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ABSTRACT 
Authenticating mobile computing users can require a significant 
amount of processing and communications resources—
particularly when protocols based on public key encryption are 
invoked. These resource requirements can result in unacceptable 
response times for the user. In this paper, we analyze adaptations 
of the public key-enabled Kerberos network authentication 
protocol to a mobile platform by measuring the service time of a 
“skeleton” implementation and constructing a closed queuing 
network model. Our adaptation of Kerberos introduces a proxy 
server between the client and the server to mitigate potential 
performance deficiencies and add functional benefits. Our 
analysis indicates that assistance from the proxy makes public key 
Kerberos a viable authentication protocol from a performance 
perspective. However, as wireless network speeds increase from 
current 2G levels to the 3G targets, the proxy can become a 
response time liability. The proxy’s role in the protocol, while 
warranted in current applications, will have to be re-modeled and 
re-considered as both wireless transmission speeds and proxy 
processing speeds increase. 

Categories and Subject Descriptors 
C.4 [Performance of Systems]: Design Studies, Modeling 
Techniques; K.6.5 [Management of Computing and 
Information Systems]: Security and Protection — Authentication  

General Terms 
Measurement, Performance, Design, Security. 

Keywords 
Mobile computing, Authentication, Performance modeling, Proxy 
servers, Kerberos, Public key cryptography. 

1. INTRODUCTION 
Network authentication protocols regularly employ public key 
cryptography to securely identify clients to servers and establish 
trust relationships. In a mobile computing context, the processing 
and communications resources required to perform public key 
operations and transmit large messages may result in unacceptable 
performance characteristics and extended user authentication 
response times. Several current systems compensate for the 
resource limitations of mobile computing platforms by off-loading 
processing to a proxy server. The Wireless Application Protocol 
(WAP) gateway is an example of widespread use of proxies in 
mobile computing user authentication. The WAP gateway 
converts between the reduced function WAP authentication and 
standard Internet protocols. There is some question about the 
value of proxy servers. Proxies can perform a valuable service by 
helping resource-constrained mobile devices communicate as 
peers on the Internet. However, they can introduce an additional 
layer of complexity, network delay, and opportunity for security 
breach. With the rapid increases in computing capacity on 
personal digital assistants (PDAs) and cell phones, it may not be 
beneficial to invest in proxy-based architectures and protocols that 
address what may be a short-term resource constraint. 

This paper explores the performance of user authentication from 
mobile devices. Specifically, we develop and analyze a public 
key-based variant of the Kerberos [1] authentication protocol that 
can employ a proxy server to assist the mobile device. Section 2 
provides background on related proxy-supported mobile 
authentication systems that have been proposed or are in use. In 
Section 3, we describe our proposal for a mobile, public key-
enabled Kerberos protocol called M-PKINIT (when used without 
a proxy) and MP-PKINIT (when used with a proxy). We also 
describe a “skeleton implementation” of the protocol that enables 
performance testing and analysis. In Section 4, we evaluate the 
performance of M-PKINIT and MP-PKINIT with both service 
time and queuing analytic models. After calibrating the model 
with our test configuration, we use it to support analysis and 
conclusions that extend beyond the skeleton implementation and 
development/test configuration. Finally, Section 5 provides a 
summary of our conclusions and outlines possible future work. 
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2. BACKGROUND ON MOBILE 
AUTHENTICATION APPLICATIONS AND 
THE USE OF PROXY SERVERS 
Proxy servers have been widely studied and utilized [2, 3] in 
mobile computing architectures. The following paragraphs review 
two relevant examples that apply proxies to mobile authentication: 
Charon [3] and the Wireless Application Protocol (WAP) 
Wireless Transport Level Security (WTLS) [4].  

2.1 Charon 
The Charon protocol adapts standard Kerberos authentication to a 
mobile PDA platform. Kerberos is a well-known network 
authentication protocol. It uses secret key cryptography and relies 
on a trusted server, the Key Distribution Center (KDC), for the 
management of secret keys. There are many excellent overviews 
of Kerberos [5, 6] and a detailed protocol description will not be 
repeated here. Kerberos has had a recent increase in user base as 
the native network authentication protocol for Microsoft 
Windows 2000. 

The transaction flow of Charon is presented in Figure 1. Charon 
uses Kerberos to establish a trust relationship between the user and 
the proxy. The mechanism for establishing this relationship is very 
similar to the method of establishing trust between the user and the 
target application server. As a result, there are several more 
interactions (i.e., network transmissions) required in Charon than in 
the standard Kerberos protocol, where there is no proxy involved. 
Charon uses the same encryption algorithms (i.e., DES) on the PDA 
as standard Kerberos. There is no network performance advantage 
using Charon versus an unmodified Kerberos. The benefit of Charon 
is that it has a smaller memory footprint and it establishes a trust 
relationship between the PDA and the proxy. The trust relationship 
allows the PDA user to take advantage of the processing power of 

the proxy to assist in compute intensive operations. In [3], the 
Charon authors offer an example of potential areas for proxy 
assistance: retrieving email via a Kerberized POP service and 
distilling MIME images in the messages to suit the client’s display. 
A trusted proxy can perform these services without the risk of 
revealing private data to untrusted parties. The Charon authors argue 
that the protocol can be proven correct since it does not change the 
basic semantics of Kerberos and Kerberos has been proven correct [7]. 

2.2 WAP WTLS 
WAP provides a lightweight set of protocols that allow resource-
constrained computing platforms (e.g., cell phones) to operate on 
a data network such as the Internet. Since the WAP protocols are 
not directly interoperable with the traditional Internet, a gateway 
(i.e., proxy server) is required to perform protocol translation. The 
WAP version of TLS, the Internet protocol for performing 
authentication and establishing secure communications, is WTLS.  

Figure 2 illustrates the WTLS transaction flow. WTLS provides 
options to perform both server-side and client-side authentication 
and certificate exchange. The final result is the establishment of a 
session key that can be used to securely exchange application 
data. WTLS resembles TLS, but is incompatible with it. As a 
result, if the target server only supports TLS, the WAP proxy must 
perform a protocol translation from WTLS to TLS. 

The level of assurance offered by WTLS has been criticized in the 
literature [8]. There are several objections to WTLS. For example, it 
allows the use of weak encryption algorithms and features that make 
chosen-plaintext attacks and brute force attacks easier to mount [9]. 
Further, in order to translate from WTLS to TLS, the WAP gateway 
must decrypt and re-encrypt messages transiting from the user to the 
target server. As a result, a potentially untrusted gateway has access 
to cleartext messages. There are several proprietary and proposed 
standard solutions aimed at closing what has been called the “WAP 
Gap” [9] and implement end-to-end (i.e., mobile client-to-target 
server) security with WAP [11, 12]. 

 
Figure 1. Charon Transaction Flow 

 
Figure 2. WTLS Transaction Flow 
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3. THE DESIGN OF PUBLIC KEY- 
KERBEROS AUTHENTICATION FOR 
MOBILE ENVIRONMENTS 
Many current security architectures employ public key 
cryptography to implement confidentiality, integrity, and 
availability features. There are several proposals to add public key 
cryptography to the stages of Kerberos [1, 13-14]. The proposal to 
add public key cryptography to the initial user authentication in 
Kerberos is documented in an IETF draft and called PKINIT [1]. 
The PKINIT transaction is illustrated in Figure 3. Adapting 
PKINIT to a mobile computing platform would provide a mature 
authentication mechanism for mobile users. It would allow mobile 
users to operate in a public key infrastructure (PKI)-supported 
environment. However, there are at least two challenges in 
making this adaptation: (1) processing resource constraints on the 
mobile platform, and (2) communications resource constraints in 
the mobile network. These performance constraints could result in 
extended authentication response time for the user.  

3.1 Design Guidelines 
We began our formulation of PKINIT for a mobile platform by 
identifying a set of design guidelines. We have chosen guidelines 
that will potentially lead to lower response times and address 
some of the limitations identified in Charon and WTLS. The 
guidelines are: 

•  Reduce the number of public/private key operations performed 
on the mobile platform. In general, public key operations 
consume a significant amount of processing resources and will 
negatively impact performance and user response time. In some 
algorithms, and depending upon the encryption parameters, 
private key operations (e.g., signing) consume more compute 
resources than public key operations (e.g., signature verification). 
Minimizing the total number of public and private key operations 
will always improve performance. Designing the protocol such 
that the private key operation is executed on the mobile platform 
and the public key operation is executed on the KDC may 
improve mobile platform performance at the price of increased 
KDC workload. 

•  When a proxy is used, maintain the option to preserve the 
encrypted data stream through the proxy. A fundamental security 
criticism of WAP WTLS is that it requires the data stream to be 
decrypted and re-encrypted in the proxy. PKINIT for mobile 
platforms should implement end-to-end security and not require 
decryption in the proxy. However, if the proxy is proven to be 
trusted, it may be valuable to provide an option for the proxy to 
decrypt the data stream so that it can support the mobile platform 
in a manner similar to Charon. 

•  Retain the standard Kerberos message formats to the KDC and 
application server. This will allow the protocol to be used with 
standard Kerberos KDCs and application server implementations. 

•  Preserve the semantics of Kerberos. This will allow existing 
proofs of Kerberos correctness to be used in arguing that the new 
protocol is also correct.  

3.2 PKINIT Adaptations in a Mobile 
Environment 
Figure 4 presents a mapping of the PKINIT protocol onto a mobile 
client, KDC, and target application server. We call this adaptation 
M-PKINIT. In M-PKINIT, there are only minor modifications made 
to the PKINIT protocol. One modification is to use an optional 
feature that appeared in a PKINIT draft that expired May 26, 1998, 
but was removed in more recent drafts. This feature accommodates 
the operation of PKINIT in situations where the client only 
possesses a signing key, but can also be used with RSA that allows 
both signing and encryption with the same key and algorithm. In this 
situation, the client generates the session key and encrypts it with the 
KDC’s public key. Normally, it is the KDC that generates the 
session key and encrypts it with the client’s public key. This feature 
swaps a private key operation for a public key operation on the 
mobile platform. It assumes that the client knows the KDC’s public 
key prior to receiving it as a part of the certification chain. One 
potential security risk is that the mobile client will not generate a 
session key that is strong enough. However, the KDC retains the 
option to reject the client-generated session key if it does not meet 
the KDC’s policies for encryption strength.  

 
Figure 3. PKINIT Transaction 

 
Figure 4. M-PKINIT Transaction 
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Figure 5 presents a mapping of the PKINIT protocol onto a mobile 
client, proxy, KDC, and target application server. We call this 
adaptation MP-PKINIT. MP-PKINIT also uses the option that 
allows the client to generate the KDC session key to save a public 
key operation. In the first message sent from the client to the proxy, 
the client has the option of revealing the KDC session key to the 
proxy. To do this, the client will encrypt the session key with the 
proxy’s public key so that the discovery of the session key will 
require knowledge of the proxy private key. The proxy introduces an 
additional store and forward node into the protocol. This will 
certainly create more processing and communications overhead. To 
attempt to mitigate this overhead, an additional shortcut is taken: the 
client’s certificate chain is cached at the proxy. This eliminates the 
need to transfer the client certificate(s) over the wireless network.  

3.3 Skeleton Implementations of M-PKINIT 
and MP-PKINIT 
In order to evaluate the performance characteristics of M-PKINIT 
and MP-PKINIT, we constructed skeleton implementations. The 
objective of the skeleton implementations is to consume 
processing and communications resources as would be expected 
in a full implementation while avoiding complexities such as error 
processing and optional features that would increase development 
time and not consume significant additional resources. 

The development and test configuration is illustrated in Figure 6. 
The mobile device is a Vadem Clio C-1000 that uses Windows 
CE—a popular operating system for PDAs and other handheld 
devices. The C-1000 incorporates a 100 MHz MIPS R4000 CPU 
and has 16 MB of RAM available for programs and storage. The 
KDC and servers are all low-end Pentium processors running the 
Windows NT operating system. The configuration includes four 
conventional Windows 98 low-end Pentium client workstations to 
generate larger numbers of transactions and load the servers. We 
wrote the application in C++ and employed the RSAREF 

implementation standard software for public key encryption and the 
Karn portable C DES software for secret key encryption. All RSA 
keys were 1024 bits in length. We measured system performance by 
instrumenting the code and using an IP-level packet monitor. 

The skeleton software architecture is illustrated in Figure 7. Two 
processes run on the proxy and Kerberos KDC. Processes P1 and 
K1 each open a TCP listening socket and wait for PKINIT 
transactions. Processes P2 and K2 wait for standard Kerberos 
requests arriving as UDP datagrams. The architecture follows the 
PKINIT IETF draft recommendations that the public key exchanges 
use TCP because of longer message sizes and the potential for 
message fragmentation. TCP connections are kept open as long as 
possible to reduce the effects of connection setup and slowstarts. For 
example, the proxy (i.e., process P1) holds its connection with the 
client open while it is communicating with the KDC on the client’s 
behalf. The standard (i.e., secret key) Kerberos transactions use 
UDP as is common in current Kerberos implementations. All KDC, 
proxy, and application server processes are multi-threaded. When 
they receive a message, they dispatch a thread to process and 
respond to the request. The mobile client either communicates 
entirely through the proxy or directly to the KDC and application 
server depending on the protocol we are testing. 
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Figure 6. Development and Test Configuration 

 
Figure 7. MP-PKINIT Skeleton Implementation 

 

 
Figure 5.  MP-PKINIT Transaction Flow 



4. PERFORMANCE ANALYSIS 
4.1 Service Time Measurement 
The skeleton implementation and the test platform allowed us to 
measure no-load service time for a single authentication transaction 
under a variety of protocol permutations. The protocol permutations 
selectively engage subsets of the features proposed in Section 3. 
Table 1 summarizes the results. We recorded service times for six 
permutations: (1) M-PKINIT standard is the unmodified PKINIT 
protocol skeleton executed on the mobile client, a KDC, and an 
applications server; (2) M-PKINIT client session key adds the 
feature whereby the client generates the session key and trades a 
private key operation for a public key operation; (3) MP-PKINIT 
standard is the unmodified PKINIT protocol mapped onto the 
mobile client, a proxy, a KDC, and an application server. The proxy 
only performs store and forward operations; (4) MP-PKINIT client 
session key has the client generate the session key; (5) MP-PKINIT 
trusted proxy includes an authentication between the client and the 

proxy to establish a trust relationship; and (6) MP-PKINIT proxy 
assist has the proxy cache and add the client’s certificate chain to 
the transaction as it passes through, reducing the message size across 
the wireless network. Only in the MP-PKINIT trusted proxy and 
MP-PKINIT proxy assist transactions can the proxy provide added 
benefit to the client. In the other adaptations, the proxy acts as a 
pass-through node. The authentication transaction is broken up into 
four segments for the purpose of service time measurement and 
analysis: (1) Pre-auth includes the mobile device’s processing prior 
to transmission of the first message, (2) Auth includes transmission 
and Proxy/KDC processing time to process the first authentication 
message, (3) Post-auth includes the mobile device’s processing of 
the reply from the Proxy/KDC, and (4) TGT & ST includes all other 
client, Proxy, KDC, and application server processing related to the 
Kerberos ticket granting ticket (TGT) and service ticket (ST). Table 
1 indicates that the Auth step always consumes the most time since 
it includes a significant amount of KDC processing, such as look-up 
of the client and application server in the Kerberos database, in 
addition to encryption functions.  

Table 1 also illustrates the impact of the client generating the session 
key. Row 2 service times reflect the increases in Pre-auth and Auth 
to account for the additional time required for the client to first 
generate the key, sign it, and encrypt it with the KDC’s public key 
and then for the KDC to decrypt the key and verify the client’s 
signature. In contrast, there is a PDA service timesaving in the Post-
auth step. Since only the KDC can decrypt the session key with its 
private key, the client can authenticate the KDC by simply 
confirming that the KDC properly encrypted the “EncKDCRepPart” 
[1] portion of the message. There are no further public key 
operations required in Post-Auth for the client to authenticate the 
KDC. For the test configuration, the increase in KDC service time 
results in the M-PKINIT client session key transaction producing a 
longer response time than the M-PKINIT standard transaction. This 

effect is similar when the same feature is added to MP-PKINIT 
(rows 3 and 4 in Table 1), although the total response time is higher 
because of the additional delays introduced by communicating 
through the proxy. Even more delay is added when the proxy and 
client mutually authenticate to establish a trust relationship (rows 5 
and 6 of Table 1). The MP-PKINIT proxy assist transaction (row 6) 
does not produce a meaningful reduction in service time over the 
MP-PKINIT trusted proxy transaction (row 5). This is because the 
message size savings that results from the proxy caching the client 
certificate is not significant at the local area network speeds of the 
test configuration. 

The performance of the components of a typical mobile 
computing environment may vary significantly from our test 
configuration. In particular, the network connecting all computers 
in the test configuration is a 10 Mbps Ethernet. Generally, data 
transfer rates in a wireless network will be significantly slower. 
The link between the KDC and the application server will most 
likely run at wide area network speeds rather than local area 
network speeds. On the other hand, the servers (i.e., KDC, proxy, 
and application server) will most likely be more powerful than the 
low-end Pentium workstations that we used for testing. 

Figure 8 presents an analysis of sensitivity to server and wireless 
network capacity. The transaction component service times were 
varied in three ways: (1) we lowered wide area network throughput 
to 12,750 bytes/second to reflect typical Internet speeds [16]; (2) we 
used two wireless network rates—9600 bits/second to represent 2G 
and 384 Kbits/second to represent 3G network capacities [17]; and 
(3) we varied the server capacities by a multiplier ranging from 1 to 
20 times the capacity of those in the test bed. At both wireless 
network speeds measured, the M-PKINIT client session key protocol 
variant performs sightly better than the M-PKINIT standard variant 
as the server speed-up hits the factor of ten range. We expect at least 
a factor of ten improvement in server capacity over the low powered 
PCs used—a comparison using benchmarks such as SPEC CINT 
indicate that multipliers as high as 100 are appropriate if comparing 
the CPU capacity of a high end server to our test bed PCs. A more 
interesting result is that adding the proxy service, in this case, 
caching certificates for the client, bring the response times into a 
reasonable range at 2G speeds—reducing the overall response time 
from about 15 seconds to just above 8 seconds. This reduction is based 
on an average certificate size of 1.8KB, consistent with the range of 
sizes of commercial certificates [18, 19]. When the wireless network 
throughput is increased to 3G speeds, the proxy is a response time 
burden and increases the response time by over a second. 

4.2 Closed Queuing Network Modeling 
The service time analysis does not represent operation in a network 
in which resources are shared among many users. The KDC, proxy, 
and application servers are of particular concern. Authentication 
protocols that use public key encryption have been observed to 
consume a significant amount of server resources [20]. 

In [21], we developed a modeling strategy that used closed 
queuing networks with class switching [22] to represent public 
key variants of Kerberos under a variety of host and network 
assumptions. This technique allowed us to model transactions that 
consumed widely varying average service times at different visits 
to each queuing server. It permits modeling protocols that 
combine both public key and secret key encryption—potentially 
generating different average service times on each queuing server 

Time in Milliseconds for Protocol Phase
Protocol Variant Pre-Auth Auth Post-Auth TGT & ST Total

1. M-PKINIT standard 864 3060 255 61 4240
2. M-PKINIT client session key 929 5404 4 65 6398
3. MP-PKINIT standard 866 3240 256 144 4507
4. MP-PKINIT client session key 920 5587 2 136 6646
5. MP-PKINIT trusted proxy 1773 8595 2 136 10506
6.  MP-PKINIT proxy assist 1807 8421 3 142 10373

Time in Milliseconds for Protocol Phase
Protocol Variant Pre-Auth Auth Post-Auth TGT & ST Total

1. M-PKINIT standard 864 3060 255 61 4240
2. M-PKINIT client session key 929 5404 4 65 6398
3. MP-PKINIT standard 866 3240 256 144 4507
4. MP-PKINIT client session key 920 5587 2 136 6646
5. MP-PKINIT trusted proxy 1773 8595 2 136 10506
6.  MP-PKINIT proxy assist 1807 8421 3 142 10373

Table 1. Service Time Measurements 
 



visit. Using the class switching formulation, the queuing network 
maintains independent Markov chains for each closed group of 
classes and preserves the assumptions necessary to use fast 
solution methods [23, 24]. We used the Mean Value Analysis 
(MVA) technique with a Schweitzer approximation [25], resulting 
in very fast solution computation times. 

Figure 9 presents the queuing network topology. Customers 
circulate among the servers in the closed network and sequentially 
wait for service, consume processing resources, and then proceed 
to the next service station. The topology anticipates that a wide 
area network (WAN), such as the Internet, connects the KDC and 
application server. The mathematical solution to the queuing 
network produces performance metrics for each queuing station 
and the system as a whole, such as the average number of 
customers, the average delay time, and the customer throughput. 
These metrics can be used to compare the performance of the 
alternative Kerberos adaptations.  

Figure 10 plots the results of the model’s predictions against 
measured results for the test configuration. We recompiled and 
relinked the Windows CE client source code to run in a Win32 
environment so that it could be run on a standard PC for the purpose 
of generating higher transaction rates and workload. Only very minor 
code changes were required for the port from CE to Win32. Figure 
10 demonstrates good calibration between the model and observed 
test bed results supporting the model’s predictive accuracy.  

Figure 11 plots M-PKINIT and MP-PKINIT authentication 
transaction throughput versus response time, assuming a wireless 
network speed of 9600 bps and several server speed-up multipliers. 
The figure shows a long flat response time curve and a sharp knee 
for all modeled conditions. This is a result of the dominance of the 
wireless network delay in the total response time. The wireless 

network is modeled as a fixed delay server—no increases in 
response time as a result of increased authentication traffic. We 
make this assumption because we have no control over the amount 
of additional traffic going through the wireless network and we 
would expect authentication traffic to be a negligible fraction of the 
overall traffic. We derive the throughput for the wireless network by 
degrading transmission speeds to account for frame errors using the 
measurements and analysis performed in [26]. Figure 11 
demonstrates that the response times start to climb rapidly at the 
point at which the KDC saturates and server delay exceeds wireless 
network delay. The KDC is the bottleneck server in all models. 
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Figure 8. Sensitivity to Server and Network Capacity 

 
Figure 9.  Queuing Network Topology 
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To underscore the role of the KDC, we decreased the speed up of 
the Proxy—the KDC was increased by a factor of 50, and the 
Proxy by a factor of 30. This made no noticeable change in the 
response time curve, indicating that the Proxy can be a lower 
capacity server than the KDC with little detrimental impact on 
user performance. The non-proxy protocol curve knee occurs at 
the same place as the proxied version. This is because the KDC 
workload is the same for both proxied and non-proxied protocol 
variants. Finally, we observe the positive effect of increasing the 
capacity of the KDC by a factor of 100—more than double the 
achievable throughput. 

5. ANALYSIS AND CONCLUSIONS 

5.1 Do M-PKINIT and MP-PKINIT Meet the 
Design Guidelines? 
In Section 3 of this paper, we defined four design guidelines for 
the adaptation of Kerberos to a mobile computing environment. 
Does M-PKINIT and MP-PKINIT meet these guidelines? 
Specifically, did we: 

Reduce the number of public key operations performed on the 
mobile platform? By using an optional feature of PKINIT 
intended for situations where only a signing key is available, we 
swapped a private key operation for a public key operation and 
eliminated the need for the client to validate the KDC’s signature 
on the PKINIT reply message. The client does not have to verify 
the KDC’s signature since the KDC can only decrypt the client-
generated session key with its private key. If the KDC can reply 
with a message encrypted with the session key, it has effectively 
authenticated itself to the client. Both M-PKINIT and MP-
PKINIT reduce the number of public key operations performed on 
the mobile platform. 

When a proxy is used, maintain the options to preserve the 
encrypted data stream through the proxy? The client can choose 
whether or not to send the proxy a session key. That session key, 
encrypted with the proxy’s public key, can be the same session 
key as that used for the KDC or it can be a unique key—at the 
client’s choice. MP-PKINIT provides the option for the client to 
preserve the encrypted data stream through the proxy. 

Retain standard Kerberos message formats to the KDC, and 
application server? There are two difficulties in implementing MP-
PKINIT and maintaining standard Kerberos message formats. First, 
Kerberos was not designed to communicate through a proxy and 
there are several implementation details that must be addressed to 
make this work. An IETF draft [27] specifies a Kerberos protocol 
enhancement called IAKERB that works through these details. 
Second, the KDC must know and implement the PKINIT optional 
feature that allows the client to use a signing key—this feature is not 
in the current PKINIT draft. We observed that having the client 
generate the session key only nominally reduces overall response 
times if the KDC is not the bottleneck and it may not be worth 
changing current Kerberos implementations to support this feature. 
Beyond these two areas, M-PKINIT and MP-PKINIT can both 
employ standard Kerberos message formats at the interface to the 
KDC and application server. 

Preserve the semantics of Kerberos? The introduction of the 
proxy and the client-generated session key represents a change to 
the semantics of Kerberos. The change is significant enough to 
require a re-formulation of the Kerberos formal proof before one 
could assert that M-PKINIT and MP-PKINIT are provably correct 
adaptations of Kerberos. 

Our measurements and models have demonstrated that public key 
Kerberos can be adapted to a mobile environment and with suitable 
KDC performance, can provide reasonable user response times (i.e., 
approximately 8 seconds). We achieved acceptable performance 
with a well-proven public key encryption algorithm: RSA with 
1024-bit keys. At G2 wireless network speeds (i.e., 9600 bps), 
assistance is required from a proxy server in order to produce 
adequate response times—the proxy caches certificates for the client 
to reduce the wireless network message traffic. The current IETF 
draft for PKINIT allows the KDC to store client private keys. While 
this would also eliminate the need to transmit certificates, it would 
reduce the general applicability of the protocol to situations where 
the client was pre-registered with the KDC. 

5.2 Future Work 
Through our skeleton implementation and analytical models, we 
have demonstrated that assistance from a proxy server makes our 
adaptation of public key Kerberos a viable authentication protocol 

 
Figure 10. Model Calibration Results 
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at 2G wireless network speeds. There are several areas where 
further work may be conducted. 

Our skeleton software uses the RSAREF public key encryption 
utilities. While RSA algorithms are common in public key 
applications, there are other ciphers that are also of interest for 
authentication. The PKINIT draft cites the Diffie-Hellman key 
establishment algorithm as a mandatory implementation 
requirement. In addition, there has been significant interest and 
use of elliptic curve-based encryption algorithms in mobile 
computing environments. Elliptic curve algorithms are believed to 
provide comparable assurance levels to RSA with a smaller key 
and, as a result, a less computationally intensive calculation. The 
extension of the analysis presented by substituting Diffie-Hellman 
and elliptic curve for RSA remains as future work. 

The test and model configurations both assumed a mobile client 
and a stationary KDC and application server. A variation of this 
configuration might include KDCs and applications servers that 
are also mobile. We envision that such a configuration might be 
found, for example, in a military battlefield environment. This 
variation potentially reduces the speed of communications 
between the proxy and the KDC and the benefits that accrue from 
proxy-cached certificates. Further analysis of a mobile KDC and 
proxy remains as future work. 

We have shown that the class switching queuing formulation is an 
effective way to quantitatively analyze the performance of 
protocols that combine secret and public key cryptography. The 
application of this analysis technique to a broader range of 
protocols will also be the topic of future research. 

Finally, our specification of M-PKINIT and MP-PKINIT, as well 
as the original PKINIT protocol, does modify the semantics of 
Kerberos. Extension of the work in [7] to demonstrate the 
correctness of M-PKINIT and MP-PKINIT protocols remains as 
future work. 

6. REFERENCES 
[1] Tung, B., et al., Public Key Cryptography for Initial 

Authentication in Kerberos, 2001: http://www.ietf.org 
/internet-drafts/draft-ietf-cat-kerberos-pk-init-12.txt. 

[2] Zenel, B., A General Purpose Proxy Filtering Mechanism 
Applied to the Mobile Environment. Wireless Networks, 
1999. 5: p. 391-409. 

[3] Fox, A. and S.D. Gribble. Security on the Move: Indirect 
Authentication Using Kerberos. in MOBICOM 96. 1996. 
Rye, New York. 

[4] Wireless Application Forum, Ltd. 2000, Wireless 
Application Protocol Wireless Transport Layer Security 
Specification, WAP-199-WTLS, February 18, 2000. 

[5] MIT, Kerberos: The Network Authentication Protocol, 1998, 
http://web.mit.edu/kerberos/www/. 

[6] Kaufman, C., R. Perlman, and M. Speciner, Network 
Security, Private Communication in a Public World. 1995, 
Englewood Cliffs, New Jersey: PTR Prentice Hall. 

[7] Burrows, M., M. Abadi, and R. Needhan, A Logic of 
Authentication. ACM Transactions on Computer Systems, 
1990. 8(1): p. 18-36. 

[8] Khare, R., W* Effect Considered Harmful, 1999, 4K 
Associates. 

[9] Jormalainen, S. and J. Laine, Security in the WTLS, 1999, 
Helsinki University of Technology: Helsinki. 

[10] DeJesus, E.X., Locking Down the..., in Information Security 
Magazine. 2000. 

[11] Cylink, "Closing the ‘Gap in WAP’", 2000. 

[12] WAP, Wireless Application Protocl TLS Profile and 
Tunneling Specification, 2000. 

[13] Medvinsky, A., et al., Public Key Utilizing Tickets for 
Application Servers (PKTAPP), 1997: http://www.ietf.org 
/internet-drafts/draft-ietf-cat-kerberos-pk-tapp-03.txt. 

[14] Hur, M., et al., Public Key Cryptography for Cross-Realm 
Authentication in Kerberos, 2000: http://www.ietf.org 
/internet-drafts/draft-ietf-cat-kerberos-pk-cross-06.txt. 

[15] Tung, B., et al., Public Key Cryptography for Cross-Realm 
Authentication in Kerberos, 1998: http://www.internic.net 
/internet-drafts/draft-ietf-cat-derberos-pk-cross-03.txt. 

[16] Menascé, D.A. and V.A.F. Almeida, Capacity Planning for 
Web Performance. 1998: Prentice-Hall Inc. 

[17] Personal Communications Industry Association, Market 
Demand Forecast for Terrestrial Third Generation (IMT-
2000) Service for the Peronal Communications Industry 
Association, 1998. 

[18] Taschler, S., Datakey CIP 3.0 Whitepaper, 1997. 

[19] Consideration of Smart Cards as the DoD PKI 
Authentication Device Carrier, 2000, Office of the Secretary 
of Defense. 

[20] Apostolopoulos, G., V. Peris, and D. Saha. Transport Layer 
Security: How much does it really cost? in IEEE INFOCOM. 
1999. 

[21] Harbitter, A. and D.A. Menascé. Performance of Public Key-
Enabled Kerberos Authentication in Large Networks. in 
IEEE Conference on Security and Privacy. 2001. Oakland, 
California. 

[22] Bruell, S.C. and G. Balbo, Computational Algorithms for 
Closed Queueing Networks. The Computer Science Library, 
ed. P.J. Denning. 1980, New York: Elsevier North Holland, 
Inc. 

[23] Menascé, D.A., V.A.F. Almeida, and L. Dowdy, W., 
Capacity Planning and Performance Modeling. 1994, 
Englewood Cliffs, New Jersey: Prentice-Hall, Inc. 

[24] Gross, D. and C.M. Harris, Fundamentals of Queuing 
Theory. Third ed. 1998, New York: John Wiley & Sons, Inc. 
439. 

[25] Schweitzer, P.J., A Survey of Mean Value Analysis, its 
Generalizations, and Applications, for Networks of Queues, 
1991, William I. Simon Graduate School of Business 
Administration, University of Rochester: Rochester, NY. 



[26] Xylomenos, G. and G.C. Polyzos, Internet Protocol 
Performance over Networks with Wireless Links. Mobicom 
99, 1999. 

[27] Swift, M., et al., Initial and Pass Through Authentication 
Using Kerberos V5 and the GSS-API (IAKERB), 2001, IETF.

 


