
THE C STANDARD LIBRARY
&
MAKING YOUR OWN
LIBRARY

ISA 563: Fundamentals of Systems Programming

Announcements

  Homework 2 posted
  Homework 1 due in two weeks
  Typo on HW1 (definition of Fib. Sequence incorrect)
  Prof. Stavrou will give the lecture today
  An extra-credit quiz (20 pts, 30 minutes)

 No computational device allowed
 Hand-execute the code, list output

Overview: the Standard Library

  A language is:
 The grammar of the language (keywords, operators,

expressions, etc.)
 The execution environment (e.g., an OS, JVM, CLR)
 A library of supporting functions

  “Language design is library design.”
-- Bjarne Stroustrup

  Example: Java (very large object library and API)
  Hint: read the man pages for the C library functions!

What is a Library?

  A collection of functions with a common purpose

  The collection provides a well—defined standard
interface or API to the library’s core purpose:
  I/O
 Math
 Graphics/GUI
 Crypto
 …many others

Collections of Functions

  The set of function definitions provide a set of
contracts

  Inform callers how to set up and use the arguments
(parameters) and results

  The design of the library and contracts/API provide
some hints as to semantics and implementation
details (security—related…think back to Sergey
Bratus’s article on Hacker Curriculum)

Header Files

  Header files are C source files that hold the
definition of functions and data structures
 Header files end in “.h”

  The C standard library is composed of many
header files as well as their corresponding
implementation (i.e., .c) files
 You know one already: stdio.h

Example: “Standard I/O”

  Basic C data types provide storage for data when
it is “in” your program’s memory space
 Collections of data: structs, arrays, unions (last lecture)

  What about feeding data into these variables and
sending data to other programs or files on disk?
 Streams or collections of bytes
 Files

Basic Concepts of Unix Files

  No markup (contrast with NTFS files)
  Every byte is addressable

  Access is byte by byte (char by char)
 Can perform “random” access (cover this later)
  Treat a file as a stream or sequence of bytes

  Everything in Unix is a file (in one form or another)
  So file I/O is important in C programs
 …and so is having a robust, standard way of manipulating

data in files!

C Programs and “Standard” Files

  Every C program is given 3 files automatically
 Standard output (what you see on screen)
 Standard input (usually attached to keyboard device)
 Standard error (also usually on screen)

  But via the “magic” of Unix, can be easily
redirected to or from other sources and sinks
 Shell redirection
 See ‘dup’ system call

Naming “Standard” Files

  The header file <stdio.h> defines three handles to
these objects (of type FILE, a struct)
 Stdin
  stdout
  stderr

  These are variable names you can use in any code
that “includes” stdio.h

Interesting I/O Functions

  Char output: putchar(), getchar(), putc(), getc()
  String input/output: fprintf(), fscanf()
  File I/O:

  fopen() / fclose()
  fread() / fwrite()

  These are different from the OS system calls: open,
close, read, write
 They operate on C library FILE objects rather than OS-

level file descriptors

The FILE Structure Abstraction

  A data type defined in stdio.h

  A struct named FILE
 A common data type for use with most of the C I/O

library functions
 So library design involves designing and defining

appropriate data structures as well as functions

  See page 176 in TCPL for the definition

Opening Files: Who Knows What?

  Key Idea: translate a file name to something the OS
can manipulate
 The C library steps in the way

  Concept stack
 A filename: a character sequence humans understand
 A FILE object: something your program (via stdio.h)

understands
 A file descriptor (an integer the OS uses to keep track

of unique file handles)

Opening Files via stdio.h

//consult ‘man fopen’ for details!
#include <stdio.h>
//two arguments: ‘file name’ and ‘mode’
FILE* fin = fopen(“/tmp/name”,

 “rb”);
//now ‘fin’ represents a valid FILE object, right?
//wrong! … need to test the result of fopen()!
if(NULL==fin){… //an error occurred, handle it

Contract vs. Implementation

  fopen’s contract is:
 Give me a valid file path and a mode (read, write,

append, truncate, etc., see man page) AND I might
return to you a valid pointer to a valid FILE object

  How does C library do all that?
  It doesn’t do it all. It asks the OS for help.

Contract vs. Implementation 2

  Many standard library functions employ a system
call (some don’t) to help accomplish the underlying
task

  System calls define the OS’s API
 A collection of services the OS will provide to

application programs
 But can be tedious to use and set up
 So C library is a higher level of abstraction

Contract vs. Implementation 3

  fopen employs the ‘open()’ system call

//see ‘man 2 open’
int open(const char* pathname, int flags);

Other C Libraries

Character manipulation

  #include <ctype.h>

  isascii(int), islower(int), isupper(int), isdigit(int)…

  tolower(int), toupper(int)…

String Manipulation

  #include <string.h>
  Defines the symbol NULL
  Memory copy routines, the strlen() routine, string

tokenization, some error output routines, … more on
those when we get to memory management

stdlib.h

  Collection of many utility functions
 exit, abort, atoi, atof, system()
 malloc, calloc, realloc, free (will talk about these in a

later lecture, not now…)
 getenv, putenv, setenv
  rand, srand

errno.h

  Defines a list of standard error names (rather than
keeping track of error numbers…)

  Defines the ‘errno’ integer variable

  ‘perror()’ from stdio.h is related (but in a different
library)

  Get in the habit of testing errno’s value!

math.h

  Defines common math symbols (pi, e, etc.)
  Defines values for representing limits of primitive

types (INFINITY, NAN, etc.)
  Defines tan, cos, sin, exp, abs, floor, ceil, log, round,

etc.

Create Your Own Library

Anyone Can Create a Library

  Just a collection of:
 Contract definitions
 Symbol and data type definitions
  Function implementations

  Components:
 Header files
 Library binary (or source) files

Note: Library Interception

  Linking is not done until runtime
  Can dynamically replace function implementations

 “DLL Injection”
 “Library interposition”

  Unix: LD_PRELOAD environment variable
 Affects search path for library function implementation

libmemtag.a

Design a library that allows you to associate memory
locations with arbitrary “string” tags

Need:
 an API (data definitions and set of functions)

 a binary implementation

libmemtag header file (memtag.h)

#ifndef __MEMTAG_H_
#define __MEMTAG_H_
typedef struct _memory_tag{
 char* content;
 unsigned int length;
} MTag ;
int tagmem(void* addr,

 unsigned long long extent,
 MTag* tag);

#endif

Implementation (memtag.c)

#include “memtag.h”
int
tagmem(void* address,
 unsigned long long extent,
 MTag* tag)
{

 if(NULL==tag || NULL==tag->content)
 return -1;

 //more error checking, and associate memory address
 //with the tag in some internal data structure
 //…
 return 0;

}

Package the Library (Makefile)

memtag.o: memtag.c memtag.h
 gcc –Wall –g –c memtag.c

libmemtag.a: memtag.o
 ar rc $@ memtag.o

Use the Library in your code (test.c)

#include “memtag.h”

int main(int argc, char* argv[])
{
 int myint = 100;
 MTag mtag;
 mtag.content = “yellow”;
 mtag.length = strlen(mtag.content);
 tagmem(&myint, sizeof(myint), &mtag);
 return 0;
}

Telling the Compiler about the Library

LDFLAGS=-L../lib –L/usr/lib
INCLUDES=-I/usr/include –I../include
LIBS=-lmemtag

test: test.c
 gcc $(LDFLAGS) $(INCLUDES) –o test test.c $(LIBS)

