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Abstract

A MODEL-BASED TESTING TECHNIQUE FOR
COMPONENT-BASED REAL-TIME EMBEDDED SYSTEMS

Jing Guan, Ph.D.

George Mason University, 2015

Dissertation Director: Dr. Jeff Offutt

The growing complexity of modern real-time embedded systems makes component-based

software engineering (CBSE) technology more desirable. Although many ideas have been

proposed for building component-based real-time embedded software, techniques for testing

component-based real-time systems have not been well developed. A typical component-

based embedded system consists of multiple user tasks, as well as hardware, middleware

and software layers. Interaction problems between different components can cause system

failures in field applications. The challenges not only come from the integration of multiple

components through their interfaces, but also include the composition of extra-functional

properties. In an embedded system, extra-functional requirements are as important as

functional requirements. A real-time embedded system needs to achieve its functionality

under the constraints caused by its extra-functional properties. Since the time at which the

system actions take place is important, correct functional behavior with regard to timing

properties is essential to real-time embedded systems. Therefore, this research is intended to

help detect both functional and temporal faults during the integration of component-based

real-time embedded software.



This dissertation presents a test model that depicts both inter-component and intra-

component relationships in component-based real-time embedded software and indentifies

key test elements. The test model is realized using a family of graph-based test models

in which not only are the functional interactions and the dependence relationships illus-

trated, but also the time-dependent interaction among components, are illustrated. Time

dependednt behavior is modelled by means of timers and clocks. A notion of timed events

define constraints in timed scenarios. I use the graph-based test model to develop a novel

family of test adequacy criteria that help generate effective test cases. In this test model,

I use timing-constraint to specify the duration and execution cost of inter-component and

intra-component interactions as well as state transitions and activities. I also present new

algorithms to facilitate automate generation of the test cases. To increase the observabil-

ity of system behavior, I instrument related operations to generate trace data including

task id, operation, time stamp, and execution state from program execution, where the dy-

namic information gathered is used to check against the expected results. The experiments

showed that the proposed approach effectively detected various kinds of integration faults

and optimized the balance between budget and quality in an industrial product software

testing.
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Chapter 1: Introduction

1.1 General Introduction

The increased complexity of real-time embedded systems leads to increasing demands with

respect to software engineering. This complexity makes the development of such systems

very expensive. To reduce development costs, component-based modeling is increasingly

being used to develop for embedded systems. It is expected to bring several advantages to

embedded systems, such as rapid development time, the ability to re-use existing compo-

nents, and the ability to compose sophisticated software [28].

Component-based technology has been extensively used for many years to develop soft-

ware systems in desktop environments, office applications, and web-based distributed ap-

plication [8]. The advantages are achieved by facilitating the reuse of components and their

architecture, raising the level of abstraction for software construction, and sharing standard-

ized services. Real-time embedded systems have requirements not found in most desktop

systems such as timeliness requirements and resource efficiency. So, it is more difficult to

adapt component-based software engineering (CBSE) to real-time embedded system than

desktop systems [35].

The components may have been written in different programming languages, execute in

various operational platforms, and be distributed across vast geographic distances. Some

components may be developed in-house, while others may be third party or commercial

off-the-shelf components (COTS) [86]. A benefit of this kind of design is that software

components can be analyzed and tested independently. At the same time, this independence

of components means that significant issues cannot be addressed until full system integration

testing. As a result, complex behaviors are observed when components are integrated

and several kinds of faults may arise during integration. Thus, testing each component

1



independently does not eliminate the need for system integration testing. Many possible

interactions between components need to be tested to ensure the correct functionality of

the system [36].

As the size and complexity of software systems increase, problems stemming from the

design and specification of overall real-time embedded system structure become more sig-

nificant. The result is that the way groups of components are arranged, connected, and

structured is crucial to the success of software projects. Problems in the interactions can

affect the overall system development and the cost and consequences could be severe [45].

Testability for real-time embedded software is a challenging problem due to the low

observability and controllability of embedded systems [80]. Embedded software often gets

its inputs from hardware and generates outputs for hardware rather than for users, so it

is more difficult to control and observe. CBSE increases the complexity, which affects the

observability and controllability.

Real-time embedded platforms are also complex integrated systems where multiple real-

time tasks execute in multi-tasking environments. In a component-based embedded system,

each individual component may run several tasks, so the number of messages between

tasks across components is dramatically increased [57]. When integrating these components

together, unexpected results may occur if interactions between components are not fully

tested. Interactions between components may give rise to subtle errors that could be hard

to detect.

Additionally, any component in a system can be updated at any time, so the dependen-

cies between the existing and the modified components can change dynamically. Therefore,

adequate and extendable testing methods for continuous validation of integrated compo-

nent systems is essential to the success of a component-based real-time embedded system.

Despite its value, component-based modeling introduces new problems when testing real-

time embedded software systems [50]. This dissertation describes research to develop a new

systematic software testing technique to thoroughly examine the component interaction

behavior during system integration testing activities. The technique is based on models

2



created from the software architectures and design specification, which specify the primary

components, interfaces, dependences, and behaviors of software systems.

The faults that occur during component integration are different from those found dur-

ing unit and component testing [14]. Faults that cannot be detected during unit, module,

and component testing are often faults in the way the software components are structured

or in how they communicate. Correctly implementing interactions can be difficult because,

unlike the components of a software system, the interactions are rarely isolated in a single,

independent runtime structure. Instead, interaction is typically spread across the compo-

nents involved in the interaction. To make matters more difficult, this interaction code is

often tightly integrated with the code associated with the component’s functionality.

A fundamental problem of test data generation is that the only way to ensure complete

correctness is to test with all possible inputs [64]. However, the number of possible inputs

to a given program is effectively infinite, so testers must accept partial results by finding a

finite number of test cases that will provide a high level of confidence that the program’s

behavior is satisfactory. Software architecture can provide a framework for understanding

system components and their interrelationships, especially those attributes that are consis-

tent across time and implementations. At the software architecture level, software systems

are presented at a high level of abstraction where a software system is viewed as a set of

compositional components, interactions among these components, and the configuration of

the system. Implementation details are suppressed and the independence of system com-

ponents is increased. The software architecture specifications provide a description of the

software system that could be used to generate tests at the integration level. This lets

developers abstract away unnecessary details and focus on the assignment of software com-

ponents, interfaces to hardware components, and how they model their important aspects

throughout and especially early in development.

A software architecture design specification captures the system level details of com-

ponents, interactions and context. For example, the Unified Modeling Language (UML)

3



provides a variety of diagramming notations for capturing architecture and design infor-

mation from different perspectives [6] [38]. In a component level sequence diagram, the

interaction between components is defined explicitly. In recent years, researchers have in-

vented ways to use UML models as a source of information in software testing [54] [86]

[66] [12]. Many UML design artifacts have been used in different ways to perform different

kinds of testing. For instance, UML statecharts have been used to perform unit testing [78]

[67] [20], and interaction diagrams (collaboration and sequence diagrams) have been used

to test class interactions [76] [59] [10] [34].

A software architecture design specification precisely describes how the software is ex-

pected to behave in a high level way that can easily be used by automated methods.

Evaluating and testing software systems based on software architecture and design spec-

ifications can allow tests to be created earlier in the development process, therefore sub-

stantially reducing the costs of any problems and errors. Currently, there is a lack of testing

techniques for testing component-based real-time embedded system at the software archi-

tecture level. In this dissertation, I present research in the area of software architecture and

design based testing to create a general testing technique at this level.

1.2 Goals and Scope of This Research

Testing integration of components becomes an important activity in CBSE [69]. Testing

methods for component-based embedded real-time software is a relatively new research

field [60]. The informality of the usual testing methods makes it difficult to measure the

quality of testing, leads to a lack of repeatability in the process and results, and means

that the tester cannot be confident in the efficiency of the testing. As a result, errors may

severely impact the software in ways that are costly to fix and causes delays and failures

when deploying systems in the real world. To improve both functional and real-time testing

of component-based real-time embeded software, tester need a time-dependent interaction

model between the embedded real-time components.

4



The objective of this research is to provide a new model-based testing approach to help

component-based real-time embedded software testing become more structured. In turn,

this will lead to software systems that have fewer faults.

1.2.1 Problem Statement

Component-based real-time embedded system development brings new challenges to tra-

ditional embedded engineering. In particular, the current method of testing this type of

software is inadequate. We need stronger techniques to test this type of component-based

real-time embedded systems.

Manual and specification testing techniques do not work effectively for component-based

real-time embedded systems since they cannot detect many of the faults that are novel to

this type of software system.

To solve the problem, we need to consider the unique characteristics of this type of

software. This research project has addressed the problem of finding a better way to test

component-based real-time embedded software.

1.2.2 Thesis Statement

This thesis addresses the problem of testing component-based real-time em-

bedded software by inventing formal test criteria for software architecture level

integration testing in component-based real-time embedded systems. The re-

search includes techniques to design effective test cases based on a novel fam-

ily of test adequacy criteria and analyze results to detect both functional and

temporal faults during the integration of component-based real-time embedded

software.

1.2.3 Scope of Research

This research focuses on studying efficient and practical solutions for modeling and deriv-

ing integration tests for component-based real-time embedded software. Due to the tight

5



relationships between its functionality and the constraints caused by its extra-functional

properties, component integration testing in an embedded system cannot be solely achieved

by examining components’ behavior through their interfaces. Among extra-functional prop-

erties, this dissertation focuses on the timing requirements and software/hardware depen-

dencies.

This dissertation makes the following contributions:

1. A technique that enhances the integration testing of components by accounting for

states of collaborating components in an interaction. This is important as interactions may

trigger correct behavior for certain states and not for others. To achieve such an objective

the proposed technique includes a novel intermediate test model called the Component-

based Real-time Embedded Architecture-based Test Graph (CREATEG) model from com-

ponent level sequence diagrams and state diagrams of the components involved in the com-

ponent interactions.

2. Timing notations to specify the duration and execution cost of inter-component and

intra-component interactions as well as state transitions and activities. Timing character-

istics of the execution infrastructure are taken into account in the test model. A functional

behavior determinism with regard to time is realized.

3. Test criteria for generating integration tests from the CREATEG models. The CRE-

ATEG models all possible paths for component state transitions that a message sequence

may trigger. These criteria can be used both to guide the architecture designers and to help

the testers generate meaningful and effective test cases.

4. Timed input values and timed output results to utilize timed message sequence.

Trace information is unified in the program instrumentation to include task id, operation,

time stamp, and execution state. Non-deterministic outputs, caused by real-time and con-

currency features in embedded systems, are better observed and analyzed.

5. Algorithms to automatically create test requirements. These algorithms are based

on CREATEG models.

6. An experimental tool to generate test cases automatically from CREATEG models.

6



The test generator uses CREATEG to generate test paths whose test cases attempt to

detect faults that may arise due to invalid component states during interactions.

7. Empirical validation of the ideas. This dissertation reports on an empirical study

to assess the effectiveness and cost of the test adequacy criteria based on the CREATEG

test model. The architecture-based testing technique was applied to an industrial software

system. The results are compared with results from using two other testing methods. The

goal of this process is to determine whether the new testing technique can effectively detect

faults.

1.3 Solution Strategy

To find solutions to our research problems, I first discuss issues of testing component-

based real-time embedded systems, then list a set of properties to test based on software

architecture design artifacts and models. This helps us decide what to test when testing at

the integration level. Then we define architecture relations at the architectural level, and

formally define these relations. Three graphical representations are introduced for testers to

visualize the testing technique and for possible analysis and simulations. Test criteria based

on the architecture relations are then presented. These criteria are formally defined. We

then apply the technique to an industrial system, and develop algorithms to transform the

architecture and design models to graphical representations. An empirical evaluation of the

technique is carried out using an industrial software system, and its results are discussed.

1.4 Unique Contributions of the Research

Major contributions of this dissertation are:

1. New test criteria for testing component-based real-time embedded software systems

2. A novel formal model of architecture relations in component-based real-time embed-

ded software systems

3. A new architecture modeling technique based on UML
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4. A timed model with timing notations and constraints

5. Formal definitions of transformation rules for translating UML models to architecture

models

6. A unified form of timed instrumentation for increasing observability of component

interactions

7. A prototype tool for generating test cases based on architecture models

1.5 Dissertation Organization

Chapter 2 describes background. Chapter 3 reviews issues and related research. Chapter

4 discusses the architecture based testing technique for general component-based real-time

embedded software. Chapter 5 presents a proof-of-concept-tool. Chapter 6 discusses an

empirical validation of the technique. Finally, Chapter 7 concludes the dissertation research

and discusses future research directions.

8



Chapter 2: Background

This chapter provides background information and concepts required to understand the

work in this dissertation. Section 2.1 describes background on embedded systems, including

its architecture and properties. Section 2.2 discusses embedded software testing. Section

2.3 describes component-based real-time embedded software. Section 2.4 and Section 2.5

discuss component-based embedded software architecture and design.

2.1 Real-Time Embedded System

An embedded system is a special-purpose computer system built into a larger device [71].

Usually there is no disk drive, keyboard or screen. Broekman and Notenboom [22] define

embedded systems as a generic term for a broad range of systems covering, for example,

cellular phones, railway signal systems, hearing aids, and missile tracking systems. They

specify that all embedded systems have a common feature in that they interact with the

real physical world, controlling hardware. The term embedded system can encompass a

variety of devices and systems.
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Figure 2.1: Structure of an embedded system

Embedded systems are designed to perform specific tasks in a particular computational

environment consisting of software and hardware components. Figure 2.1 illustrates the

typical structure of such a system in terms of four layers.

An application layer consists of software that satisfies application requirements; appli-

cations layers that use services from underlying layers, including the Real-Time Operating

System (RTOS) and Hardware Adaptation Layer (HAL).

An RTOS consists of task management, interrupt handling, inter-task communication,

and memory management facilities [71] that allow developers to create embedded system

applications that meet functional requirements and deadlines using provided libraries and

APIs.

The hardware adaptation layer is a runtime system that manages device drivers and

provides hardware interfaces to higher level software systems–applications and RTOSs.

Interactions between different layers play an essential role in embedded system applica-

tion execution. An application layer consists of multiple user tasks that execute in parallel,

sharing common resources like CPU, bus, memory, device, and global variables. Interac-

tions between application layers and lower layers, and interactions among the various user

tasks that are initiated by the application layer, flow the information created in one layer

to others for processing. Faults in such interactions could result in execution anomalies.
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Multitasking is one of the most important aspects in embedded system design, and is

managed by the RTOS. Due to thread inter-leaving, embedded systems employing multiple

tasks can have non-deterministic output, which complicates the determination of expected

outputs for a given input.

Embedded system often functions under real-time constraints, what means the request

need be completed within a required time interval from the triggering event [25]. In the

real-time domain, the temporal behavior [48] is as important as the functional behavior.

Embedded systems can be classified into hard real-time and soft real-time depending on their

requirements. Their main difference lies in the cost or penalty for missing their deadlines.

Hard real-time embedded systems have strict temporal requirements, in which failure to

meet a single deadline may lead to catastrophic outcomes. On the other hand, soft real-time

embedded systems are not required to satisfy hard real-time constraints; missing deadlines

lead to performance degradation.

2.2 Testing Embedded Software

According to statistical studies [37], software accounts for as much as 80% of the func-

tionalities in embedded real-time systems such as home appliances, information appliances,

personal assistants, telecommunication gadgets, and transportation facilities. Software is

also much more complex than hardware due to its inherent flexibility. It is often found that

an on-market real-time embedded system fails due to some simple software glitches, which

could have been avoided if the software was thoroughly verified. All these facts show that

verifying the correctness of software is a demanding and important issue in the design phase

of an embedded real-time system [44].

These features greatly affect software testability and measurability in embedded systems.

The term testability in software testing can be considered from various viewpoints [12] [17]

[23]. While some consider the architectural viewpoints [47] [51], few describe techniques for

more effective design for testability at the architectural level [11] [13]. However, increasing
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testability is commonly identified as an important goal in software testing research [27].

In embedded software systems, two main viewpoints of testability are considered from

the architectural viewpoint: controllability and observability [17]. To test a component, we

must be able to control its input, behavior and internal state. To see how this input has

been processed, we must be able to observe the components output, behavior and internal

states. Finally, the system control mechanisms and observed data must be combined to

form meaningful test cases.

Embedded software often generates outputs for hardware to function rather than for

users to interact with, so the observability is significantly low. It is easy to control software

input values that are entered from a keyboard. But an embedded program that gets its

inputs from hardware is more difficult to control. Testability is an important factor in

embedded real-time systems, especially when the systems have additional properties that

increase the complexity.

Faults in embedded systems can produce effects on program behavior or state that, in

the context of particular test executions, do not propagate to output, but do surface later in

the field. To detect internal program faults when testing embedded systems is the primary

focus of this work.

2.3 Component-based Real-time Embedded Software

The embedded systems industry is under competitive pressure to continually shorten its

time-to-market, increase product differentiation, and at the same time offer more customer

value. As a result, (i) embedded systems are becoming increasingly software intensive,

and (ii) individual components integrate increasing functionality over different projects and

reuse cycles. Integrating more functions into a single component gives rise to increasingly

varying behavior.

During the last decade advances have been made in component-based development for

desktop and internet applications. Embedded and real-time systems have requirements

not found in desktop systems, including real-time requirements and resource efficiency.
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This is one reason why embedded and real-time systems have more difficulties adapting

to component-based software engineering (CBSE) than desktop systems [35]. A few de-

facto standards have completely transformed the way such software is developed. These

standards are mainly Microsoft’s .NET [1], SUN’s Enterprise Java Beans [2] and OMG’s

CORBA Component Model (CCM) [3]. Component models for embedded systems are

usually designed with very domain specific requirements in mind [63]. There is a large set

of different component technologies that approach different problems in different ways such

as the SCA-based Component Framework for Software Defined Radio [50] and many more.

For embedded systems it seems difficult to define de-facto standards due to highly diverging

requirements in different industrial segments [27].

Software Defined Radio (SDR), developed with the Software Communications Architec-

ture (SCA), is an example of such an effort. SDR refers to reconfigurable or reprogrammable

radios that can have different functionality with the same hardware. Because the function-

ality is defined in software, a new technology can easily be implemented on a radio by

updating its software. So a radio can be built to meet the need for continuously changing

technology. In an SDR, multiple waveforms can be implemented in software using the same

hardware. One software defined radio can communicate with many different radios, with

only a change in software parameters. This increases interoperability among different mili-

tary units, emergency units, and coalition forces. Also new technologies can be adapted to

quickly, easily, and with a much lower cost than with the traditional method.

SCA is a common, well-defined open architecture. It is used to build radios that support

operations in a wide variety of domains without losing the ability to communicate with each

other. It can help radio vendors improve interoperability by providing the ability to share

waveform software between radios, and reduce development time through software reuse.

This architecture also facilitates scalability and technology insertion.

As an emerging technology in embedded software development, the SCA presents a

new paradigm, and it affects the entire embedded software development cycle including

analysis, specification, design, implementation, verification, validation and maintenance.
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However, it introduces a new environment to embedded communication engineers, filled

with system software concepts such as object oriented programming, portable operating

system interfaces, and middleware using the Common Object Request Broker Architecture

(CORBA) [4].

2.4 Component-based Real-time Embedded Software Archi-

tecture

Software Communications Architecture (SCA) [7] is a component-based software archi-

tecture specifically designed for real-time embedded communications devices. The SCA

structure is composed of an application layer and an operation environment (OE) layer.

The software architecture detailed view is shown in Figure 2.2.

Figure 2.2: SCA software architecture detailed view

The OE consists of a Core Framework (CF), a CORBA middleware and a POSIX-based
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Operating System (OS). Since the SCA uses the CORBA middleware, application programs

are basically composed of CORBA objects that conform to the SCA core framework. The

SCA core framework is composed of the specification of interfaces and a domain profile.

A domain profile is composed of XML descriptor files that describe the hardware and

software configuration information of a SCA system domain. The OE specifies the services

and interfaces that the applications use from the environment. The interfaces are defined

by using the CORBA Interface Definition Language (IDL), and graphical representations

are made by using UML [38]. Figure 2.3 shows the relationships between the OS, the

application, and the OE.

Figure 2.3: Relationship between SCA components

Any component on a radio can be replaced or upgraded, and the download process can

be made transparent to the user. In the SCA context, a radio application is known as
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a waveform, which is defined as the set of transformations applied to information that is

transmitted over the air and the corresponding set of transformations to convert received

signals back to their information content. The core framework defines a common mechanism

to manage and control waveforms and their components. Therefore, components can come

from different sources and still use the same mechanisms to be deployed, connected, and

managed.

Port provides a specialized connectivity to a component. It is used to set up and tear

down connections between application components in the CF domain. Port is a logical

element that enables components to exchange data. Ports are classified into Uses ports

(clients) and Provides ports (servers). Provides port of a component is used to retrieve an

object reference for a server object contained in the component. Uses port of a component

is used to retrieve an object reference for a proxy object connected with a server object

contained in another component. Port interface also provides components with connect

and disconnect functionalities, which are necessary to assemble waveforms. Figure 2.4

illustrates the connection of components via ports in SCA model.
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Figure 2.4: Connection of components via ports

Significant efforts are being carried out to facilitate SCA-based SDR software devel-

opment on integrated development environments, reusable software modules, and imple-

mentations of software architectures. For example, the Open-Source SCA Implementa-

tion::Embedded (OSSIE) [82], developed at Virginia Tech for research and education, is an

open SCA implementation that can reduce the entry cost of SCA development and training.

But less attention has been brought to finding effective and efficient testing strategies to

make such systems more robust and reliable.
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2.5 Component-based Real-time Embedded Software Design

Models

The Unified Modeling Language (UML 2.0) [6] [38] offers a great opportunity to describe

component-based embedded systems. It provides constructs to deal with varying levels of

modeling abstraction to visualize and specify both the static and dynamic aspects of sys-

tems. And with the stereotypes, tagged values, and constraints, the semantics of model

elements can be customized and extended. The Object Management Group (OMG) has

proposed the Model Driven Architecture (MDA) approach, which aims to allow developers

to create systems entirely with models. It provides a set of guidelines to structure speci-

fications expressed as models. Therefore, it is useful and significant to combine the MDA

approach and UML models with the component technique to develop software for embedded

systems [59].

A model is a formal specification of the function, structure and behavior of a system

within a given context, and from a specific point of view (or reference point). A model is

often represented by a combination of drawings and text, typically using a formal notation

such as UML, augmented where appropriate with natural language expressions.

MDA itself is not a new OMG specification but rather an approach to software de-

velopment that is enabled by existing OMG specifications such as the Unified Modeling

Language (UML), the Meta Object Facility (MOF), and the Common Warehouse Meta-

model (CWM).
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Chapter 3: Related Work

3.1 Related Work

Although a great deal of research has addressed the overall process of component-based

software engineering (CBSE) on requirements engineering, design and evaluations, we do

not have as much reserach on testing CBSE. Testing CBS is a challenging area of research.

Existing knowledge in this field shows that CBSE introduces new problems for testing

and maintaining software systems and we need new ways to validate software components,

especially when they are integrated into new enviroments [42] [83] [87].

There are a number of component-based testing methods and techniques which have

different paradigms, characteristics and perspectives. This section comprehensively reviews

research work related, to provide a key foundation of the literature review. It also identifies

the important problems and limitations in the existing component-based integration testing

techniques.

Liang et al. [42] proposed a testing technique that is based on analysis of component-

based systems from component-provider and component-user perspectives. The technique

makes use of complete information from components for which source code is available

and partial information from those for which source code is not available. Their approach

separated the testing of the component-provider from the testing of the component-user,

so it presented two different techniques for each category. Valentini et al. [79] developed a

framework based on contract-checkers. It verifies the information between the component

producer and the user. This technique was leveraged by Zheng and Bundell [90] with

UML-based testing at the modeling level to design model-level test contracts.

Machado et al. [61] presented a UML based approach to integration testing using

UML diagrams including the Object Constraint Language. Zheng and Bundel [89] further
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extended the work to develop a model-based approach using three techniques, scenario-

based, contract-based and component test mapping. Hartmann [43] presented a design-

based testing approach to generate test inputs from UML state machines. It models the

behavior of each component, specifies component interactions, and annotates the state

machines with test requirements to construct a global behavioral model of the composed

statecharts. Then, test cases are automatically derived from the annotated statecharts and

global behavioral model, and executed to verify component conformance behavior. State

machines of individual components are combined and then used to design tests.

Briand et al. have published several research papers on state-base testing with UML

statechart diagrams [20] [21] [70]. They proposed to use class diagrams, collaboration

diagrams, or OCL to derive test requirements [20]. They also proposed a methodology

to automate the derivation of test cases from UML statechart diagrams for a given set of

transition test sequences [21]. Their results show that, in most cases, state-based testing

techniques are not likely to be sufficient by themselves to detect most of the faults present

in the code, and they need to be complemented with other testing methods.

The above approaches use only one kind of behavioral UML model for test generation,

either sequence diagrams or state machines. The approach in this dissertation is novel

in that it combines the information from component level UML sequence diagrams and

statecharts to derive a graph-based test model for the purposes of test input generation.

Wu et al. [87] investigated faults that can be identified at the integration of compo-

nents. They presented a test model that depicts a generic infrastructure of component

based systems and identified key test elements. A Component Interaction Graph is gener-

ated from the implementation, in which the interactions and the dependence relationships

among components are illustrated. Test adequacy criteria were developed to cover context

dependence relationship and content dependence relationship.

While Wu’s test elements and test criteria are useful to test component-based software,

their work is in the stage of approach development. This paper does not discuss and give
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practical ways on how to use their approach to generate actual test cases for component-

based testing. Their test model mainly illustrates the context/content-dependence relation-

ships defined in the paper. Additional work is required to effectively drive test generation

from the test model.

In addition, the authors made several assumptions in their work, including: (i) assuming

that each individual component has been adequately tested by the component providers

when testing component-based software; (ii) assuming that each interface only includes one

operation, and the references to the interfaces and to the operation are identical. These

assumptions imply that their work considers only some simplified situations, which could

have limitations in applying their approach to actual component-based testing practice.

From the above survey, we note that different kinds of UML diagrams have been used

for software testing from different perspectives. UML state charts have been widely used

to test the state-based behavior of software. Similarly, UML interaction diagrams have

been used for integration testing. However, existing approaches do not focus on exercising

the composition behavior of interacting components. More specifically, none of the above

papers discuss testing by integrating UML interaction and statechart diagrams to uncover

component interaction faults.

The approach in this dissertation uses UML statecharts and sequence diagrams from

software architecture and design models to generate an intermediate model, the Component-

based Real-time Embedded Architecture-based Test Model (CREATEG), and applies dif-

ferent coverage criteria based on the CREATEG graph representation. We use sequence

diagrams to determine the order of messages between components.

There has been a great deal of work on using dataflow-based testing approaches to test

interactions among system components [86] [56] [45] [68]. However, none of this work has

addressed problems in testing embedded systems or studied the use of such algorithms on

these systems. While we employ analyses similar to those used in these papers, we direct

them at specific interactions within embedded systems.

Integration testing based on scenarios using finite state machines is discussed by Li
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et al. [55]. The work was furthered extened by Bouaziz and Berrada to test real time

component-based systems [18] .

In an embedded system, extra-functional requirements are as important as functional

requirements. A real-time embedded system needs to achieve its functionality under the

constraints caused by its extra-functional properties. Therefore, they should be consid-

ered while testing embedded software behavior. Due to this specialty, the adoption of the

component-based testing approach to the embedded system has encountered difficulties. For

example, an important part of extra-functional characteristics of many embedded systems

is timing requirements. It is difficult to describe timing requirements in models tradition-

ally used in component-based design. Also, the tight integration between hardware and

software makes it hard to model and implement software separately from hardware. Com-

ponent integration testing in an embedded system cannot be solely achieved by examining

components’ behaviors through their interfaces. When modeling real-time systems, timing

aspects and constraints become essential. Testing component-based real-time embedded

systems is even more challenging than testing untimed reactive systems.

Few component-based testing models incorporate component extra-functional behav-

ioral aspects in their frameworks.

Bouaziz and Berrada [19] proposed an aproach to model and test component-based real-

time systems. To avoid constructing an entire system, they seperate the individual behavior

of components from their interactions. They use a particular component called the assembly

controller to model intra-component interactions, and only test relevant behaviors related

to intra-component synchronizations. An assembly controller is a particular type of Timed

Inout/Output Automata (TIOA) used to restrict the overall behavior of the composite

system to ensure a correct interaction between components.

The most popular approaches for specifying real-time systems are based on Timed Au-

tomata [60]. It is a graph containing a finite set of nodes and a finite set of labelled edges

extended with clocks. UPPAAL is a commonly used automatic verification tool for timed

automata [46]. It is very good at modelling by providing a simulator and a well-developed
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GUI, but the tool provides only binary synchronization between processes and can only

verify reachability properties. Larsen et al. [53] created a number of small academic specifi-

cations and implementations to evaluate an online testing tool named UPPAAL-TRON for

real-time systems [52]. An embedded system industrial case has been evaluated by Miku-

cionis et al. [62]. They found that real-time online testing is an effective way to detect

discrepancies between the model and the implementation in practice. However, large and

very non-deterministic models can run into state explosions, making it problematic to up-

date the state-set in real-time. This may limit the granularity of time constraints that can

be checked in real-time. All the above approaches are formal verification methods to prove

conformance with a predefined specification. The goal is to check whether an extracted

model satisfies a certain specification. My test method, in contrast, defines input data to

the object program and observes the reactions of the program. The goal of my testing is to

find cases where the software reactions do not meet its expected results.

There has also been research on component-based software engineering for embedded

systems such as [26], which focused on embedded software. There has been work on using

informal specifications to test embedded systems focusing on the application layer. Tsai et

al. [75] presented an approach to test embedded applications using class diagrams and state

machines. Cunning and Rozenblit [29] generated test cases from finite state machine models

built from specifications. Sung et al. [72] tested interfaces to the kernel via the kernel API

and global variables that are visible in the application layer. All of these papers focused on

the application layer, while my approach applies the technique on the components across all

the layers: application layer, hardware adaption layer, and operating system infrastructure

layer.

To consider extra-functional requirements impact into the component integration level

testing, I introduce additional notations in my testing model to integrate timing require-

ments. The generated test cases are annotated with real-time constraints. In contrast with

the above models, my approach tests both functional and non-functional behavior.

Even though the empirical study of testing techniques has made some progress in recent
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years, studies of embedded systems have not. Many of the papers cited in this section

on testing embedded systems include no empirical evaluation at all. My research work de-

scribed in this dissertation goes beyond most of this prior work by examining fault detection

capabilities relative to the use of techniques in an industrial real-time embedded system.

In UML, the notion of time is not clearly defined for the design of RTE systems. The

UML profile for modeling and analysis of real-time and embedded systems (MARTE) has

been proposed and was adopted as an Object Management Group (OMG) specification [40]

[15] [88]. In comparison, MARTE presents time in a more precise and clear manner. A new

clock constraint language (CCSL) is used in MARTE to specify chronometric and logical

time constraints. A chronometric clock implicitly refers to physical time and a logical clock

mainly addresses concrete instant ordering [73] [31] [16]. Although MARTE is capable

of modelling logical and chronometric time, it does not specify the dynamic behavior of

integration systems [58].

Kanstren [49] presented a study on design for testability in component-based embed-

ded software based on two large-scale companies in the European telecom industry. He

discussed Design for Testability (DFT) solutions to support test automation from two Eu-

ropean telecommunications companies, working on similar large scale component-based em-

bedded systems. Their techniques to support effective test automation were discussed. A

common communication protocol provides support for implementing reusable test compo-

nents. Especially in the case of embedded systems, a good host test environment enables

efficient software testing. When this environment matches the target system as much as

possible, efficient host testing is possible. One way to support testing is to use an operating

system that is supported on both the target hardware and in a host-testing environment,

as simulated on a desktop. Including support for test automation as a first-class feature

allows more effective analysis of the system, including analysis of long running tests and

deployed systems, and enables efficient field-testing. Effectively implementing this requires

possibilities for dynamic configuration of test functionality during execution. Abstracting

test cases from the implementation minimizes the effects of internal system changes to the
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test cases. This mostly applies at the system testing level, as in earlier testing phases it is

often necessary to observe more detailed properties of the system.

Kanstren’s methods addressed test automation and the different techniques to make

this more effective at the architectural level. But they were still limited to regular func-

tional testing to fulfill system requirements instead of designing a formalized and abstract

structured testing model.
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Chapter 4: A Component-based Real-time Embedded

Software Architecture and Design Based Testing Technique

The Object Management Group (OMG) has proposed the Model Driven Architecture

(MDA) approach, which allows developers to create systems entirely with models. It pro-

vides a set of guidelines to structure specifications expressed as models [81]. MDA itself

is not a new OMG specification but rather an approach to software development that is

enabled by existing OMG specifications such as the Unified Modeling Language (UML), the

Meta Object Facility (MOF), and the Common Warehouse Metamodel (CWM). The Uni-

fied Modeling Language (UML 2.0) [6] [38] allows designers to describe component-based

embedded systems. It provides constructs to deal with varying levels of modeling abstrac-

tion to visualize and specify both the static and dynamic aspects of systems. And with the

mechanisms of stereotypes, tagged values, and constraints, the semantics of model elements

can be customized and extended. Therefore, it is useful and significant to combine the MDA

approach and UML models to develop software testing technique for component-based em-

bedded systems.

Component-based modeling supports the representation of substantial aspects of the

software architecture views as structural models, which consist of components and their

relationships. It represents the static configuration of a system through the dependencies

and connections between components. It includes details of the interface, such as data

structures, services, and physical characteristics, on different abstraction levels. Behavioral

models are used to describe the dynamic aspects of the components, component interaction,

and resource constraints. It can be divided into component-interaction parts, which show

the messages (behavior name and message parameters) sent between components, and state
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transition parts, which present the state transitions inside each component or the interac-

tions between the components. It also shows dynamic aspects such as tasks, services, and

operating conditions to provide scheduling information.

Functional models specify functionality of a component such as data flows, control flows

and functional relations. The run-time interaction of a component-based real-time embed-

ded system is modeled by well-defined sequences of messages passed among component level

sequence diagrams. Component level sequence diagrams are interaction diagrams consist-

ing of a set of components and their relationships, including the messages that may be

dispatched among them, as well as interactions with external system. Sequence diagrams

address the dynamic view of a system by emphasizing the time-ordering of messages.

In many cases, the states of the components sending and receiving a message at the

time of message passing strongly influence their behavior:

• A component receiving a message can provide different functionalities from different

states

• Certain functionalities may not be available if the receiving component is not in the

right state

• The functionalities provided by a component may depend on the states of other com-

ponents including the sending component of a message

UML state diagrams are useful modeling tools in certain domains, such as embedded

software development. State diagrams are the de-facto accepted industry standard for

modeling the behavior of distributed reactive systems [30]. The UML state machine diagram

is used to model discrete behavior of a component through finite state transition. A system

that is described by a UML state machine contains states at a particular time. A state

machine is a behavior that specifies the sequence of states an object visits during its lifetime

in response to events, together with its responses to those events. A state is a condition that

satisfies some condition, performs some activity, or waits for some external event. They are

connected by transitions. System states can be changed if the system receives a trigger
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associated with the current states. An event is the occurrence of a stimulus that can trigger

a state transition. The trigger will activate a transition that is adjacent to the current states.

If the trigger fires a transition, the current state will move to the next state. A transition is

an edge that connects states. It is a relationship between two states indicating that an object

in the current state will, when a specified set of events and conditions are satisfied, perform

certain actions and enter the next state. Each transition has four components: transition

name, trigger, guard condition, and action expression [6] [38]. Figure 4.1 presents a simple

state diagram.

Figure 4.1: A simple state diagram

This research proposes an integration testing technique that is based on the idea that

the interactions between components should ideally be exercised for all possible states of

the components involved. This is of particular importance for component-based real-time

embedded software as many components exhibit state-dependent behavior. This testing
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research objective is achieved by generating a graph-based test model called Component-

based Real-time Embedded Architecture-based TEst Graph (CREATEG) and by covering

paths in the model.

The proposed technique can be applied during the integration test phase, after the

completion of component testing. It consists of the following four steps:

1. CREATEG Generation: The intermediate test model CREATEG is constructed from

a component interaction sequence diagram and its corresponding state diagrams.

2. Test Paths Generation: Test paths are generated from the CREATEG based on several

possible alternative coverage criteria.

3. Test Execution: All selected test paths are executed by using manually-generated test

data and an execution log is created, which records component states before and after

execution of each message in a test path.

4. Result Evaluation: The object states in the execution log are compared with the

expected object states in the test paths generated from CREATEG. If a test path

does not generates the required resultant state, then the corresponding test case is

considered to have failed.
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Figure 4.2: Flowchart for the proposed testing technique

Figure 4.2 presents a flowchart for the proposed technique, which shows the above four

phases and their relationships with various artifacts. The following sub-sections describe

the proposed testing technique in greater detail with the help of a simple example.

4.1 The CREATEG Model

The CREATEG is a test model used to automatically generate test specifications for compo-

nent integration testing. In this sub-section, we describe how this test model is constructed

from a given UML sequence diagram and its corresponding state diagrams. We have, how-

ever, made some assumptions about these UML models:

• Sequence diagrams are available that show critical scenarios of system operation.

• State diagrams are available that specify states and transitions for each component.

• Sequence diagrams may contain synchronous call messages or asynchronous signal

messages.
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• States in the component that are relevant to the selected sequence diagram are spec-

ified.

• All guards and conditions are evaluated together with events for generating state

transitions.

In a component-based embedded system, applications are built as a collection of inter-

connected components, which are transformed into executable units such as tasks that can

be managed by the underlying real-time operating system. The execution time of a compo-

nent does not only depend on the component behavior but also on the time-constraint and

platform characteristics. For example, each task is assigned with a priority. Higher priori-

ties are assigned to tasks that have real-time deadlines. The impact of the extra-functional

characteristics to a component integration test can be illustrated in the following example:

Sequence diagram 4.3 shows four components that interact through messages. Upon

receiving a message, each component reacts with a sequence of events, changing states

and sending messages to other components. Each component maps to a task and gets its

computing resource based on its task’s priority.

Figure 4.3: A component level sequence diagram
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Figures 4.4, 4.5, and 4.6 demonstrate three different senarios. In all three figures, Com-

ponent1’s task is assigned the highest priority while Component3’s task is assigned the

lowest priority. In Figure 4.4, when Component4’s task’s priority is higher than Compo-

nent2’s, Component2 may not complete its state transition before Component4 finishes its

state transition and calls Message4 2(). On the other hand, in Figure 4.5, when Com-

ponent4’s task’s priority is lower than Component2’s, Component2 will complete its state

transition before Component4 starts its state transition and calls Message4 2(). In Figure

4.6, a timed delay is added between Message1 2() and Message1 4(), even through Compo-

nent2’s task has lower priority than Component4’s task. Thus, Component2 will complete

its state transition before Component4 starts its task.

Figure 4.4: Component interaction scenario 1
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Figure 4.5: Component interaction scenario 2

Figure 4.6: Component interaction scenario 3

To consider how extra-functional requirements impact component integration level test-

ing, this test model introduces additional timing notations. They are placed onto the graphs

that are defined in the next section.
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The CREATEG is a multi-graph structure composed of the Component Interface Inter-

action Graph (CIIG), the Component State-based Interaction Behavior Graph (CSIBG),

and the Component State-based Event-driven Interaction Behavior Graph (CSEDIBG),

each of which is described below.

4.1.1 Component Interface Interaction Graph (CIIG)

Here I first introduce a graphical representation of the interactions between real-time em-

bedded system components. Components in this graph not only include application layer

components but also hardware adaption layer and infrastructure layer components. Inter-

actions involve message exchanges occur at specific times.

A CIIG represents the time-dependent connectivity relationships between these compo-

nents as well as time-dependent relations inside a component and a component interface. A

CIIG is composed of a set of components (visually as rectangular boxes), component inter-

faces (small rectangular boxes on the edge of the component boxes), connections between

components (solid arrows), connections inside components (dash-line arrows), and times

when connections happen.

Definition 1 (Correlated Components). If two components are connected through an

interface message, these two components are correlated. The component that initiates the

interface message is the sending component, while the component that accepts the interface

message is the receiving component. A component has to provide at least one interface to

specify the dependencies between the services provided by the component and the services

required to fulfill its task. Two components can interact during execution if their provided

and required interfaces are associated by exchanging data. Component interfaces can be

categorized into two groups: provider interfaces and user interfaces.

In real-time embedded software, a layered architecture of basic software modules com-

prises communication modules, an operating system, and modules that access microcon-

troller peripheral devices as well as a component based infrastructure for application com-

ponents.
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Definition 2 (Provider/Callee Interfaces). A provider interface in a component pro-

vides a function service for the other components to call and to transfer information to this

component. A provider interface specifies the same types of elements as a user interface

that it provides to the systems.

Definition 3 (User/Caller Interfaces). A user interface specifies variables, messages,

services, calibration parameters, and other software elements required for the component to

execute. A user interface in a component connects the other components by calling their

provider services.

Definition 4 (Message Edges). A message edge represents a connection between two

interfaces. The message edges in the CIIG are of two types: internal message edges and

external message edges.

1. An external message edge represents a call action between two components. It is a

connection from the sending component’s user interface to the receiving component’s

provider interface.

2. An internal message edge represents a direct or indirect interface relationship

within a component. It is a connection from the receiving component′s provider in-

terface to its own user interface. Component internal flow refers to a message sequence

within a software component. This information helps to identify the dependencies of

an output of a component on its input values.

Definition 5 (Time Instants). A time instant is an observation point when a specific

event happens. It is an instant of a physical time or logical clock. A physical clock is a

chronometric clock. A logical clock is a finite set of instants, which are ordered for discrete

time clocks and indexed by natual numbers. For example, a logical clock can be represented

as the number of frames passed since the start up of the systems. Time duration represents

distances between time points.
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Definition 6 (Message Sequences). A message sequence is a sequence of message edges

representing a system operation. External message edges and internal message edges to-

gether comprise a message sequence.

In a message sequence, message edges can represent synchronous (blocking) or asyn-

chronous (non-blocking) method calls.

During a synchronous method call the thread of execution changes from the component

with the required interface to the component with the provided interface until the latter

has finished its task. The synchronous method call completes and the thread of execution

returns to the first calling component.

When a component sends an asynchronous message, it can continue processing and does

not have to wait for a response. Asynchronous calls are commonly seen in multithreaded

applications and in message-oriented middleware. Asynchrony gives better responsiveness

and reduces the temporal coupling but is harder to design and test.

Definition 7 (Component Interface Interaction Graph (CIIG)). Given a software

architecture defined by a specific UML sequence diagram, the Component Interface Interac-

tion Graph (CIIG) is defined as:

CIIG = (C, C P Interf, C U Interf, C In edge, C Ex edge, T Ex edge, TC)

• C = {C1, C2, . . . , Cm}, a finite set of components

• C P Interf = {Ci.P1, Ci.P2, . . . , Ci.Pn}, a finite set of provider interfaces in com-

ponent Ci, i ∈ {1, 2, ...,m}

• C U Interf = {Ci.U1, Ci.U2, . . . , Ci.Un}, a finite set of user interfaces in component

Ci, i ∈ {1, 2, ...,m}

• C In edge = {Ci.P → Ci.U}, a finite set of internal component message edges i ∈

{1, 2, ...,m}

• C Ex edge = {Ci.U → Ci+1.P}, a finite set of external component message edges

i ∈ {1, 2, ...,m}
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• T Ex edge = {t(i →j)}, a finite set of time stamps at external component message

edges i ∈ {1, 2, ...,m}, j ∈ {1, 2, ...,m}

• TC = {tci} is a finite set of time constraints on components internal messages i ∈

{1, 2, ..., n}, j ∈ {1, 2, ...,m}, tci = (tsti∨tpmi∨tumi)−(tstj∨tpmj∨tumj) rop c, c ∈

Integer, rop ∈ {<,≤,=, >,≥}

As an example, consider a software system that consists of nine components.

Figure 4.7: A software system that consists of multiple componentse

Figure 4.7 has nine components connected by eighteen message edges. Details are given

as follows:

C = {C1, C2, C3, C4, C5, C6, C7, C8, C9}

C P Interf = {C1.P, C2.P, C4.P, C4.P1, C4.P2, C4.P3, C4.P4, C4.P5, C4.P6,

C5.P1, C5.P2, C6.P1, C6.P2, C6.P3, C6.P4, C7.P, C8.P, C9.P}

C U Interf = {C1.U, C2.U, C4.U, C4.U1, C4.U2, C4.U3, C4.U4, C4.U5, C4.U6,
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C5.U1, C5.U2, C6.U1, C6.U2, C6.U3, C6.U4, C7.U, C8.U, C9.U}

C In edge = {C4.P1 → C4.U4, C4.P4 → C4.U1, C4.P2 → C4.U6, C4.P3 → C4.U5, C4.P5 →

C4.U3, C4.P6 → C4.U2, C5.P1 → C5.U2, C5.P2 → C5.U1, C6.P1 → C6.U4, C6.P2 → C6.U3, C6.P3 →

C6.U2, C6.P4 → C6.U1}

C Ex edge = {C1.U → C4.P1, C2.U → C4.P2, C4.U → C4.P3, C4.U4 → C5.P1, C4.U5 →

C6.P2, C4.U6 → C5.P1, C5.U2 → C7.P, C6.U3 → C8.P, C6.U4 → C9.P, C9.U → C6.P4, C8.U →

C6.P3, C7.U → C5.P2, C6.U2 → C4.P5, C6.U1 → C4.P6, C5.U1 → C4.P4, C4.U3 → C4.P, C4.U2 →

C2.P, C4.U1 → C1.P}

The time instant at which a component interaction occurs is modeled as a temporal

property on the edge of an external message interface. The form of the time instant can

be both chronometric and logical. The units can be milliseconds or number of time frames.

T Ex edge = {t(1 →4), t(4 →5), t(5 →7), t(7 →5), t(5 →4), t(4 →1), t(2 →4), t(4 →6),

t(6 →8), t(6 →9), t(8 →6), t(9 →6), t(6 →4), t(3 →4), t(4 →3)}

Time constraints define timing relationships between component interactions. In a mes-

sage sequence, the time duration between the beginning of an input message and the end

of the message sequence is calculated and compared to a predefined value. For example,

tc1 and tc4 depict the time constraints for time durations of the above message sequences.

TC = {tc1, tc2, tc3, tc4, tc5, tc6, tc7, tc8, tc9}

tc1 = (t(4 →1)−t(1 →4)) < 10ms

tc2 = (t(4 →5)−t(5 →4)) < 5ms

tc3 = (t(5 →7)−t(7 →5)) < 2ms

tc4 = (t(4 →2)−t(2 →4)) < 6ms

tc5 = (t(6 →4)−t(4 →6)) < 2ms

tc6 = (t(9 →6)−t(6 →9)) < 100us

tc7 = (t(4 →3)−t(3 →4)) < 3ms

tc8 = (t(6 →4)−t(4 →6)) < 1ms

tc9 = (t(8 →6)−t(6 →8)) < 10us
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A timed message sequence is depicted by C Ex edge, C In edge and T Ex edge to-

gether. The following example traces along the top of Figure 4.7.

C1.U
t(1→4)−−−−→C4.P1 → C4.U4

t(4→5)−−−−→C5.P1 → C5.U2
t(5→7)−−−−→C7.P → C7.U

t(7→5)−−−−→C5.P2 →

C5.U1
t(5→4)−−−−→C4.P4 → C4.U1

t(4→1)−−−−→C1.P

Another message sequence is shown below:

C2.U
t(2→4)−−−−→C4.P2 → C4.U6

t(4→6)−−−−→C6.P1 → C6.U4
t(4→9)−−−−→C9.P → C9.U

t(9→6)−−−−→C6.P4 →

C6.U1
t(1→6)−−−−→C4.P6 → C4.U2

t(4→2)−−−−→C2.P

A CIIG contains all the components and their interfaces, and shows connections between

components and interfaces. A CIIG also captures the time when an interaction between

two components occurs. But a CIIG does not reflect the internal behavior of a component

upon reception of any incoming external message, or before triggering any outgoing external

message. As shown in diagram 4.4, 4.5, and 4.6, in a typical real-time embedded system,

complexity arises when components interact with each other and multiple threads are run-

ning independently. Component behavior largely depends on the timeline of the interation

messages.

The next time-dependent model is used to achieve the description of components’ inter-

actions and behavior.

4.1.2 Component State-based Interaction Behavior Graph (CSIBG)

For real-time embedded systems, a component is commonly modeled by state diagrams

to describe component behavior. A component can receive a message in more than one

state and exhibit distinct behavior for the same message in different states. To capture this

characteristic and reflect this type of information in testing, we introduce a new type of

graphical representation, the Component State-based Interaction Behavior Graph (CSIBG),

to represent the information about the component behavior.

In many cases, the message sequence through a system depends on the different states

of operation. This means that the sequence of messages may take different paths depending
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on the state in which the system is operating. As an example, Figure 4.8 shows that the

message through component C1 is different depending on whether the component is in state

S1 or state S2.

State dependent messages enable better understanding of the system and more precise

analysis. They can help manage the complexity of system flow visualization by highlighting

execution paths relevant to a particular state. Moreover, since the path of execution through

a component is state dependent, the output of a component also depends upon the state in

which the component is executing. Thus, specifying state dependent system flow helps to

thoroughly test the overall software.

Figure 4.8: State dependent message paths

A Component State-based Interaction Behavior Graph (CSIBG) is a diagram that shows

the behavior and the relationships of multiple components in a message sequence. A CSIBG

is composed of a set of component subnets (visually as rectangular boxes), where each rep-

resents the behavior of one component, component interfaces (small rectangular boxes on

the edge of the component subnet boxes), connections between component subnets (solid

arrows), states in component subnets (circles inside the component subnet boxes), connec-

tions between component interface and states (solid arrows), connections between states
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inside component subnets (solid arrows), and times when connections happen.

A CSIBG consists of multiple component subnets. Each component subnet contains at

least one state. A Finite State Machine (FSM) is a model of behavior composed of a finite

number of states, transitions between those states, and actions. FSMs contain four main

elements:

• States – Define behavior and may produce actions

• State Transitions – Switching from one state to another

• Conditions – Set of rules that must be met to allow a state transition

• Input Events – Triggers that are either externally or internally generated, which may

possibly invoke conditions and upon fulfilling the conditions lead to state transitions.

Every FSM has one initial state, which is the starting point. The input events act

as triggers, which cause an evaluation of the conditions imposed. On fulfilling those, the

current state of the system switches to some other state (a state transition). State transitions

often happen with associated actions. The actions can happen before entering a state, when

exiting the state, or while in the state itself.

The source (incoming message) is the origin of information and is an input to a compo-

nent. A source is used for a computation or control, or both. A sink represents consumption

of information and specifies a particular output of a component. The incoming message

plays a role on generating an external event in the component. An event capture is respon-

sible for capturing the events, doing pre-processing, and identifying the event type. In each

state, an event dispatcher maps the events to a handler and calls the handler. An event

handler implements the activities, checks conditions, and decides state transitions. The

event dispatcher and event handler for one event in different states are normally different.

As an example, Figure 4.9 shows that the message through component C1 triggers different

event handlers depending on whether the component is in state S1 or state S2.
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Figure 4.9: State dependent transition paths

My model defines the following elements to compose a message sequence in the compo-

nent model. A message sequence for a component consists of one or more sources, one or

more sinks, and dependencies between the sources and the sinks.

Definition 8 (Correlated States). If two states are connected through a transition, these

two states are correlated. The state that initiates the transition is the start state, while the

state that is transitioned to is the target state.

States are connected by transitions. States can be changed if the system receives a

trigger associated with the current states. The trigger will activate the transition that is

adjacent to the current state. If the trigger fires a transition, the CSIBG will move to the

next state.

The edges in the CSIBG are of two types: message edges and transition edges. Message

edges can be input message edges or output message edges.

Definition 9 (Input Message Edges). An input message edge is a connection from the

receiving component’s provider interface to its current state, which is defined as an entry

state. There may be more than one input message edge from one provider interface for the
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same external message edge, because the message may arrive in a different state.

Definition 10 (Output Message Edges). An output message edge is a connection from

an exit state of the receiving component to its user interface, which generates an outgoing

external message to the next receiving component. There can be multiple output message

edges to one user interface. Input message edges are modeled in the CSIBG by attributes of

a message including exit state and user interface.

Both input message edges and output message edges belong to the internal component

message edges defined as internal message edges (C In edge) in a CIIG.

Besides external events, internal events invoke conditions leading to state transitions.

A typical internal event is a timer event, where a one-time event or a periodic event may be

activated by a timer and internal generated events. The timer event is created due to the

requirement of timely and predictable behavior from real-time systems. Internal events also

include internally generated events from another internal event inside the component. The

outcome of these events is to execute corresponding methods, compute results, and perform

state transitions. In a CSIBG, state transitions are represented by transition edges.

Definition 11 (Transition Edges). A transition edge is a connection between two states.

The start state transitions to the target state.

A component subnet also contains two types of external interfaces: provider interface

and user interface, which are already defined in the CIIG.

In a sequence diagram, messages are processed sequentially, each message causing the

execution of a run-to-completion (RTC) step. The next external event is processed after

the current RTC step has completed and the state machine has reached a stable state.

In a real-time system, a transition often occurs at a time that depends on the occurrence

time of another transition. But it does not describe all the possible scenarios because

some messages coming to a component can happen at any state inside the component.

In a CSIBG, transfer relations are described by placing a transition from the receiving

component’s provider interface to all the states where the incoming message may happen.
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In the component subnet, upon receiving an external message from sending component, a

series of state transitions happen following an entry state.

Transition edges are modeled by the attributes of a transition, including the accepting

and the sending state.

Formally, a CSIBG is defined as follows:

Definition 12 (Component State-based Interaction Behavior Graph (CSIBG)).

CSIBG = (Comp1(Sn1, Pn1, Un1, Tn1, In1, On1, TSTn1, TPMn1, TUMn1),

Comp2(Sn2, Pn2, Un2, Tn2, In2, On2, TSTn2, TPMn2, TUMn2), . . . ,

Compm(Pnk, Unk, Snk, Tnk, Ink, Onk, TSTnk, TPMnk, TUMnk),Msgn, TC), where

Comp1 is the graph that describes component subnet C1.

• Sn1 = {S1, S2, . . . , Sn}, a finite set of states in C1 .

• Pn1 = {P11, P21, . . . , Pn1}, is the set of all the provider interfaces in C1. The naming

format of a provider interface is “P” + “the number of the correlated component” +

“the number of this component”.

• Un1 = {U11, U12, . . . , U1n}, is the set of all the user interfaces in C1. The naming

format of a user interface is “U” + “the number of this component” + “the number

of the correlated component”.

• Tn1 = {S1 S2, S2 S3, . . . , Sn − 1 Sn}, is the set of all transition edges representing

transitions between states in C1. The naming format of a transition edge is “sourceS-

tate”+ “ ” + “targetState”.

• In1 = {Pn1 S1, Pn1 S2, . . . , Pn1 Sn}, is the set of all the input message edges in

C1. The naming format of an input message edges is “providerInterface”+ “ ” +

“entrytState”.

• On1 = {S1 On1, S2 On1, . . . , Sn On1}, is the set of all the output message edges in

C1. The naming format of an output message edges is “destinationtState” + “ ” +

“userInterface”.
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• TSTn1 = {tst(i →j)}, a finite set of time stamps on transition edges i ∈ {1, 2, ...,m},

j ∈ {1, 2, ...,m}.

• TPMn1 = {tpm(i →j)}, a finite set of time stamps on input message edges i ∈

{1, 2, ...,m}, j ∈ {1, 2, ...,m}.

• TUMn1 = {tum(i →j)}, a finite set of time stamps on output message edges i ∈

{1, 2, ...,m}, j ∈ {1, 2, ...,m}.

• TC = {tci} is a finite set of time constraints on components internal messages i ∈

{1, 2, ..., n}, j ∈ {1, 2, ...,m}, tci = (tsti∨ tpmi∨ tumi)−(tstj ∨ tpmj ∨ tumj) rop c, c ∈

Integer, rop ∈ {<,≤,=, >,≥}

The other component subnet graphs, Comp2, . . . , Compk, are defined similiarly. Msgn =

{Msg1,Msg2, . . . ,Msgn} is the set of external component message edges defined as C Ex edge

in CIIG. The starting point of an Msg is a user interface of a correlated component while

the ending point of the Msg is a provider interface of the current component. Each message

includes a sequence number. The format of an external component message edges is “Msg”

+ “sequence number”.
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Figure 4.10: A CSIBG example

Figure 4.10 shows the CSIBG of a three component system. This example has three

components. Each component contains multiple states. Details are given as follows:

CSIBG = (Comp1(Pn1, Un1, Sn1, Tn1, In1, On1), Comp2(Pn2, Un2, Sn2, Tn2, In2, On2),

Comp3(Pn3, Un3, Sn3, Tn3, In3, On3),Msgn)

• Msgn = {Msg1,Msg2,Msg3,Msg4,Msg5}

• Comp1(Pn1, Un1, Sn1, Tn1, In1, On1) includes:

Pn1 = {C1.P11, C1.P21}, where C1.P11 is a provider interface for the external

46



entity; C1.P21 is a provider interface for C2, and it is also an acceptance point for

Msg5.

Un1 = {C1.U12}, where C1.U12 is a user interface to C2, and it is also a starting

point for Msg2.

Sn1 = {S1, S2}.

Tn1 = {S1 S2, S2 S1}, where S1 may transition to S2 and S2 may transition to

S1 according to associated events.

In1 = {P11 S1, P11 S2}, where P11 is the provider interface of Msg1, when Msg1

enters C1, the message can be accepted in either S1 or S2.

On1 = {S1 U12}, where U12 is a user interface, as well as the starting point of

Msg2. The message is generated in S1.

TSTn1 = {tst(1 →2), tst(2 →1)}, where tst(1 →2) is the time of the transition

from S1 to S2, and tst(2 →1) is the time of the transition from S2 to S1.

TPMn1 = {tpm(11 →1), tpm(11 →2)}, where tpm(11 →1) is the time of the

provider message from P11 to S1, and tpm(11 →2) is the time of the transition from

P11 to S2.

TUMn1 = {tum(1 →12)}, where tum(1 →12) is the time of the user message from

S1 to U12.

• Comp2(Pn2, Un2, Sn2, Tn2, In2, On2) includes:

Pn2 = {C2.P12, C2.P32}, where C1.P12 is a provider interface for C1, and it is

also an acceptance point for Msg2; C1.P32 is a provider interface for C3, and it is also

an acceptance point for Msg4.

Un2 = {C2.U21, C2.U23}, where C2.U21 is a user interface to C1, and it is also

a starting point for Msg5; C2.U23 is a user interface to C3, and it is also a starting

point for Msg3.

Sn2 = {S1, S2, S3, S4}
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Tn2 = {S1 S2, S2 S3, S3 S4, S4 S3}, where S1 may transition to S2, S2 may transi-

tion to S3, S3 may transition to S4 and S4 may transition to S3 according to associated

events.

In2 = {P12 S1, P32 S2}, where P12 is the provider interface of Msg2, when Msg2

enters C2, the message can be accepted in S1; P32 is the provider interface of Msg4,

when Msg4 enters C2, the message can be accepted in S2.

On2 = {S2 U23, S3 U21}, where U23 is a user interface, as well as the starting

point of Msg3, the message is generated in S2; U21 is a user interface, as well as the

starting point of Msg5, the message is generated in S4.

TSTn2 = {tst(1 →2), tst(2 →3), tst(3 →4), tst(4 →2)}, where tst(1 →2) is the

time of the transition from S1 to S2, tst(2 →3) is the time of the transition from S2

to S3, tst(3 →4) is the time of the transition from S3 to S4, and tst(4 →2) is the time

of the transition from S4 to S2.

TPMn2 = {tpm(12 →1), tpm(12 →4), tpm(32 →2)}, where tpm(12 →1) is the time

of the provider message from P12 to S1, tpm(12 →4) is the time of the provider message

from P12 to S4, tpm(32 →2) is the time of the provider message from P32 to S2,and

tpm(31 →2) is the time of the transition from P32 to S2.

TUMn2 = {tum(3 →21), tum(3 →23)}, where tum(3 →21) is the time of the user

message from S3 to U21 and tum(3 →23) is the time of the user message from S3 to

U23.

• Comp3(Pn3, Un3, Sn3, Tn3, In3, On3) includes:

Pn3 = {C4.P23}, where C4.P23 is a provider interface for C3, and it is also an

acceptance point for Msg3.

Un3 = {C4.U32}, where C4.U32 is a user interface to C2, and it is also a starting

point for Msg4.

Sn3 = {S1, S2, S3}
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Tn3 = {S1 S2, S2 S3, S3 S2}, where S1 may transition to S2, S2 may transition

to S3 and S3 may transition to S2 according to associated events.

In3 = {P23 S1}, where P23 is the provider interface of Msg3. When Msg3 enters

C3, the message can be accepted in S1.

On3 = {S2 U32}, where U32 is a user interface, as well as the starting point of

Msg4. The message is generated in S2.

TSTn3 = {tst(1 →2), tst(2 →3), tst(3 →2)}, where tst(1 →2) is the time of the

transition from S1 to S2, tst2 →3) is the time of the transition from S2 to S3, tst(3 →2)

is the time of the transition from S3 to S2.

TPMn3 = {tpm(23 →1)}, where tpm(23 →1) is the time of the provider message

from P23 to S1.

TUMn3 = {tpm(3 →23)}, where tum(3 →23) is the time of the user message from

S3 to U23.

• TC = {tc1, tc2, tc3, tc4, tc5}

tc1 = (t(2 →1)−t(1 →2)) < 5ms

tc2 = (tpm(12 →2)) < (tpm(32 →2))

tc3 = (tst(3 →4)) < (tpm((12)→4))

tc4 = (tst(2 →3)−t(1 →2)) < 1ms

tc5 = (tpm(32 →2)−tum(2 →23)) < 10ms

tc6 = (t(2 →3)−t(3 →2)) < 3ms

A CSIBG describes some characteristics of the component-based real-time embedded

system, which is that a component can receive a message in more than one state and exhibit

distinct behavior for the same message in different states with the times of state transitions,

provider message recieved and user message sent . In component C1, it shows that there are
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three different internal message paths between the same external incoming message Msg1

and external outgoing message Msg2:

Msg1
T1−→P11

tpm(11→1)−−−−−−−→S1
tum(1→12)−−−−−−−→U12

t(1→2)−−−−→Msg2

Msg1
T1−→P11

tpm(11→1)−−−−−−−→S1
tst(1→2)−−−−−→S2

tst(2→1)−−−−−→S1
tum(1→12)−−−−−−−→U12

t(1→2)−−−−→Msg2

Msg1
T1−→P11

tpm(11→2)−−−−−−−→S2
tst(2→1)−−−−−→S1

tum(1→12)−−−−−−−→U12
t(1→2)−−−−→Msg2

Even when they are all in the same external message path, the signatures of the output

message can be different.

Similarly, component C2 has three different internal message paths between Msg2 and

Msg3:

Msg2
t(1→2)−−−−→P12

tpm(12→1)−−−−−−−→S1 → S1
tst(1→2)−−−−−→S2

tum(2→23)−−−−−−−→U23
t(2→3)−−−−→Msg3

Msg2
t(1→2)−−−−→P12

tpm(12→2)−−−−−−−→S2
tum(2→23)−−−−−−−→U23

t(2→3)−−−−→Msg3

Msg2
t(1→2)−−−−→P12

tpm(12→4)−−−−−−−→S4 → S1
tst(4→2)−−−−−→S2

tum(2→23)−−−−−−−→U23
t(2→3)−−−−→Msg3

With the above information, it is possible to specify an end-to-end sequence in terms

of message exchanges between components and component internal flow. It is a sequence

that originates at an external system, propagates through various software components and

terminates at an external system. The total number of message paths between Msg1 and

Msg3 can be calculated by taking the cross product of all message paths of components

involved in an interaction. In this particular example, there are 3 (from C1) * 3 (from C2)

= 9 test paths. The overall number of message paths from the first message of a system

operation to the last message of a system operation can be calculated by taking the cross

product of all message paths of components involved in an interaction.

Time constraints define timing relationships between component external messages and

internal messages. In a message sequence, the time window between message exchanges

and state transitions is calculated and compared to a predefined value. For example, tc2

and tc4 depicted the time constraints for incoming messages to state 2 of component 2 from

component 1 and component 3.
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4.1.3 Component State-based Event-driven Interaction Behavior Graph

(CSIEDBG)

The CIIG and CSIBG clearly described the timed sequences of method calls and paths

of state transitions, but they do not deal with concurrency. As in other concurrent pro-

grams, multitasking is one of the most important aspects in real-time embedded system.

Complexity arises when multiple threads are running independently. The order of the

message generated from each thread is not deterministic. As a result, when multiple mes-

sages from different components arrive at one state in a component, the system can have

non-deterministic behavior, which complicates the determination of expected outputs for a

given input. I therefore extended the CSIBG in several ways to include features required

to visualize concurrent events. The new graphical representation is named the Component

State-based Event-driven Interaction Behavior Graph (CSIEDBG).

Definition 13 (Event Capture). An event capture (EC) is at the end of an input message

edge. It processes an incoming message carried by a provider service and identifies an event

in a specific state, with a time stamp tpm ∈ TPM as specified in Definition 11 in Chapter

4.1.2. Based on the component whose user serive initiated the call to this provider service,

the event generated can be different types – external event, timer event, semaphore and

message queue. Each produced event is mapped to an event handler.

Definition 14 (Event Handler). An event handler (EH) is at the beginning of an output

message edge or a transition edge. It takes all the events generated from different threads,

checks conditions, decides state transitions, and triggers interactions to other components

with a time stamp tum ∈ TUM as specified in Definition 11.

Figure 4.11 shows the CSIEDBG of the three component system mentioned above.

1. Each component contains multiple provider services. For each provider service in a

component, there is one event capture to process the incoming external message.

2. Each component contains multiple states. Each state contains one event handler.
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3. Each event capture generates one event.

4. All events will be handled by one event handler.

Figure 4.11: A CSIEDBG example

4.2 Constructing the CREATEG

This section presents a running example of CREATEG construction based on algorithms

presented to generate CIIGs, CSIBGs, and CSIEDBGs. In subsequent sections, we will

discuss the process of test path generation (section 4.3) and how to handle a potentially

large number of test paths (section 4.4).

The example is an Ethernet communication system in a software defined radio system.

It consists of four components: an IP Core, an IP Interface Adapter, an SCA Ethernet

Device, and an Ethernet Device Adapter. Each component contains multiple states.
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A component level sequence diagram is used to address the dynamic view of a sys-

tem emphasizing the time-ordering of messages. It consists of these four components and

their relationships, including the messages that may be dispatched among them, as well as

interactions with an external system.

Upon connection to the IP core, the Ethernet Device issues enableRTSCTS and en-

ableFlowResumeSignal commands to the SCA Device Adapter. When data is available,

the EthernetDevice pushes it to the IP Core using the pushPacket method. If the Device

Adapter cannot hold at least one more packet of maxPayloadSize, the Device Adapter halts

pushPackets so the pushPacket returns FALSE. Once the Device Adapter is ready to receive

more packets, it issues a signalFlowResume to the EthernetDevice. Then the EthernetDe-

vice resumes pushing data to the Device Adapter using the pushPacket method. When the

IP Interface adapter receives packets from a SCA Ethernet device adapter, it forwards the

packets to the IP Core.
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Figure 4.12: Sequence diagram for receiving data from ethernet device

Figure 4.12 shows a component level sequence diagram for a system-level operation. A

brief sequence of receivePackets() is described below:

• Upon connection, the Ethernet Device issues enableRTSCTS.

• The Ethernet Device issues enableFlowResumeSignal.

• When data is available, the Ethernet Device pushes it to the Device Adapter using

the pushPacket method.

• The Ethernet Device Adapter pushes it to the IP Interface Adapter using the push-

Packet method.
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• When the IP Interface adapter receives packets from a SCA Ethernet device adapter,

it forwards the packets to the IP Core.

Two alternative sequences are also shown according to different condition decisions:

1. If the Device Adapter cannot hold at least one more packet of maxPayloadSize, the

Device Adapter halts pushPackets so the pushPacket returns FALSE.

• Once the Device Adapter is ready to receive more packets, it issues a sig-

nalFlowResume to the Device.

• The Device resumes pushing data to the Device Adapter using the pushPacket

method.

2. Else if the Device Adapter returns TRUE

• The Device continuess pushing data to the Device Adapter using the pushPacket

method.

Sequence diagrams usually model the execution of a use case, triggered by one or more

system-level operations. The recipient of a system-level message is generally a provider

interface that forwards the message to one or more user interface through a sequence of

actions.

To construct the CREATEG model for receivePackets(), we start from the sequence

diagram in Figure 4.12. The CIIG is created based on the objects and messages in a

sequence diagram.

For each component in the sequence diagram:

• One component subnet is created.

For each message in the sequence diagram:

• One component provider interface is created.

• One component user interface is created.
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• One external component message edge is created.

Between two consecutive messages in the sequence diagram:

• One internal component message edge is created.

For clarity, external message edges are shown in the CIIG with solid lines and are labeled

with the message sequence numbers as in the sequence diagram. We assume that each

sequence number corresponds to a full message signature, condition, and iteration. Internal

message edges are shown with dotted lines, and correspond to an enabling condition.

The algorithm to generate a CIIG is shown in Figure 4.13.
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Algorithm BuildCIIG(SQ): CIIG

Inputs SQ: Component level sequence diagram corresponding to a message

Output CIIG: CIIG model generated by the algorithm

Declare:

C = {C1, C2, . . . , Ck}:
A finite set of components

C P Interf = (C1.P interf1, . . . , Ck.P interft):
A finite set of component provider interfaces

C U Interf = (C1.U interf1, . . . , Ck.U interft):
A finite set of component user interfaces

C In edge = (Ci PInterf, . . . , Ci U Interf):
A finite set of internal component message edges

C Ex edge = (Ci U Interf, . . . , Cii P Interf):
A finite set of external component message edges

T Ex edge = (Ti →j , . . . , Tj →i):
A finite set of time stamps at external component message edges

addComponentNode(C, CIIG):
A function that adds a node C to the CIIG

addProviderInterface(C P Interf, CIIG):
A function that adds a provider interface C P Interf to the CIIG

addUserInterface(C U Interf, CIIG):
A function that adds a user interface C U Interf to the CIIG

addInternalMessageEdge (C In edge, CIIG):
A function that adds a provider interface C In edge to the CIIG

addExternalMessageEdge (C Ex edge, CIIG):
A function that adds a user interface C Ex edge to the CIIG

addExternalMessageEdgeTimeStamp (T Ex edge, CIIG):
A function that adds a time stamp T Ex edge to the CIIG

Steps:

1: begin
2: C = null
3: for all components ∈ SQ do
4: addComponentNode(C,CIIG)
5: if (an incoming message)
6: addProviderInterface(C P Interf, CIIG)
7: if (an outgoing message)
8: addUserInterface(C U Interf, CIIG)
9: if (an incoming message and an outgoing message are consecutive)
10: addInternalMessageEdge(C In edge, CIIG)
11: for all messages ∈ SQ do
12: addExternalMessageEdge(C Ex edge,CIIG)
13: addExternalMessageEdgeTimeStamp(T Ex edge,CIIG)

Figure 4.13: An algorithm to generate the CIIG
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Explanation of the algorithm

The algorithm takes a component level sequence diagram as an input and returns a

CIIG model as an output.

Lines 3 and 4 identify all the components involved in a sequence diagram. Using the

sequence diagram shown in Figure 4.12 as an example, components include Ethernet Device,

SCA Ethernet Adapter, IP Interface Adapter, and IP Core.

Lines 5 through 8 identify all the interactions between components. Lines 9 through

13 connect all the components with external message edges as well as determining all the

internal message edges in a component.

A CIIG is generated by applying the above algorithm as shown in Figure 4.14.

Figure 4.14: The CIIG of the system
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Each message in the sequence diagram has a well-defined sequence number, source,

and destination component names. On the other hand, the state diagram of a component

defines its states and the transition messages it can receive in those states. The CREATEG

annotates the chain of messages defined in the sequence diagrams with the state information

by generating a CSIBG diagram. A CSIBG is created from a CIIG and state transitions in

state diagrams for each corresponding component.

Figures 4.15, 4.16, 4.17, and 4.18 show state diagrams for each component. Events are

also shown in each state diagrams.

An Ethernet Device component has five states. The Ethernet Device states are illus-

trated in Figure 4.15. The Ethernet Device states ensure that received operations are only

executed when the Ethernet Device is in the proper state. The five states of the Ethernet

Device are as follow:

• CONSTRUCTED – The state transitioned to upon successful creation.

• INITIALIZED – The state transitioned to upon successful initialization.

• ENABLED – The state transitioned to upon successful start.

• DISABLED – The state transitioned to upon successful stop.

• RELEASED – The state transitioned to upon successful release.

The Ethernet Device transitions between states in response to the initialize, start, stop

and releaseObject operations.
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Figure 4.15: State diagram for ethernet device

An Ethernet Device Adapter component has two states. The Ethernet Device Adapter

states are illustrated in Figure 4.16. A transition from start to the ENABLED operational

state occurs whenever the Ethernet Device Adapter is instantiated, initialized and config-

ured with an initial configuration. While in this state, the Ethernet Device Adapter is

able to receive and transmit packets. The Ethernet Device Adapter transitions to the DIS-

ABLED operational state from ENABLED operational state upon invocation of the stop

or reset operations, or upon detection of an unrecoverable error. The operational state

indicates whether or not the Ethernet Device Adapter is functioning.
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Figure 4.16: State diagram for SCA ethernet adapter

An IP Interface Adapter component has four states. The IP Interface Adapter states are

illustrated in Figure 4.17. The IP Interface Adapter stores a list of interface IDs along with

the type of interface object for each. This information is obtained from the configuration

file shared with the IP Core applications. To communicate with the multiple channels from

the radio application, the list will be created dynamically by the IP Core configuration

manager for each interface. When the IP Interface Adapter receives a packet from an SCA

Ethernet interface, it goes to the Processing state to look up the interface table to find the

appropriate IP Core interface handle for the Ethernet frame. The IP Interface Adapter

removes the Ethernet header, puts the packets in the queue and moves to the Storing state.

When the IP Core is ready to accept the packet, the IP Interface Adapter moves to the

Forwarding state and sends the packet to IP Core.
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Figure 4.17: State diagram for IP interface adapter

An IP Core component has four states. The IP Core states are illustrated in Figure

4.18. It receives packets in the Receiving state and transmits packets in the Sending state.
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Figure 4.18: State diagram for IP core

The CSIBG is created based on state transitions in each state diagram on top of the

CIIG generated earlier:

• For each component in the CIIG, one component subnet is created.

• For each provider interface in the CIIG, one component provider interface is created

in its component subnet.

• For each user interface in the CIIG, one component user interface is created in its

component subnet.

• For each external component message edge in the CIIG, one external component

message edge is created.

• For each state in a state diagram, one state node is created in its component subnet.
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• For each transition in the state diagram, one transition edge is created.

• For each provider interface in the CSIBG, one or more input message edge is created

corresponding to the possible entry state.

• For each user interface in the CSIBG, one output message edge is created to connect

from the exit state.

The CSIBG for the above system is shown in Figure 4.19.

Figure 4.19: The CSIBG of the system

The algorithm to generate a CSIBG is shown in Figure 4.20.
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Algorithm BuildCSIBG(SQ and state diagrams): CSIBG

Inputs SQ: Component level sequence diagram corresponding to a message

S: Set of state diagrams required for components involved in a sequence diagram

Output CSIBG: CSIBG model generated by the algorithm

Declare:

Cn = {Cn1, Cn2, . . . , Cnk}:
A finite set of component subnets

Si = (S1, S2, . . . , Sk):
A finite set of states in Component Ci

Pi = (P1, P2, . . . , Pk):
A finite set of provider interfaces in Component C

Ui = (U1, U2, . . . , Uk):
A finite set of user interfaces in Component C

Ti = (T1, T2, . . . , Tk):
A finite set of transition edges in Component Ci

Ini = (In1, In2, . . . , Ink):
A finite set of input message edges in Component Ci

Oi = (O1, O2, . . . , Ok):
A finite set of output message edges in Component Ci

Msgn = (Msg1,Msg2, . . . ,Msgk):
A finite set of interaction messages between component subnets

Tstn = (Tst1, T st2, . . . , T stk):
A finite set of time stamps on transition edges

Tpmn = (Tpm1, Tpm2, . . . , Tpmk):
A finite set of time stamps on input message edges

Tumn = (Tum1, Tum2, . . . , Tumk):
A finite set of time stamps on output message edges

T Ex edge = (Ti →j , . . . , Tj →i):
A finite set of time stamps at external component message edges

addComponentSubnet(Cn, CSIBG):
A function that adds a node Cn to the CSIBG

addStateNode(S, CSIBG):
A function that adds a node S to a component subnet Cn to the CSIBG

addProviderInterface(P, CSIBG):
A function that adds a provider interface P to the CSIBG

addUserInterface (U, CSIBG):
A function that adds a user interface U to the CSIBG

addInputMessageEdge (providerInterface , state, CSIBG):
A function that adds a message edge from a provider interface to a state in the CSIBG

addInputMessageEdgeTimeStamp (tpm, providerInterface , state, CSIBG):
A function that adds a time stamp with the message edge from a provider interface
to a state in the CSIBG

(Continued)
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addOutputMessageEdge (state, userInterface, CSIBG):
A function that adds a message edge from a state to a user interface in the CSIBG

addOutputMessageEdgeTimeStamp (tum, state, userInterface, CSIBG):
A function that adds a time stamp with the message edge from a state
to a user interface in the CSIBG

addTransitionEdge (sourceState, targetState, CSIBG):
A function that adds a transition edge from a source state to a target state
including guard if any exists in the CSIBG

addTransitionEdgeTimeStamp (tst, sourceState, targetState, CSIBG):
A function that adds a time stamp with the transition edge from a source state
to a target state

addMessageEdge (Msgn, CSIBG):
A function that adds a message Msgn to the CSIBG

addExternalMessageEdgeTimeStamp (T Ex edge, CSIBG):
A function that adds a time stamp T Ex edge to the CSIBG

Steps:

1: begin
2: Cn = null
3: for all C ∈ CIIG do
4: addComponentSubnet(Cn,BG)
5: for all C P Interf ∈ C do
6: addProviderInterface(P, CSIBG)
7: for all C U Interf ∈ C do
8: addUserInterface(U, CSIBG)
9: for all C Ex edge ∈ CIIG do
10: addMessageEdge(Msgn, CSIBG)
11: addMessageEdgeTimeStamp(T, Msgn, CSIBG)
12: for all Cn ∈ CSIBG do
13: for all states ∈ State Diagram do
14: addStateNode(S, CSIBG)
15: if (an incoming message)
16: addInputMessageEdge(providerInterface, state, CSIBG)
17: addInputMessageEdgeTimeStamp(tpm, providerInterface, state, CSIBG)
18: if (an outgoing message)
19: addIOutputMessageEdge(state, userInterface, CSIBG)
20: addOutputMessageEdgeTimeStamp(tum, state, userInterface, CSIBG)
21: if (a transition from sourceState to targetState)
22: addTransitionEdge(sourceState, targetState, CSIBG)
23: addTransitionEdgeTimeStamp(tst, sourceState, targetState, CSIBG)

Figure 4.20: An algorithm to generate the CSIBG

Explanation of the algorithm

The algorithm takes a component level sequence diagram and a set of state diagrams of
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each component involved in a sequence diagramas an input and returns a CSIBG model as

an output.

Lines 3 through 11 identify all the components and interactions between components.

Lines 12 and 13 identify all the states involved in a state diagram.

Lines 14 through 23 identify all the connections between states. Lines 15 through 20

connect all the states with external message edges as well as determining all the transitions

between states in a component.

A CSIBG is automatically generated by applying the algorithm shown in Figure 4.21.

Figure 4.21: A complete CSIBG
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This CSIBG will be used as a basis for generating test paths in the next subsection.

The algorithm to generate a CSEDIBG is shown in Figure 4.22.
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Algorithm BuildCSEDIBG(SQ and state diagrams): CSEDIBG

Inputs SQ: Component level sequence diagram corresponding to a message

S: Set of state diagrams required for components involved in a sequence diagram

Output CSEDIBG: CSEDIBG model generated by the algorithm

Declare:

Cn = {Cn1, Cn2, . . . , Cnk}:
A finite set of component subnets

Si = (S1, S2, . . . , Sk):
A finite set of states in Component Ci

ECi = (EC1, EC2, . . . , ECk):
A finite set of event captures in State Si

Ei = (E1, E2, . . . , Ek):
A finite set of events in State Si

EHi = (EH1, EH2, . . . , EHk):
A finite set of event handlers in State Si

Pi = (P1, P2, . . . , Pk):
A finite set of provider interfaces in Component C

Ui = (U1, U2, . . . , Uk):
A finite set of user interfaces in Component C

Ti = (T1, T2, . . . , Tk):
A finite set of transition edges in Component Ci

Ini = (In1, In2, . . . , Ink):
A finite set of input message edges in Component Ci

Oi = (O1, O2, . . . , Ok):
A finite set of output message edges in Component Ci

Msgn = (Msg1,Msg2, . . . ,Msgk):
A finite set of interaction messages between component subnets

Tstn = (Tst1, T st2, . . . , T stk):
A finite set of time stamps on transition edges

Tpmn = (Tpm1, Tpm2, . . . , Tpmk):
A finite set of time stamps on input message edges

Tumn = (Tum1, Tum2, . . . , Tumk):
A finite set of time stamps on output message edges

T Ex edge = (Ti →j , . . . , Tj →i):
A finite set of time stamps at external component message edges

addComponentSubnet(Cn, CSEDIBG):
A function that adds a node Cn to the CSEDIBG

addStateNode(S, CSEDIBG):
A function that adds a node S to a component subnet Cn to the CSEDIBG

addProviderInterface(P, CSEDIBG):
A function that adds a provider interface P to the CSEDIBG

addUserInterface (U, CSEDIBG):
A function that adds a user interface U to the CSEDIBG

addInputMessageEdge (providerInterface , state, CSEDIBG):
A function that adds a message edge from a provider interface to a state in the CSEDIBG

(Continued)

69



addInputMessageEdgeTimeStamp (tpm, providerInterface, state, CSEDIBG):
A function that adds a time stamp with the message edge from a provider interface
to a state in the CSEDIBG

addECEdge (providerInterface, EC, CSEDIBG):
A function that adds a message edge from a provider interface to an event capture in
the CSEDIBG

addEEdge (EC , E, CSEDIBG):
A function that adds a message edge from an event capture to an event of a state in the
CSEDIBG

addEHEdge (E , EH, CSEDIBG):
A function that adds a message edge from an event to an event handler of a state in the
CSEDIBG

addIOutputMessageEdge (state, userInterface, CSEDIBG):
A function that adds a message edge from a state to a user interface in the CSEDIBG

addOutputMessageEdgeTimeStamp (tum, state, userInterface, CSEDIBG):
A function that adds a time stamp with the message edge from a state
to a user interface in the CSEDIBG

addTransitionEdge (sourceState, targetState, CSEDIBG):
A function that adds a transition edge from a source state to a target state
including a guard if any exists in the CSEDIBG

addTransitionEdgeTimeStamp (tst, sourceState, targetState, CSEDIBG):
A function that adds a time stamp with the transition edge from a source state
to a target state

addMessageEdge (Msgn, CSEDIBG):
A function that adds a message Msgn to the CSEDIBG

addMessageEdgeTimeStamp (T Ex edge, CSEDIBG):
A function that adds a time stamp T Ex edge to the CSEDIBG

Steps:
1: begin
2: Cn = null
3: for all C ∈ CIIG do
4: addComponentSubnet(Cn,CSEDIBG)
5: for all C P Interf ∈ C do
6: addProviderInterface(P, CSEDIBG)
7: for all C U Interf ∈ C do
8: addUserInterface(U, CSEDIBG)
9: for all C Ex edge ∈ CIIG do
10: addMessageEdge(Msgn, CSEDIBG)
11: addMessageEdgeTimeStamp(T, Msgn, CSEDIBG)
12: for all Cn ∈ CSEDIBG do
13: for all states ∈ State Diagram do
14: addStateNode(S, CSEDIBG)
15: if (an incoming message)
16: addInputMessageEdge(providerInterface, state, CSEDIBG)
17: addInputMessageEdgeTimeStamp
18: (tpm, providerInterface, state, CSEDIBG)
19: for each incoming message ∈ CSEDIBG do
20: addECEdge(providerInterface , ec, CSEDIBG)
21: addEEdge(ec , event, CSEDIBG)
22: addEHEdge(event , eh, CSEDIBG)

(Continued)
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23: if (an outgoing message)
24: addIOutputMessageEdge(state, userInterface, CSEDIBG)
25: addOutputMessageEdgeTimeStamp
26: (tum, state, userInterface, CSEDIBG)
27: if (a transition from sourceState to targetState)
28: addTransitionEdge(sourceState , targetState, CSEDIBG)
29: addTransitionEdgeTimeStamp(tst, sourceState, targetState, CSEDIBG)

Figure 4.22: An algorithm to generate the CSEDIBG

Explanation of the algorithm

The algorithm takes a component level sequence diagram and a set of state diagrams of

each component involved in a sequence diagramas an input and returns a CSIBG model as

an output.

Lines 3 through 16 identify all the components and interactions between components.

Lines 17 through 27 identify all the connections between external message, event cap-

tures, event handlers and states.

4.3 Generating Test Paths from the CREATEG

This section discusses the generation of test paths from the CREATEG CSIBG diagram.

Each path tests some interactions between components in appropriate states. Traversing all

CREATEG paths tests all interactions between components in all possible and valid states

of components involved in a particular interaction.

A test path derived from the CREATEG represents a path that starts with the initial

(null) node and contains a complete message sequence of a system level operation. The

total number of test paths in a CREATEG can be determined by taking the product of the

number of transition paths in each CSIBG component subnet, where each transition path

is an internal transition of a component from a source state to a target state on receipt of

a particular message.

In component-based real-time embedded systems, complexity arises when components
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interact with each other concurrently. Multiple threads are running independently so we

allow the model to associate a set of events with a transition. A transition may be triggered

by the concurrent occurrence of a set of events.

In the specification of a real-time system, a transition often occurs at a time that depends

on the time of another transition. It is therefore necessary to reference a given transition

occurrence time. UML does not provide a way to identify transitions in state diagrams,

although it is possible in sequence diagrams. We removed this limitation by allowing the

modeler to assign labels to transitions, and to make reference to these labels in guards.

Recall from the earlier discussion on the CREATEG construction in section 4.2 that

we select only those transitions from the state diagram of a component that are valid for

a particular message of the interaction. However, when they are guard conditions, not all

paths generated by traversing the CREATEG are necessarily feasible. Infeasible paths must

therefore be detected manually by inspecting all paths containing guard conditions.

The total number of test paths can be calculated by taking the cross product of all

transition paths of components involved in an interaction. It gives a complete coverage

corresponding to a called method in an interaction.

Figure 4.23 presents an algorithm for test path generation from a CREATEG instance.
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Algorithm AllPathCoverage(T): TPSSeq

Input T: CREATEG Test Model

Output TPSSeq: A sequence of test paths

Declare:

TPSSeq: A sequence of test paths
MESSeq: A sequence of message edges in T
medg: An interaction message edge in T in the form of “Msgn” + “→”

+ “ the provider interface Pi” with a time stamp in the form of “Tn”
or in the form of “ the user interface Uij” + “→” + “Msgn”
with a time stamp in the form of “Tn”

Imedg: An input message edge in T in the form of “Pi” incoming Msgn
from the provider interface Pij) + “→” + “entryState in a Cn”
with a time stamp in the form of “tpm ij”+ “→” + “n”

Omedg: An output message edge in T in the form of “destinationState in a Cn”
+ “Uij” (outgoing Msgn to the user interface Uij)
with a time stamp in the form of “tum n”+ “→” + “ij”

tedg: A transition edge in T, in the form of “sourceState” + “→” + “targetState”
with a time stamp in the form of “tst m”+ “→” + “tst n”

TMESeqn: A sequence of test sub paths in a Cn
from an Imedge (corresponding to an incoming interaction message Msgn)
to an Omedge (corresponding to an outgoing interaction message Msg(n+1))

tmepath: A complete test sub path in TMESeqn

Steps:
1: begin
2: TPSSeq ← {}
3: MESSeq ← T.edge.message
4: for each medg ∈ MESSeq do
5: for each provider component subnet where the medg comes to
6: TMESeqn = createPath(Msgn, Msg(n+1))
7: for each reachable entry state
8: if there exists a path from the entryState to a destinationState to Msg(n+1)
9: addPath(Imedg, TMESeqn)
10: addPath(tedg, TMESeqn)
11: while (a tedg exists on the path)
12: addPath(tedg, TMESeqn)
13: addPath(Omedg, TMESeqn)
14: for each tmepath ∈ TMESeqn do
15: TPSSeq = CreatePath(Msgn, Msgm)
16: addPath(tmepath, TPSSeq)
17: while (a TMESeqn exists on the path)
18: for each tmepath ∈ TMESeq(n+1) do
19: addPath(tmepath, TPSSeq)

Figure 4.23: An algorithm to generate test paths for the All-path coverage criterion
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Explanation of the algorithm

The algorithm takes a CREATEG test model as an input and returns a set of test paths

as an output.

Line 4 identifies all the message edges in a CREATEG test model. Using the CREATEG

shown in Figure 4.21 as an example, message edges include Msg1, Msg2, Msg3, Msg4, Msg5,

Msg6, and Msg7.

Lines 5, 6 and 13 identify all the sequence of test paths between an input message edge

and an output message edge. Sequences from Figure 4.21 include:

TMESeq1{Msg1 →Msg2}

TMESeq2{Msg2 →Msg3}

TMESeq3{Msg3 →Msg4}

TMESeq4{Msg4 →Msg5}

TMESeq5{Msg5 →Msg6}

TMESeq6{Msg6 →Msg7}

Lines 7 to 12 generate a test path including all the transition edges in a sequence. The

complete sequence are shown in Figure 4.24.

Lines 14 to 19 generate a complete test path.

74



TMESeq1{Msg1
T1−→P11

tpm11→1−−−−−−→S1
tum1→12−−−−−−→U12

T2−→Msg2;

Msg1
T1−→P11

tpm11→1−−−−−−→S1
tst1→2−−−−→S2

tst2→1−−−−→S1
tum1→12−−−−−−→U12

T2−→Msg2}

TMESeq2{Msg2
T2−→P12

tpm12→1−−−−−−→S1
tst1→2−−−−→S2

tum2→23−−−−−−→U23
T3−→Msg3;

Msg2
T2−→P12

tpm12→1−−−−−−→S1
tst1→2−−−−→S2

tst2→5−−−−→S5
tst5→1−−−−→S1

tst1→2−−−−→S2
tum2→23−−−−−−→U23

T3−→Msg3;

Msg2
T2−→P12

tpm12→1−−−−−−→S1
tst1→2−−−−→S2

tst2→3−−−−→S3
tst3→4−−−−→S4

tst4→5−−−−→S5
tst5→1−−−−→S1

tst1→2−−−−→S2
tum2→23−−−−−−→U23

T3−→Msg3}

TMESeq3{Msg3
T3−→P23

tpm23→1−−−−−−→S1
tst1→2−−−−→S2

tum2→32−−−−−−→U32
T4−→Msg4;

Msg3
T3−→P23

tpm23→1−−−−−−→S1
tst1→2−−−−→S2

tst2→3−−−−→S3
tst3→2−−−−→S2

tum2→32−−−−−−→U32
T4−→Msg4}

TMESeq4{Msg4
T4−→P32

tpm32→2−−−−−−→S2
tst2→3−−−−→S3

tum3→24−−−−−−→U24
T5−→Msg5;

Msg4
T4−→P32

tpm32→2−−−−−−→S2
tst2→5−−−−→S5

tst5→1−−−−→S1
tst1→2−−−−→S2

tst2→3−−−−→S3
tum3→24−−−−−−→U24

T5−→Msg5}

TMESeq5{Msg5
T5−→P24

tpm24→1−−−−−−→S1
tst1→2−−−−→S2

tum2→42−−−−−−→U42
T6−→Msg6;

Msg5
T5−→P24

tpm24→1−−−−−−→S1
tst1→2−−−−→S2

tst2→3−−−−→S3
tum2→42−−−−−−→U42

T6−→Msg6;

Msg5
T5−→P24

tpm24→1−−−−−−→S1
tst1→2−−−−→S2

tst2→3−−−−→S3
tst3→4−−−−→S4

tum2→42−−−−−−→U42
T6−→Msg6;

Msg5
T5−→P24

tpm24→2−−−−−−→S2
tum2→42−−−−−−→U42

T6−→Msg6;

Msg5
T5−→P24

tpm24→3−−−−−−→S3
tum3→42−−−−−−→U42

T6−→Msg6;

Msg5
T5−→P24

tpm24→2−−−−−−→S4
tum4→42−−−−−−→U42

T6−→Msg6}

TMESeq6{Msg6
T6−→P42

tpm42→3−−−−−−→S3
tum3→21−−−−−−→U21

T7−→Msg7;

Msg6
T6−→P42

tpm42→3−−−−−−→S3
tst3→4−−−−→S4

tst4→5−−−−→S5
tst5→1−−−−→S1

tum1→21−−−−−−→U21
T7−→Msg7;

Msg6
T6−→P42

tpm42→3−−−−−−→S3
tst3→4−−−−→S4

tst4→3−−−−→S3
tum1→21−−−−−−→U21

T7−→Msg7}

Figure 4.24: Sequences of test path for all the component subnets

Algorithm AllPathCoverage in Figure 4.23 takes a CREATEG Test Model as its input

and returns a set of all possible test paths shown in Figure 4.24 for the CREATEG. When-

ever a component is encountered, the current number of test paths is multiplied by the

number of transition paths within the encountered component.

Each generated test path is in the form of a string representing the sequence of messages

on objects in particular states starting from the system-level operation call message that

triggers the use case execution modeled by the sequence diagram.
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In test paths, messages are identified by their names and sequence numbers. Test paths

consist of sequences of message expressions describing a complete message sequence for a

system-level operation call. The general form of a message expression is shown in Figure

4.25.

“Msg” + Sequence NO → InputMessageEdge→ entry state→∑
(start state→ resultant state)→ exit state→ OutputMessageEdge→

“Msg” + (Sequence NO + 1)→ InputMessageEdge→ entry state→∑
(start state→ resultant state)→ exit state→ OutputMessageEdge→

“Msg” + (Sequence NO + 2)→ . . . )
→ InputMessageEdge→ entry state→∑

(start state→ resultant state)→ exit state→ OutputMessageEdge→
“Msg” + (SequenceNO + numberOfTotalMessage− 1)

Figure 4.25: Message expression for a message sequence

The sequence number on the CREATEG is identical to the corresponding sequence

diagram sequence number. In this specific case, the total number of test paths is calculated

by taking the cross product of all transition paths of components involved in an interaction

= 2 ∗ 3 ∗ 2 ∗ 2 ∗ 6 ∗ 3 = 432. It gives a complete coverage corresponding to a called method

in an interaction. The test generator is responsible for generating these test paths.

4.4 Coverage Criteria for Test Paths

Section 4.3 presented an algorithm to generate all test paths from CREATEG and illustrated

it using an example. However, for more complex systems, the number of components

involved in a collaboration and the number of states in components can be large. This

typically results in exponential growth of the number of test paths that can be generated.

It may be impractical, or even impossible, to test all the paths due to the cost involved.

To allow for an acceptable level of testing while keeping the cost reasonable, we define

several coverage criteria based on CREATEG. These coverage criteria are adapted from

graph coverage criteria and logic criteria defined in Ammann and Offutt’s book [9].

An appropriate path coverage criterion can be chosen based on the level of testing
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required, and the test budget available.

4.4.1 All-Interface coverage

This criterion ensures that each interface between components is tested once. It is adapted

from edge coverage, which tours each reachable subpath of length less than or equal to one

in a CIIG [9]. However, this can be used to check if the interactions between components are

taking place correctly, regardless of the component states. A test path generation algorithm

for All-Interface Coverage is given in Figure 4.26.
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Algorithm SinglePathCoverage(T): TPSSeq

Input T: CREATEG Test Model

Output TPSSeq: A sequence of test paths

Declare:

TPSSeq: A sequence of test paths
MESSeq: A sequence of message edges in T
medg: An interaction message edge in T in the form of “Msgn” + “→”

+ “ the provider interface Pi” with a time stamp in the form of “Tn”
or in the form of “ the user interface Uij” + “→” + “Msgn”
with a time stamp in the form of “Tn”

Imedg: An input message edge in T in the form of “Pi” (incoming Msgn
from the provider interface Pij) + “→” + “entryState in a Cn”
with a time stamp in the form of “tpm ij”+ “→” + “n”

Omedg: An output message edge in T in the form of “destinationState in a Cn”
+ “Uij” (outgoing Msgn to the user interface Uij)
with a time stamp in the form of “tum n”+ “→” + “ij”

tedg: A transition edge in T, in the form of “sourceState” + “→” + “targetState”
with a time stamp in the form of “tst m”+ “→” + “tst n”

TMESeqn: A sequence of test sub paths in a Cn
from an Imedge (corresponding to an incoming interaction message Msgn)
to an Omedge (corresponding to an outgoing interaction message Msg(n+1))

tmepath: A complete test sub path in TMESeqn

Steps:

1: begin
2: TPSSeq ← {}
3: MESSeq ← T.edge.message
4: for each medg ∈ MESSeq do
5: for each provider component subnet where the medg comes to
6: TMESeqn = createPath(Msgn, Msg(n+1))
7: for each reachable entry state
8: if there exists a path from the entryState to a destinationState to Msg(n+1)
9: addPath(Imedg, TMESeqn)
10: addPath(tedg, TMESeqn)
11: while (a tedg exists on the path)
12: addPath(tedg, TMESeqn)
13: addPath(Omedg, TMESeqn)
14: for each tmepath ∈ TMESeqn do
15: TPSSeq = CreatePath(Msgn, Msgm)
16: tmepath = random(TMESeq(n))
17: addPath(tmepath, TPSSeq)

Figure 4.26: An algorithm to generate test paths for the All-Interface Coverage criterion
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Explanation of the algorithm

The algorithm takes a CREATEG test model as an input and returns a set of test paths

as an output.

Line 4 identifies all the message edges in a CREATEG test model.

Lines 5, 6 and 13 identify all the sequences of test paths between an input message edge

and an output message edge.

Lines 7 through 12 generate a test path including all the interface edges in a sequence.

Lines 14 through 19 generate a complete test path.

4.4.2 All-Interface-Transition Coverage

This criterion ensures that each internal state transition path in a component is followed at

least once. It is adapted from edge coverage, which tours each reachable subpath of length

less than or equal to one in a CSIBG [9]. The All-Interface-Transition Coverage subsumes

All-Interface Coverage.

The number of state transition paths in the component with the maximum number of sub-

paths determines the number of paths generated by this criterion. For example, in the

CREATEG model, the maximum number of transitions in components C1, C2, C3, and C4

is six, therefore the number of test paths generated by this criterion is six. It reveals some

of the faults occurring due to invalid transitions within a component. However, this mainly

focuses on how to check if the transitions between states are taking place correctly. It does

not consider the impact from the events triggered by component interactions. A test path

generation algorithm for All-Interface-Transition coverage is given in Figure 4.27.
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Algorithm AllTransitionCoverage(T): TPSSeq

Input T: CREATEG Test Model

Output TPSSeq: A sequence of test paths

Declare:

TPSSeq: A sequence of test paths
MESSeq: A sequence of message edges in T
medg: An interaction message edge in T in the form of “Msgn” + “→”

+ “ the provider interface Pi” with a time stamp in the form of “Tn”
or in the form of “ the user interface Uij” + “→” + “Msgn”
with a time stamp in the form of “Tn”

Imedg: An input message edge in T in the form of “Pi” (incoming Msgn
from the provider interface Pij) + “→” + “entryState in a Cn”
with a time stamp in the form of “tpm ij”+ “→” + “n”

Omedg: An output message edge in T in the form of “destinationState in a Cn”
+ “Uij” (outgoing Msgn to the user interface Uij)
with a time stamp in the form of “tum n”+ “→” + “ij”

tedg: A transition edge in T, in the form of “sourceState” + “→” + “targetState”
with a time stamp in the form of “tst m”+ “→” + “tst n”

TMESeqn: A sequence of test sub paths in a Cn
from an Imedge (corresponding to an incoming interaction message Msgn)
to an Omedge (corresponding to an outgoing interaction message Msg(n+1))

tmepath: A complete test sub path in TMESeqn
countOfpath: The number of test sub paths in the TMESeq of a component
maxPath: The number of maximum test sub paths in among TMESeqn
TMEseq key: A sequence of test sub paths in a Component which contains the maxPath

Steps:

1: begin
2: TPSSeq ← {}
3: MESSeq ← T.edge.message
4: for each medg ∈ MESSeq do
5: for each provider component subnet where the medg comes to
6: TMESeqn = createPath(Msgn, Msg(n+1))
7: for each reachable entry state
8: if there exists a path from the entryState to a destinationState to Msg(n+1)
9: addPath(Imedg, TMESeqn)
10: addPath(tedg, TMESeqn)
11: while (a tedg exists on the path)
12: addPath(tedg, TMESeqn)
13: addPath(Omedg, TMESeqn)
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14: for each tmepath ∈ TMESeqn do
15: countOfpath = getCountOfPaths(TMESeq)
16: if (countOfpath ≥ maxPath)
17: maxPath = countOfpath
18: TMEseq key = TMESeq
19: for (i=1 to maxPath )
20: TPSSeq = createPath(Msgn, Msgm)
21: for each tmepath ∈ TMEseq key do
22: addPath(tmepath, TPSSeq)
23: while (a TMESeqns exists on the path)
24: tmepath = random(TMESeq(n))
25: addPath(tmepath, TPSSeq)

Figure 4.27: An algorithm to generate test paths for the All-Interface-Transition coverage
criterion

Explanation of the algorithm

The algorithm takes a CREATEG test model as an input and returns a set of test paths

as an output.

Line 4 identifies all the message edges in a CREATEG test model.

Lines 5, 6 and 13 identify all the sequence of test paths between an input message edge

and an output message edge.

Lines 7 through 12 generate a test path including all the transition edges in a sequence.

Lines 14 through 25 generate a complete test path.

To test the other real-time embedded software characteristics, I define one more coverage

criterion.

4.4.3 All-Interface-Event Coverage

A component interface passes messages from a user component to a provider component.

In the provider component, the received message is processed by event capture to further

generate event in the current component state. All the generated events are sent to event

handler for making a decision in this state, to either transition to the next state or send an
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outgoing message to the next component by using a user to provider service. The decision

made in event handler is modeled as a predicate expression.

The clauses in a predicate appear in the CSEDIBG model as events. To provide coverage

for the event handler, an incoming message may need to be tested several times with

different test data. For full event decision coverage, test data need to be generated such

that all combinations of truth values of clauses in the predicate are formed. For instance,

if a predicate expression contains n clauses, its complete coverage would require each path

to be tested 2n times with different data values. This results in an enormous increase in

the total number of paths to be tested. To reduce this exponential growth in the number of

test paths, while still maintaining an acceptable level of coverage, several coverage criteria

have been proposed in the literature. Simple approaches such as All True, All False, and

All Primes were proposed by Binder [17].

Active Clause Criteria, Inactive Clause Criteria, and their variants were defined by Am-

mann and Offutt [9]. Guan, Offutt, and Ammann [41] presented results from an industrial

case study of logic-based testing applied to safety-critical embedded software, and compared

the logic-based tests with tests created by testers at the company using manual functional

testing. This study gives us confidence that logic-based test criteria can successfully increase

the reliability of industry software.

In my approach, I use Correlated Active Clause Coverage (CACC) [8] to test predicates

in the test paths. Its goal is to test individual clauses within logical expressions, yielding

tests that are identical to tests developed to satisfy the masking form of MCDC [24]. This

coverage criterion ensures that each clause in the predicate determines, in at least one

test case, the truth value of the predicate such that it is true and false. CACC ensures

we exercise each clause in a predicate for both true and false values, without testing all

possible combinations of clause truth values and without masking effects for faulty clauses.

To illustrate this point, an example is presented in Figure 4.28. Consider a component C

that has two states S1 and S2 as shown in Figure 4.28. The transition from state S1 to

state S2 can occur if the guard predicate p = (a ∧ (b ∨ c)) is true.
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Figure 4.28: State diagram for component C

The guard predicate consists of three clauses:

a = (currentT ime > startT ime)

b = (hardwareStatusisOK)

c = (systemModeisNORMAL)

For clause a to determine the value of p, the expression (b∨ c) must be true, which can

be done in one of three ways: b true and c false, b false and c true, or both b and c true. So,

it would be possible to satisfy Correlated Active Clause Coverage with respect to clause a

with the two test requirements: f(a = true; b = true; c = false); (a = false; b = false; c =

true). There are other possible sets of test requirements with respect to a, as enumerated

in the following partial truth table in Table 4.1. There are nine possible truth assignments

that will satisfy CACC for a, by choosing one test requirement from rows 1, 2 and 3, and

another from rows 5, 6 and 7.
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Table 4.1: Partial truth table for a CACC example

a b c (a ∧ (b ∨ c))

1 True True True True

2 True True False True

3 True False True True

5 False True True False

6 False True False False

7 False False True False

All-Interface-Event Coverage can be defined as: Each event within each component

must be used at least once and each interface message must be paired with every every in

the provider component.

This coverage criterion not only checks the transitions between states and the interface

between components, but also considers impacts from the events triggered by component

interactions. A test path generation algorithm for the All-Interface-Event Coverage is given

in Figure 4.29.
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All-Interface-Event Coverage(T): TPSSeq

Input T: CREATEG Test Model

Output TPSSeq: A sequence of test paths

Declare:

TPSSeq: A sequence of test paths
MESSeq: A sequence of message edges in T
medg: An interaction message edge in T in the form of “Msgn” + “→”

+ “ the provider interface Pi” with a time stamp in the form of “Tn”
or in the form of “ the user interface Uij” + “→” + “Msgn”
with a time stamp in the form of “Tn”

Imedg: An input message edge in T in the form of “Pi” (incoming Msgn from
the provider interface Pij) + “→” + “entryState in a Cn”
with a time stamp in the form of “tpm ij”+ “→” + “n”

Omedg: An output message edge in T in the form of “destinationState in a Cn”
+ “Uij” (outgoing Msgn to the user interface Uij)
with a time stamp in the form of “tum n”+ “→” + “ij”

tedg: A transition edge in T, in the form of “sourceState” + “→” + “targetState”
with a time stamp in the form of “tst m”+ “→” + “tst n”

TMESeqn: A sequence of test sub paths in a Cn
from an Imedge (corresponding to an incoming interaction message Msgn)
to an Omedge (corresponding to an outgoing interaction message Msg(n+1))

tmepath: A complete test sub path in TMESeqn
ispcTMEpath: A chosen test sub path in TMESeqn to form a message sequence path

Steps:

1: begin
2: TPSSeq ← {}
3: MESSeq ← T.edge.message
4: for each medg ∈ MESSeq do
5: for each provider component subnet where the medg comes to
6: TMESeqn = createPath(Msgn, Msg(n+1))
7: for each reachable entry state
8: if there exists a path from the entryState to a destinationState to Msg(n+1)
9: addPath(Imedg, TMESeqn)
10: addPath(tedg, TMESeqn)
11: while (a tedg exists on the path)
12: addPath(tedg, TMESeqn)
13: addPath(Omedg, TMESeqn)
14: for each Omedge ∈ TMESeqn do
15: while (Omedgei != Omedge j)
16: ispcTMEpath = tmepath

(Continued)
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17: for each ispcTMEpath ∈ TMESeqn do
18: TPSSeq = createPath(Msgn, Msgm)
19: addPath(ispcTMEpath, TPSSeq)
20: while (a TMESeqns exists on the path)
21: for each ispcTMEpath ∈ TMESeq(n+1) do
22: addPath(ispcTMEpath, TPSSeq)

Figure 4.29: An algorithm to generate test paths for the All-Interface-Event coverage cri-
terion

This algorithm identifies optimal path subsets such that these subsets reduce the redun-

dant paths in All-Path Coverage and keeps the necessary paths for detecting faults.

Explanation of the algorithm

The algorithm takes a CREATEG test model as an input and returns a set of test paths

as an output.

Line 4 identifies all the message edges in a CREATEG test model.

Lines 5, 6, and 13 identify all the sequence of test paths between an input message edge

and an output message edge.

Lines 7 through 12 generate a test path including all the interface and transition edges

in a sequence.

Lines 14 through 22 generate a complete test path.

4.5 Executing the Test Cases

The algorithms in Sections 4.4.3 and 4.4.2 generate a set of test paths. Each test path is

parsed to identify the objects and their initial states. The sequence numbers in a test path

determine the sequence of sending the messages.

The execution of each test path requires test data, which is generated manually. Once

an operation call message has been triggered, the rest of the message chain is executed

automatically. The states of all objects involved in a message sequence must be set before
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the execution of a test case begins.

The test data includes a timing property to express when the data is input to the system.

As described in 1.1, observability requires appropriate instrumentation, which is a chal-

lenging problem for embedded systems where multiple tasks can have nondeterministic

output. I designed the instrumentation to record various aspects of execution behavior so

that the observed behavior can be compared with expected results. The instrumentation

includes task id, operation, time instant, and execution state. For every interface between

components, the interacting message is logged with a timing property. For every state

transition within a component, the transition is logged with a timing property. All the

forms of time instants are recorded in the instrumentation. With this capability, the timing

relationship between each component can be evaluated as defined in time constraints TC.

87



Chapter 5: Experimental Tool

An experimental tool named AM2TM (Architecture Model to Test Model) was developed

to demonstrate the effectiveness of the software architecture model-based testing technique.

This chapter describes the design and implementation of AM2TM. AM2TM automatically

constructs a CREATEG model from an XML Metadata Interchange (XMI) representation

of a UML sequence diagram and associated state chart diagrams. It uses the CREATEG

to generate test paths according to the specified coverage criterion. Test data are manually

generated to execute the test paths, expected results are defined to compare with the

execution results, and logs are created to manually check the results. The tool is composed

of four major modules, CREATEG Constructor, Test Path Generator, Test Executor, and

Results Evaluator, as highlighted in Figure 5.1.
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Figure 5.1: Structure of AM2TM experimental tool

This section describes the function of each of the four modules.

5.1 The CREATEG Constructor

The CREATEG constructor is responsible for constructing the test model CREATEG from

the UML sequence diagram and UML state diagrams. These UML models are provided

to the system in XMI format [39] [77]. The XMI format file representing the models can

be generated by a number of UML development tools such as IBM Rational Rhapsody

[5]. Figure 5.2 shows the feature in IBM Rational Rhapsody to generate XMI format file

forUML diagrams.
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Figure 5.2: XMI generation in Rational Rhapsody
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Figure 5.3 shows an example of a generated XMI format file from a UML sequence

diagram.

Figure 5.3: XMI file generated from a Rational Rhapsody UML sequence diagram

An XMI parser written in Java extracts UML collaboration diagrams and state diagrams

using the XMI file. It also generates the CREATEG from these models using the algorithms

presented in Chapter 4. The CREATEG constructor contains four classes and approxiately

500 lines of code.
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Figure 5.4 shows a Java XML parser via DOM interface.

Figure 5.4: A Java XML parser via DOM interface

The procedure BuildCIIG() in the algorithm takes a sequence diagram SQ as input.

The procedure BuildCSIBG() and BuildCSEDIBG take a sequence diagram SQ and a set

of state diagrams as input for all the components participating in an operation. The output

is a CREATEG test model for these UML artifacts. The procedure iteratively retrieves each

message from the sequence diagram following the message sequence numbering, and builds

the CREATEG.

As specified in the algorithm to generate the CIIG (shown in Figure 4.13), the algorithm

to generate the CSIBG (shown in Figure 4.20) and the algorithm to generate the CSEDIBG

(shown in Figure 4.22) from Chapter 4, the procedure iteratively builds the CREATEG by
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adding a message to it within each iteration. The algorithm stores all possible states of a

component in which a message can be received. The current state of this component set

must be a subset of the set of all the states capable of receiving the message. A violation

of this condition implies a design inconsistency because the previous operation(s) left the

component in an inconsistent state for the subsequent messages. Thus, the process of

building CREATEG from UML artifacts can also be used to detect inconsistencies in the

design of the system.

Once these consistency checks have been performed, all the nodes in the source compo-

nent are connected to each node for the states in the target component and message edges

are added on each edge. The CREATEG Constructor algorithm to generate the CIIG in

Figure 4.13, the algorithm to generate the CSIBG in Figure 4.20, and the algorithm to gen-

erate the CSEDIBG in Figure 4.22 are used to construct CTEATEM models in experimental

software presented in chapter 6.

5.2 Test Path Generator

Test Path Generator tool is implemented in Java. It generates test paths from the test model

developed by the CREATEG constructor. The inputs to this module are the CREATEG

model and one of the four path coverage criteria defined in Section 4.4: All-Interface Cover-

age, All-Interface-Transition Coverage, All-Interface-Event Coverage, or All-Path Coverage.

The output of the Test Path Generator is a set of test paths that meet the specified coverage

criteria. Test Path Generator contains five classes and approxiately 800 lines of code.

5.3 Test Executor

Test inputs need be generated to execute test paths. Test input data is generated manually

for the test paths. The test inputs include the values of parameters in initial message

calls, event trigger calls and values of variables to set states of components involved in

sequence diagrams. The user manually generates test values for each test path. Test cases
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are implemented with test input data. One test case covers one test path.

Test Executor is placed in a separate real-time task and the task is spawned by the

operating system as all the other application user tasks. Figure 5.5 shows an interface to

set up and spawn a test task in the operating system.

Figure 5.5: Spawning a test task

Test Executor constructs concrete test cases by filling in the test data to the input

calls in test paths. Each test case is then executed when the test task is activated. The

execution results are logged in a file. The execution log for a test path consists of all the

messages exchanged between components and all the state transitions within the component

for each message sequence in a test path. The component states are determined from the

instrumentation provided in the source code for getting component states. Figure 5.5 shows

how to start a test task. Figure 5.6 shows what the test code looks like. The entry point in
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the test code is the test task name spawned in Figure 5.5.

Figure 5.6: Test code example
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5.4 Results Evaluator

The Results Evaluator is responsible for comparing the results of a test run with the expected

results. The expected results are derived from the generated test paths. An expected

result for a test path consists of the component state transitions and time constraints for

each message in the test path. Results Evaluator compares the component states in the

execution log with the expected result. A test path is considered to pass if all the interface

interactions occu rred in the correct sequence, all the component states transitions occured

in the right order and all the time constraints occurred within the correct range per the

incoming messages, otherwise it is considered to fail. The Pass/Fail results are logged in

a file. For failed test cases, Results Evaluator also logs the test path number, the failed

message whose expected state does not match the resultant state, and component states.

Results Evaluator generates the overall results as a report to the users. The report contains

the following information:

Step number

Evaluation:

Status: PASS/FAIL

Reason:

Evidence:

Logfile::

Logtext:
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Chapter 6: Validation on a Large Scale Industrial System

This research was validated by applying the novel testing method to an industrial software

system. The goal of the validation is to determine whether the testing method can detect

faults effectively. To facilitate this experiment, the prototype tool was developed to evaluate

the proposed test criteria. This chapter presents an industrial post-hoc observational field

study [85] and discusses the results. Validation for the research was carried out by devel-

oping and executing tests on faulty versions of an industrial software system. An actual

architecture design of a software system is described in several sequence diagrams and state

diagrams. Test cases were generated and used to find faults seeded in the software system.

6.1 Experimental Design

The experimental design is described in terms of the subject program, the criteria (from

Chapter 4), the seeded faults, the measurement procedure, and the experimental procedure.

Subject Program: An industrial application system was used as the subject program.

The program was written in C and C++. It has six major components at the architec-

ture level. The major functionality is satellite communication link initiation, control, and

management. It runs on the VXWorks real-time operating system. The system contains

approximately 75,000 lines of code. We tested a part of the system that contains about

10,000 lines of code.

Test Adequacy Criteria: Three methods for designing tests were compared:

1. Traditional manual specification testing based on experience and requirements speci-

fication

2. The all-interface-transition coverage testing technique defined in Chapter 4
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3. The all-interface-event coverage testing technique defined in Chapter 4

Test Data: A set of test data was generated for each testing method applied on the

subject program. The generation of each test data set is specific to each test method applied.

Fault Set: Faults were hand seeded according to mutation rules. The effectiveness of

the software architecture-based testing criteria were validated by detecting faults seeded in

the program’s source code. The selection of seeded faults was based on the characteristics

of the code. More details are in subsection 6.1.5.

Measurement: The fault detecting effectiveness of a given test adequacy criterion c

for a given architecture a with respect to a specific fault set f is defined as the ratio of the

number of faults detected to the number of faults seeded. This measurement was made for

each pair of subject architecture program and test adequacy criterion. In this experiment,

we have fifteen sets of test cases, five for each of the three testing techniques.

Experimental Procedure: The conduct of the experiment consisted of several steps.

Let A be an architecture, C be the set of test adequacy criteria, and T be the set of test

data generated for each test adequacy criterion.

For each (a ∈ A) and (c ∈ C):

Step 1. Generate c-adequate test data set T (a, c).

Step 2. Define fault set F (a) for a.

Step 3. For each f ∈ F (a) define the fault seeded architecture A(f) by seeding with faults,

yielding a fault-seeded architecture a(f) where each a(f) ∈ A(f).

Step 4. For each t ∈ T (a, c), if it detects at least one fault, increase the number of faults

Num(a, c) detected by test data set T (a, c).

Step 5. Determine the fault detection rate R(a, c) for test adequacy criterion c with respect

to architecture a as:

R(a, c) = Num(a, c)/|F (a, c)|
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Step 6. Determine the fault detection effectiveness E(a, c), for test adequacy criterion c

with respect to an achitecture a as:

E(a, c) = Num(a, c)/|T (a, c)|

6.1.1 Experimental Procedure

The experiment procedure is summarized in Figure 6.1. First, we chose errors (detailed

in Section 6.1.5) that are applicable to this subject program (detailed in Section 6.1.2).

Then we implemented faults and seeded them into the subject program (detailed in Section

6.1.5). Test sets are generated using the novel model-based testing techniques defined in this

dissertation. Each test case was executed against all faulty versions of the subject program.

After each execution, failures (if any) were checked and corresponding faults were identified

by hand. This process was repeated on each test case until no more failures occurred. The

number of faults detected was recorded and used in the analysis.

Figure 6.1: Experiment procedure

99



6.1.2 The Subject Program

The subject program is an industrial software system build by Lockheed Martin (LM).

The program was written in C and C++. The system contains more than 100 classes and

approximately 75,000 lines of code. Because of its proprietary nature, this dessertation only

shows a high level abstract of the program structure, but not the code.

This software system receives real-time command and data from a ground user inter-

active system, processes command and data, and performs a series of actions and controls

multiple types of hardware. These hardware systems also send hardware metrics and status

to the software. Users can request telemetry data, causing the system to send data that

meets the customer’s criteria to destination points (external user systems). An overview of

the system is shown in Figure 6.2.

Figure 6.2: The subject program

Command Controller receives the data from the ground system and passes it to Commu-

nication Link Manager where the command gets processed and takes effect right away or at

a later time based on information in the command. Communication Link Manager controls
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the link hardware (antenna, modem and transmitter/receiver) through Hardware Controller

1 and Hardware Controller 2. It monitors performance metrics and hardware status during

link activation, maintenance, and deactivation. Communication Link Manager maintains

overall system state. Infrastructure Manager provides all the interfaces to the real-time

operating system, including semaphore control, message queue, and timer management.

This subject program has three benefits:

1. This program uses all the architecture relations described in the testing technique

2. The subject program is a typical component-based real-time embedded system that

has many communications and connections between components

3. The subject program runs on a real-time hardware environment

6.1.3 Test Adequacy Criteria

We use three types of test adequacy criteria in this experiment application.

1. In the manual specification method, test requirements were generated based on the

specification of the subject program. A brief system specification of the subject sys-

tem was available, where high level data flow and control flow were presented. Test

requirements and test cases were generated based on the data flow, control flow, as

well as the text description

2. The all-interface-event coverage testing technique defined in Chapter 4

3. The all-transition coverage testing technique defined in Chapter 4

6.1.4 Test Data

Test data were manualy generated by the author to fulfill test requirements in CREATEG

model. The process was specific to each test method. For the manual specification method,

test data were generated to meet each functional requirement. For the all-transition cov-

erage criterion and the all-transition-event coverag, test data were generated to cover each
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test path. Test data were taken as inputs to a proprietary test automation tool that was

developed by the company using the Perl programming language. The test tool reads the

input test procedure files, launches the software, waits for the test to complete, retrieves

output log files, and analyzes the results to determine whether the test was successful.

Figure 6.3 shows a test case example. Test data are input from interface functions as

parameters. A function called log text() is used to output program behavior to a log file.

Figure 6.3: Test case example
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Figure 6.4 shows a log file example. The log file contains both logs from test cases and

logs from operational software.

Figure 6.4: Test log example

6.1.5 Fault Sets

The research was validated by determining the effectiveness of the software architecture-

based testing criteria at detecting faults that are associated with the connections of the

state oriented components. Faults were seeded by hand using 21 mutation operators. A

mutation operator defines syntactic changes to a program, creating variants of the original

program that are called mutants. If a test causes a mutant to generate a different result

from the original program, this mutant is killed. In this researach, mutation analysis was

applied to architecture and design models. For each mutation operator, faults were selected

based on specific artifacts in the model. For example, one of the mutation operators removes

the condition of a conditional message in the code. We first check the model to see how

many conditional messages were defined in the design model and implement faults for those

conditional messages. The faults were implemented and seeded by hand by modifying
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the corresponding source code. Mutation testing was done by selecting a set of mutation

operators and then applying them to the source program one at a time for each applicable

piece of the source code.

For example, consider the following C++ code fragment:

if (a && b) {

c = 1;

} else {

c = 0;

}

The condition mutation operator would replace && with ||, producing the following

mutant:

if (a || b) {

c = 1;

} else {

c = 0;

}

Three integration operators were defined by Delamaro et al. [33], five specification

operators were defined by Souza et al. [32], two activity model operators were defined

by Swain et al. [74], and seven mutation operators were defined by Nilsson et al. [65].

To introduce more variety in the type of seeded faults, I defined four additional operator

categories. The selection of seeded faults was based on the characteristics of the software

for the industrial software, and the ability of the operators to introduce interaction faults,

i.e., faults that can only be revealed by messages sent from one component to the other.

The following list defines the 21 mutation operators used in the study. After each

definition the source for the operator is given.

1. Initial State Exchanged (ISE): This operator changes the initial state of a component

before it receives a message. The initial state is replaced by an invalid state in which
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the component should not receive a particular message. (Souza et al. [32])

2. Replace Return Statement (RetStaDel): This operator replaces each return statement

in a method with each other return statement in the method, one at a time. (Delamaro

et al. [33])

3. Condition Missing (CM): This operator removes the condition of a conditional message

in the code. (Souza et al. [32])

4. Transition Deletion (TD): This operator removes a transition in the code. (Souza et

al. [32])

5. Event Exchange (EE): This operator switches an event with another to trigger a

transition to a different state in the code. (Souza et al. [32])

6. Event Missing (EM): This operator removes an event in the code. (Souza et al. [32])

7. Argument Switch/Parameters Exchange (AS) at calling point: This operator changes

the order of the parameters (and type) passed in an interface call. (Delamaro et al.

[33])

8. Interface Variables Exchange (IVE) at called module: This operator changes the

parameter passed in an interface called. The valid value of the parameter is replaced

with an invalid value. (Delamaro et al. [33])

9. Alter Condition Operator (ACO): This operator changes the condition in the code

corresponding to a path condition in collaboration. (Swain et al. [74])

10. Guard Condition Violated (GCV): This operator negates the guard condition of a

transition. (Swain et al. [74])

11. Missing Provider Function (MPF): This operator removes the functions that are called

by a component. (Defined in this dissertation)
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12. State Exchange (SE): This operator sets the target state of a component as the source

state. (Defined in this dissertation)

13. Wrong User State (WUS): This operator sets the state of the calling component to

an invalid state. (Defined in this dissertation)

14. Conflicting State (CS): This operator sets the states of two components in states that

conflict with each other. (Defined in this dissertation)

15. 4+ execution time: This mutation operator changes the execution time of one com-

ponents task from T to T+ 4. (Nilsson et al. [65])

16. 4- execution time: This mutation operator changes the execution time of one com-

ponents task from T to T- 4. (Nilsson et al. [65])

17. - precedence constraint: This mutation operator removes a precedence constraint

relation between two components. (Nilsson et al. [65])

18. + precedence constraint: This mutation operator adds a precedence constraint relation

between two components. (Nilsson et al. [65])

19. 4- inter-arrival time: This mutation operator decreases the inter-arrival time between

requests for a task execution by a constant time 4. (Nilsson et al. [65])

20. 4+ pattern offset: Changes clock constraint from C to C+4 in guards on a transition

from one state to another. (Nilsson et al. [65])

21. 4- pattern offset: Changes clock constraint from C to C- 4 in guards on a transition

from one state to another. (Nilsson et al. [65])

The faults seeded in each category were based on the design and code of the subject

program. For instance, the sequence diagram has three path conditions, so we could seed

three faults in each of the CM and ACO categories. Similarly, there are five guard conditions

in a state chart diagram, so we could seed up to five faults in the GCV category.
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Based on the above 21 operators, I created 60 faults for the subject system. A summary

of the seeded faults for the study is given in Table 6.1.

Table 6.1: Number and types of faults seeded

Fault Number mutation operator Faults in the Subject Programs

1 Initial State Exchanged (ISE) Change the initial state of link manager

from inactive to disconnecting

2 Initial State Exchanged (ISE) Change the initial state of hardware con-

troller 2 from inoperative to operative

3 Replace Return Statement
(RetStaDel)

Hardware controller 1 returns a statement

that is not based on the result of the hard-

ware module 1 status and the status im-

pacts hardware controller 1s states

4 Replace Return Statement
(RetStaDel)

Hardware controller 1 returns a statement

that is not based on the result of the

hardware module 1 status and the sta-

tus doesnt impact hardware controller 1’s

states

5 Replace Return Statement
(RetStaDel)

Hardware controller 2 returns a statement

that is not based on the result of the hard-

ware module 2’s status

6 Replace Return Statement
(RetStaDel)

Infrastructure manager returns a state-

ment that is not reflecting the status of

the operating system

Continued on next page

107



Table 6.1 – continued from previous page

Fault Number mutation operator Faults in the Subject Programs

7 Condition Missing (CM) A condition generated from an external

event triggered by hardware controller 1

request interface to link manager provider

interface is deleted for a state transition

in link manager

8 Condition Missing (CM) A condition triggered by hardware con-

troller 2 is missing

9 Condition Missing (CM) A condition comparing with the current

time stamp with an designated time stamp

is missing

10 Transition Missing (TM) Transition from state acquired to mainte-

nance is missing in hardware controller 2

11 Transition Missing (TM) One transition from state connecting to

state connected is missing in Link Man-

ager

12 Transition Missing (TM) One transition from state connected to

state unconnected is missing in Link Man-

ager

13 Transition Missing (TM) One transition from state ready to state

notReady is missing in hardware manager

14 Event Exchanged (EE) Two events in the link manager event han-

dler table for the same state are switched

15 Event Exchanged (EE) Two events in the link manager event han-

dler table for different states are switched

Continued on next page
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Table 6.1 – continued from previous page

Fault Number mutation operator Faults in the Subject Programs

16 Event Exchanged (EE) Two events in the link manager event han-

dler table for the same state are switched

17 Event Missing (EM) One external event triggered by hardware

manager request interface to link manager

provider interface is missing

18 Event Missing (EM) One event triggered by command con-

troller is missing

19 Event Missing (EM) One internal event is missing

20 Calling point: Parameters ex-

changed

Parameters in a request interface function

between hardware controller 1 and link

manager are not in the right order

21 Calling point: Parameters ex-

changed

Parameters in a request interface function

between hardware controller 2 and link

manager are not in the right order

22 Calling point: Parameters ex-

changed

Parameters in a request interface function

between Infrastructure manager and link

manager are not in the right order

23 Calling point: Parameters ex-

changed

Parameters in a request interface function

between hardware manager and link man-

ager are not in the right order

24 Called Module: Interface vari-

ables exchanged

The values of the parameters in a provider

interface function between hardware con-

troller 1 and link manager are opposite

Continued on next page
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Table 6.1 – continued from previous page

Fault Number mutation operator Faults in the Subject Programs

25 Called Module: Interface vari-

ables exchanged

The parameters in a provider interface

function between hardware controller 2

and link manager are opposite

26 Called Module: Interface vari-

ables exchanged

The parameters in a provider interface

function between Infrastructure manager

and link manager are opposite

27 Called Module: Interface vari-

ables exchanged

The parameters in a provider interface

function between hardware manager and

link manager are opposite

28 Called Module: Interface vari-

ables exchanged

The parameters in a provider interface

function between command controller and

link manager are opposite

29 Called Module: Interface vari-

ables exchanged

The parameters in a provider interface

function between hardware controller 1

and link manager are opposite

30 Alter Condition Operator
(ACO)

A condition in a link activation sequence

for two alternative path is switched

31 Alter Condition Operator
(ACO)

A condition in a link deactivation se-

quence for two alternative path is switched

32 Guard Condition Violated

(GCV)

A condition in a transition from state idle

to connecting in link manager is invalid

33 Guard Condition Violated

(GCV)

A condition in a transition from state con-

necting to disconnecting in link manager

is invalid

Continued on next page
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Table 6.1 – continued from previous page

Fault Number mutation operator Faults in the Subject Programs

34 Guard Condition Violated

(GCV)

A condition in a transition from state con-

necting to connected in link manager is

invalidd

35 Guard Condition Violated

(GCV)

A condition in a transition from state con-

nected to unconnected in link manager is

invalid

36 Guard Condition Violated

(GCV)

A condition in a transition from state dis-

connecting to idle in link manager is in-

valid

37 Missing Provider Function
(MPF)

In a hardware controller 2 request inter-

face function, the corresponding link man-

ager provided interface function is missing

38 Missing Provider Function
(MPF)

In a hardware controller 1 request inter-

face function, the corresponding link man-

ager provided interface function is missing

39 State Exchange (SE) A target state in link manager is ex-

changed with its corresponding source

state

40 State Exchange (SE) A target state in hardware controller 2 is

exchanged with its corresponding source

state

41 Wrong User State (WUS) A request interface from the link manager

is activated in a wrong state

42 Wrong User State (WUS) A request interface from the hardware

controller 1 is activated in a wrong state

Continued on next page
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Table 6.1 – continued from previous page

Fault Number mutation operator Faults in the Subject Programs

43 Wrong User State (WUS) A request interface from the hardware

controller 2 is activated in a wrong state

44 Conflicting State (CS) The state in a request interface from link

manager conflicts with the corresponding

state of a provider interface from hardware

controller 2

45 Conflicting State (CS) The state in a request interface from link

manager conflicts with the corresponding

state of a provider interface from hardware

manager

46 Conflicting State (CS) The state in a request interface from link

manager conflicts with the corresponding

state of a provider interface from hardware

controller 1

47 4 + execution time A timed delay4 was added between send-

ing two outgoing messages from the com-

ponent link manager to the other two com-

ponents hardware controller 1 and hard-

ware controller 2.

48 4 + execution time A timed delay 4 was added in compo-

nent hardware controller 1’s intialization

sequence.

49 4 - execution time One action was taken out of component

hardware controller 2 so the execution

time of the component task was reduced.

Continued on next page
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Table 6.1 – continued from previous page

Fault Number mutation operator Faults in the Subject Programs

50 4 - execution time A timed delay 4 was reduced from com-

ponent hardware controller 2’s task.

51 - precedence constraint A precedence constraint relation between

component link manager and component

hardware controller 1 is removed.

52 - precedence constraint A precedence constraint relation between

component link manager and component

hardware controller 2 is removed.

53 + precedence constraint A precedence constraint relation between

component link manager and component

hardware controller 1 is added.

54 + precedence constraint A precedence constraint relation between

component link manager and component

hardware controller 2 is added.

55 4 - inter-arrival time A timer based event triggered by the in-

frastructure manager has a delay in its in-

terval.

56 4 - inter-arrival time A timer based event triggered by the com-

mand comtroller has a delay in its interval.

57 4 + pattern offset Clock constraint from component com-

mand controller was added a time delay.

The constraint was applied to a guard in

component link manager.

Continued on next page
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Table 6.1 – continued from previous page

Fault Number mutation operator Faults in the Subject Programs

58 4 + pattern offset Clock constraint from component hard-

ware controller 2 was added a time delay.

The constraint was applied to a guard in

component link manager.

59 4 - pattern offset Clock constraint from component com-

mand controller was reduced by certain

time. The constraint was applied to a

guard in component link manager.

60 4 - pattern offset Clock constraint from component hard-

ware controller 2 was reduced by certain

time. The constraint was applied to a

guard in component link manager.

The faults shown in Table 6.1 were manually inserted into the subject program by the

author.

6.2 Experimental Results

Following the experimental procedure described in Figure 6.1, first I generated the CRE-

ATEG model of the subject program. The software has six components. Each component

contains multiple provider services, user services, message edges, states, transitions, event

captures, event handlers and events. Each message edge or transition is marked with the

cooresponding time stamp. The duration and execution cost of inter-component and intra-

component interactions and state transitions can be calculated. The overall CSIEDBG is

shown in Figure 6.5.
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Test cases are generated from three test criteria. Test input data with time stamps are

designed to trigger timed message sequences. Instrumentations are inserted throughout the

subject program to provide trace information of program execution. During test execution,

real-time system behaviors are recorded by the instrumentation. Execution results are

compared with expected results. For the manual specification testing method, results are

observed at the output of the integrated system. For the all-interface-transition coverage

testing criteria, results are compared at all the provider services, user services, message

edges, states, and transitions that are defined in CSIBG model. For the all-interface-

event coverage testing technique, results are compared at all the provider services, user

services, message edges, states, transitions, event captures, event handlers, and events that

are defined in the CSIEDBG. From the latter technique, the observability is increased and

the faults that do not propagate to system output in the context of particular test executions

could be detected.

Embedded systems employing multiple tasks can have non-deterministic outputs, which

complicates the determination of expected outputs for given inputs. To provide a compre-

hensive evaluation of each test method, I designed five sets of test cases for each coverage

criterion, and then analyzed the minimum, average, and maximum numbers of faults de-

tected by each test method. Different test cases were generated by varying test data values

and test data input sequence for each test path. The results for all the five test sets are

listed in Table 6.2. The fault numbers are taken from Table 6.1.5. Table 6.3 lists the number

of faults detected for each test method in each test set. Table 6.5 lists the mutants score

for each test method.
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Table 6.2: Number of faults detected for each test method in each test set

Manual Specification | All-Interface-Transition | All-Interface-Event

Fault S1 S2 S3 S4 S5 S1 S2 S3 S4 S5 S1 S2 S3 S4 S5

1 F F F F F F F F F F F F F F F

2 F F F F F F F F F F F F F F F

3 F F F F F F F F F F F F F F F

4 NF F NF NF NF NF NF NF F NF NF F NF NF NF

5 NF NF NF NF NF F F F F F F F F F F

6 F F F F F F F F F F F F F F F

7 F NF F F NF F NF F F NF F F F F F

8 NF NF F NF NF NF F F NF F F F F F F

9 NF NF F NF NF NF NF F NF NF F F F F F

10 F F F F F F F F F F F F F F F

11 F F F F F F F F F F F F F F F

12 NF F NF NF F F F F F F F F F F F

13 NF F NF NF F F F F F F F F F F F

14 NF NF NF NF NF NF NF NF NF NF F F F F F

15 F F NF F F F F F F F F F F F F

16 F F F F F F F F F F F F F F F

17 NF NF F NF NF NF NF NF F NF F F F F F

18 NF F NF NF F F F F F F F F F F F

19 NF NF NF NF NF NF NF NF F NF NF NF NF F NF

20 F F F F F F F F F F F F F F F

21 F F F F F F F F F F F F F F F

22 F F F F F NF F F NF F F F F F F

23 F F F F F F F F F F F F F F F

continued on next page
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Manual Specification | All-Interface-Transition | All-Interface-Event

Fault S1 S2 S3 S4 S5 S1 S2 S3 S4 S5 S1 S2 S3 S4 S5

24 F F F F F F F F F F F F F F F

25 F F F F F F F F F F F F F F F

26 F F F F F NF F F NF F F F F F F

27 F F F F F F F F F F F F F F F

28 F F F F F NF F NF NF F F F F F F

29 F F F F F F F F F F F F F F F

30 F F F F F F F F F F F F F F F

31 F F F F F F F F F F F F F F F

32 NF F NF NF F F F F F F F F F F F

33 F F F F F F F F F F F F F F F

34 F F F F F F F F F F F F F F F

35 F F F F F F F F F F F F F F F

36 F F F F F F F F F F F F F F F

37 F F F F F F F F F F F F F F F

38 F F F F F F F F F F F F F F F

39 NF F NF NF NF F F F F F F F F F F

40 F F F F F F F F F F F F F F F

41 NF F NF NF NF F F F F F F F F F F

42 F NF F F NF F F F F F F F F F F

43 F F NF F F F F F F F F F F F F

44 NF F NF NF F F F F F F F F F F F

45 NF NF NF NF NF NF NF NF NF NF NF NF NF NF F

46 F F F F F F F F F F F F F F F

continued on next page
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Manual Specification | All-Interface-Transition | All-Interface-Event

Fault S1 S2 S3 S4 S5 S1 S2 S3 S4 S5 S1 S2 S3 S4 S5

47 F NF F F F F F F F F F F F F F

48 F NF F F NF F NF NF F NF F F NF F F

49 NF NF F F F F F NF F F F F F F F

50 F NF F F F F F F F NF F F F F F

51 F F F F F F F F F F F F F F F

52 NF NF F F F NF NF NF F F F F F F F

53 F F F F F F F F F F F F F F F

54 NF NF F F F F F F NF NF F F F F F

55 F F F F F F F F F F F F F F F

56 NF NF F F F F F NF F F F F F F F

57 F F F F F F F F F F F F F F F

58 F F F F F F F F F F F F F F F

59 NF F F F F NF F F NF F F F F F F

60 F F F F F F F F F F F F F F F

Table 6.3: Number of faults detected for each test method in each test set

Faults Detected

Test Method Test Set 1 Test Set 2 Test Set 3 Test Set 4 Test Set 5

Manual Specification 40 43 47 46 47

Tests

All-Interface-Transition 48 50 49 53 50

Coverage Tests

All-Interface-Event 57 58 56 58 58

Coverage Tests
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Table 6.4: Number of test case for each test method in each test set

Test Cases

Test Method Test Set 1 Test Set 2 Test Set 3 Test Set 4 Test Set 5

All-Interface Coverage 25 25 27 27 27

Tests

All-Interface-Transition 31 33 31 33 33

Coverage Tests

All-Interface-Event 40 41 40 41 41

Coverage Tests

Table 6.5: Quantitative Analysis of Mutants Score for each test method

Manual Specification All-Interface-Transition All-Interface-Event

Tests Coverage Tests Coverage Tests

Minimum 67% (40) 80% (48) 93% (56)

Average 75% (45) 83% (50) 95% (57)

Maximum 78% (47) 88% (53) 97% (58)

The following graph shows the mutation score against test method:
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Figure 6.6: The graph of mutant score

Given a distribution of the above five test sets, the level of confidence indicates the

probability that the confidence range captures this true population parameter. It does not

describe any single sample. This value is represented by a percentage. I set the desired

level of confidence as 95%. In order to prove that 95% of the observed confidence intervals

will hold the true value of the parameter, I calculated the sample mean, standard deviation,

standard variance, and confidence level from the mutantion score of three test methods.

As shown in Table 6.6, we can say that, with 95% confidence level, AITC is better than

Manual Specification and AIEC is better than AITC.
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Table 6.6: Statistic Analysis of Mutant Scores Comparison

AITC vs. Manual Specification AIEC vs. AITC

mean 9.0 12.3

std dev 4.5 2.5

variance 20.3 6.39

n 5 5

conf. level 0.95 0.95

1/2 of conf. interval 5.59 3.14

upper bound 14.6 15.5

lower bound 3.4 9.2

The goal of this study was twofold. One was to see if architecture and design-based

testing could be practically applied. The second was to evaluate the merit of architecture

and design-based technique by comparing it with traditional testing. From the experimental

results we conclude that the goals were satisfied; the architecture and design-based testing

technique was applied and worked fine, and performed better than the manual specification-

based techniques. All-Interface-Event Coverage was able to detect more faults than All-

Interface-Transition Coverage. All-Interface-Event Coverage detected 95% of the faults.

The faults not detected by at least one of the five test sets from AIEC are related to the

hardware design and timing. Fault 4 could be detected if loop transitions were considered

when deriving test message sequences in the test case. Fault 19 was hard to detect because

the missing internal event was not part of the triggering conditions to any state transition.

Fault 45 was not detected because the state conflict did not cause any failure in the hardware

manager. Fault 48 was not detected because the added timed delay in hardware controller

did not cause any conflicts to other components during its operation.

I also measured the code coverage ratio using the Wind River Workbench development

tool [84] with the code coverage feature. The averaged results from the five test sets for all

the three test techniques are listed in Table 6.7.
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Table 6.7: Code coverage ratio

Coverage Manual Specification All-Interface-Transition All-Interface-Event

Unit Tests Coverage Tests Coverage Tests

Function 82.3% 88.1% 95.3%

Block 73.5% 84.6% 93.6%

Function coverage reports whether tests invoked each function or procedure. Block

coverage reports whether each executable statement is encountered. Most testers would

agree that 73.5% statement coverage is so low that it’s almost meaningless. Indeed, randon

values thrown at the program will usually achieve almost 60% to 75% [9]. 84.6% is better,

but general agreement is that many faults are likely to be missed with such low coverage.

Over 90% coverage is considered good covergae. The fault finding results in table 6.2 agree

with these general beliefs.

6.3 Threats to Validity

This experiment has several threats to validity. Most obviously, the experiment was per-

formed on a single component-based real-time embedded system. Thus we cannot be sure

that the success would be duplicated in other settings. Getting access to an industrial real-

time embedded system for reserach purpose is very difficult. The process to get the work

approved may take multiple discussions from different groups in the organization. Another

potential validity threat is that lots of work has been done by hand. Human testers had to

make decisions. It is possible that different testers would have different results. The faults

we used in the subject program may not cover all the typical faults at the architectural level.

An architectural fault classification is needed for further experiment. Taken together, these

threats mean that I cannot conclude that this type of testing will succeed in all settings.

Rather, I know that it is possible for this type of testing to improve testing and lead to

higher quality software in some settings.
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6.4 Conclusion

From this experiment application, we can see that the architecture and design-based testing

technique can be practically applied, and the evaluation shows that it can find different

faults effectively. This result indicates that this testing approach can benefit testers who

are performing architecture/system testing on software.
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Chapter 7: Conclusion and Future Work

7.1 Conclusion

This dissertation has presented a new strategy for component-based real-time embedded

software integration testing that is based on a test model CREATEG that combines infor-

mation from architecture design artifacts into a graph.

The motivation is to exercise component interactions in the context of multiple compo-

nent state combinations to detect potential faults. Therefore, it takes into account the states

of all components involved in a collaboration to exercise component interactions occuring

at specific times in the context of integration testing. For instance, if the functionality

provided by a component depends on the states of other components, then the proposed

technique can effectively detect faults due to invalid component states.

We validate the research with an industrial post-hoc observational field study [85]. We

built an experimental tool and generated faulty versions of a real-time embedded system

under test using carefully selected mutation operators. The empirical results show that

the proposed approach effectively detects various kinds of integration faults. In particular,

the All-Interface-Event Coverage Criterion successfully detected 93% of the seeded faults

and was particularly effective at detecting faults related to the state-behavior of interacting

components.

We have also presented various coverage criteria to generate test paths, and algorithms

to automate generation of test paths. The most demanding criterion, All-Path Coverage,

is very expensive and it is not clear that it can scale up in all situations. It is therefore

important that less expensive criteria be carefully investigated in future work as they will

likely be more suitable in many situations where test budgets are limited. Now that the

potential of our CREATEG approach has been demonstrated, new criteria to select high
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yield subsets of the CREATEG test paths could be devised.

The method presented in the dissertation has a very clear, structured, process to follow.

It was also very convenient to have a range of test criteria, allowing testers to start with

simpler criteria and move up to stronger criteria when needed. Table 6.7 in Chapter 6.1

showed that the tests generated from All-Interface-Event coverage criterion accomplished

93.6% coverage of source code, the tests generated from All-Interface-Transition coverage

criterion provided 84.6% coverage of the source code, and the tests derived from manaul-

specification method produced only 73.5% coverage of the source code. The manual speci-

fication method definitely needs some auxiliary tests to achieve high coverage of the source

code.

This method also improves the low observability problem. We addressed the observ-

ability problem by logging intermediate values on each test path, making it much easier to

diagnose the differences in expected and actual results.

A disadvantage of the modeling approach is that it puts a burden on the testers. To

create the models, the test design team needs to understand software architecture design

to analyze UML diagrams. In addition, the test team needs to have substantial domain

knowledge.

7.2 Future Work

There are several future areas to explore.

First, we applied this technique only to one component-based real-time embedded sys-

tem. To access broad feasibility, we would like to apply this technique to other component-

based real-time embedded systems.

Second, we could promote this model with requirement analysts, designers, program-

mers, and testers in the industry to greatly improve the understanding of the entire process.

Having the models available to all the team members will make it very easy to adapt to

changes in the requirements, and identify relations or constraints among input attributes

to the software.
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Third, more research can be carried out in the analyzing of component-based real-

time embedded software architectures. As pointed out in Chapter 2, properties such as

concurrency, timeliness, and multi-tasking need to be checked as we carry out testing and

analysis at the architecture level.
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