonella. Analysis and testing of Web applications. In 23rd Interna-
tional Conference on Software Engineering (ICSE 2001), pages 25–34, Toronto, CA,
May 2001.

[92] Filippo Ricca and Paolo Tonella. Testing processes of web applications. Annals of
Software Engineering, 14(1-4):93–114, December 2002.

[93] Filippo Ricca and Paolo Tonella. Web testing: A roadmap for the empirical research.
In 7th IEEE International Symposium on Web Site Evolution (WSE 2005), pages
63–70, 2005.

[94] Sreedevi Sampath, Renee C. Bryce, Gokulanand Viswanath, Vani Kandimalla, and
A. Gunes Koru. Prioritizing user-session-based test cases for web applications testing.
In Proceedings of the 2008 International Conference on Software Testing, Verification,
and Validation, ICST ’08, pages 141–150, Washington, DC, USA, 2008. IEEE Com-
puter Society.

[95] Sreedevi Sampath, Sara Sprenkle, Emily Gibson, and Lori Pollock. Web application
testing with customized test requirements – An experimental comparison study. In
Proceedings of International Symposium on Software Reliability Engineering, pages
266–278. IEEE Computer Society, November 2006.

[96] Sreedevi Sampath, Sara Sprenkle, Emily Gibson, Lori Pollock, and Amie Souter
Greenwald. Applying concept analysis to user-session-based testing of web appli-
cations. IEEE Transactions on Software Engineering, 33(10):643–658, October 2007.

[97] K. Seshadri, L. Liotta, R. Gopal, and T. Liotta. A wireless internet application for
healthcare. In Proceedings of the 14th IEEE Symposium on Computer-Based Medical
Systems (CBMS 2001), pages 109–114. IEEE, 2001.

[98] Ben H. Smith and Laurie Williams. Should software testers use mutation analysis to
augment a test set? Journal of Systems and Software, 82(11):1819–1832, November
2009.

[99] Sara Sprenkle, Camille Cobb, and Lori Pollock. Leveraging user-privilege classification
to customize usage-based statistical models of web applications. In International Con-
ference on Software Testing, Verification and Validation (ICST 2012). IEEE, April
2012.

179



[100] Internet World Stats. Internet usage statistics: World internet users and population
stats. [Online] http://www.internetworldstats.com/stats.htm, last access February
2017.

[101] A. Tappenden, P. Beatty, J. Miller, A. Geras, and M. Smith. Agile security test-
ing of web-based systems via HTTPUnit. In Proceedings of the Agile Development
Conference (ADC 2005), pages 24–29, Denver CO, July 2005.

[102] Paolo Tonella and Filippo Ricca. Statistical testing of web applications. Journal of
Software Maintenance and Evolution, 16(1-2):103–127, January 2004.

[103] M.A.S. Turine, M.C.F. de Oliveira, and P.C. Masiero. A navigation-oriented hypertext
model basd on statecharts. In Proceedings of the 8th ACM Conference on Hypertext,
pages 102–111, 1997.

[104] Roland Untch, Jeff Offutt, and Mary Jean Harrold. Mutation analysis using program
schemata. In Proceedings of the 1993 International Symposium on Software Testing,
and Analysis, pages 139–148, Cambridge MA, June 1993.

[105] Roland H. Untch. On reduced neighborhood mutation analysis using a single muta-
genic operator. In ACM Southeast Regional Conference, pages 19–21, Clemson SC,
2009.

[106] T. R. Weiss. Two-hour outage sidelines amazon.com, August 2006. [Online]
http://www.computerworld.com/, last access February 2017.

[107] W. Eric Wong and Aditya P. Mathur. Reducing the cost of mutation testing: An
empirical study. Journal of Systems and Software, 31(3):185–196, December 1995.

[108] Weichen Eric Wong. On Mutation and Data Flow. PhD thesis, Purdue Univer-
sity, West Lafayette, IN, 1993. [Online] http://docs.lib.purdue.edu/dissertations/
AAI9420921/, last access February 2017.

[109] Wuzhi Xu, J. Offutt, and J. Luo. Testing web services by XML perturbation. In
16th IEEE International Symposium on Software Reliability Engineering, pages 10
pp.–266, Nov 2005.

[110] E. Yourdon. Byte Wars: The Impact of September 11 on Information Technology.
Prentice Hall, 2002.

180



Biography

Upsorn Praphamontripong is a Ph.D candidate of the Department of Computer Science of
Volgenau School of Engineering at George Mason University. She is currently a full-time
lecturer of the Computer Science Department at the University of Virginia. Praphamon-
tripong received her M.S. in Computer Science from Central Michigan University in 2004
and her B.S. in Computer Science from Thammasat University in Thailand in 1997. At
George Mason University, she involved in the Self-Paced Learning Increases Retention and
Capacity (SPARC) project, which focuses on increasing the capacity and retention of over-
all students as well as expanding enrollment by women. Her advisor is Dr. Jeff Offutt.
Praphamontripong’s research interests include software engineering, software reliability en-
gineering, software testing and maintenance, software usability, and performance analysis.
She is also interested in seeking ways to increase capacity and retention in introductory
programming courses.

181


