
The Performance of Public Key-Enabled Kerberos
Authentication in Mobile Computing Applications

Alan Harbitter
PEC Solutions, Inc.

12750 Fair Lakes Circle
Fairfax, VA 22033

703-679-4900

aharbitter@pec.com

Daniel A. Menascé
Department of Computer Science

George Mason University
Fairfax, VA 22030

703-993-1530

menasce@cs.gmu.edu

ABSTRACT
Authenticating mobile computing users can require a significant
amount of processing and communications resources—
particularly when protocols based on public key encryption are
invoked. These resource requirements can result in unacceptable
response times for the user. In this paper, we analyze adaptations
of the public key-enabled Kerberos network authentication
protocol to a mobile platform by measuring the service time of a
“skeleton” implementation and constructing a closed queuing
network model. Our adaptation of Kerberos introduces a proxy
server between the client and the server to mitigate potential
performance deficiencies and add functional benefits. Our
analysis indicates that assistance from the proxy makes public key
Kerberos a viable authentication protocol from a performance
perspective. However, as wireless network speeds increase from
current 2G levels to the 3G targets, the proxy can become a
response time liability. The proxy’s role in the protocol, while
warranted in current applications, will have to be re-modeled and
re-considered as both wireless transmission speeds and proxy
processing speeds increase.

Categories and Subject Descriptors
C.4 [Performance of Systems]: Design Studies, Modeling
Techniques; K.6.5 [Management of Computing and
Information Systems]: Security and Protection — Authentication

General Terms
Measurement, Performance, Design, Security.

Keywords
Mobile computing, Authentication, Performance modeling, Proxy
servers, Kerberos, Public key cryptography.

1. INTRODUCTION
Network authentication protocols regularly employ public key
cryptography to securely identify clients to servers and establish
trust relationships. In a mobile computing context, the processing
and communications resources required to perform public key
operations and transmit large messages may result in unacceptable
performance characteristics and extended user authentication
response times. Several current systems compensate for the
resource limitations of mobile computing platforms by off-loading
processing to a proxy server. The Wireless Application Protocol
(WAP) gateway is an example of widespread use of proxies in
mobile computing user authentication. The WAP gateway
converts between the reduced function WAP authentication and
standard Internet protocols. There is some question about the
value of proxy servers. Proxies can perform a valuable service by
helping resource-constrained mobile devices communicate as
peers on the Internet. However, they can introduce an additional
layer of complexity, network delay, and opportunity for security
breach. With the rapid increases in computing capacity on
personal digital assistants (PDAs) and cell phones, it may not be
beneficial to invest in proxy-based architectures and protocols that
address what may be a short-term resource constraint.

This paper explores the performance of user authentication from
mobile devices. Specifically, we develop and analyze a public
key-based variant of the Kerberos [1] authentication protocol that
can employ a proxy server to assist the mobile device. Section 2
provides background on related proxy-supported mobile
authentication systems that have been proposed or are in use. In
Section 3, we describe our proposal for a mobile, public key-
enabled Kerberos protocol called M-PKINIT (when used without
a proxy) and MP-PKINIT (when used with a proxy). We also
describe a “skeleton implementation” of the protocol that enables
performance testing and analysis. In Section 4, we evaluate the
performance of M-PKINIT and MP-PKINIT with both service
time and queuing analytic models. After calibrating the model
with our test configuration, we use it to support analysis and
conclusions that extend beyond the skeleton implementation and
development/test configuration. Finally, Section 5 provides a
summary of our conclusions and outlines possible future work.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.

CCS’01, November 5-8, 2001, Philadelphia, Pennsylvania, USA.

Copyright 2001 ACM 1-58113-385-5/01/00011…$5.00.

2. BACKGROUND ON MOBILE
AUTHENTICATION APPLICATIONS AND
THE USE OF PROXY SERVERS
Proxy servers have been widely studied and utilized [2, 3] in
mobile computing architectures. The following paragraphs review
two relevant examples that apply proxies to mobile authentication:
Charon [3] and the Wireless Application Protocol (WAP)
Wireless Transport Level Security (WTLS) [4].

2.1 Charon
The Charon protocol adapts standard Kerberos authentication to a
mobile PDA platform. Kerberos is a well-known network
authentication protocol. It uses secret key cryptography and relies
on a trusted server, the Key Distribution Center (KDC), for the
management of secret keys. There are many excellent overviews
of Kerberos [5, 6] and a detailed protocol description will not be
repeated here. Kerberos has had a recent increase in user base as
the native network authentication protocol for Microsoft
Windows 2000.

The transaction flow of Charon is presented in Figure 1. Charon
uses Kerberos to establish a trust relationship between the user and
the proxy. The mechanism for establishing this relationship is very
similar to the method of establishing trust between the user and the
target application server. As a result, there are several more
interactions (i.e., network transmissions) required in Charon than in
the standard Kerberos protocol, where there is no proxy involved.
Charon uses the same encryption algorithms (i.e., DES) on the PDA
as standard Kerberos. There is no network performance advantage
using Charon versus an unmodified Kerberos. The benefit of Charon
is that it has a smaller memory footprint and it establishes a trust
relationship between the PDA and the proxy. The trust relationship
allows the PDA user to take advantage of the processing power of

the proxy to assist in compute intensive operations. In [3], the
Charon authors offer an example of potential areas for proxy
assistance: retrieving email via a Kerberized POP service and
distilling MIME images in the messages to suit the client’s display.
A trusted proxy can perform these services without the risk of
revealing private data to untrusted parties. The Charon authors argue
that the protocol can be proven correct since it does not change the
basic semantics of Kerberos and Kerberos has been proven correct [7].

2.2 WAP WTLS
WAP provides a lightweight set of protocols that allow resource-
constrained computing platforms (e.g., cell phones) to operate on
a data network such as the Internet. Since the WAP protocols are
not directly interoperable with the traditional Internet, a gateway
(i.e., proxy server) is required to perform protocol translation. The
WAP version of TLS, the Internet protocol for performing
authentication and establishing secure communications, is WTLS.

Figure 2 illustrates the WTLS transaction flow. WTLS provides
options to perform both server-side and client-side authentication
and certificate exchange. The final result is the establishment of a
session key that can be used to securely exchange application
data. WTLS resembles TLS, but is incompatible with it. As a
result, if the target server only supports TLS, the WAP proxy must
perform a protocol translation from WTLS to TLS.

The level of assurance offered by WTLS has been criticized in the
literature [8]. There are several objections to WTLS. For example, it
allows the use of weak encryption algorithms and features that make
chosen-plaintext attacks and brute force attacks easier to mount [9].
Further, in order to translate from WTLS to TLS, the WAP gateway
must decrypt and re-encrypt messages transiting from the user to the
target server. As a result, a potentially untrusted gateway has access
to cleartext messages. There are several proprietary and proposed
standard solutions aimed at closing what has been called the “WAP
Gap” [9] and implement end-to-end (i.e., mobile client-to-target
server) security with WAP [11, 12].

Figure 1. Charon Transaction Flow

Figure 2. WTLS Transaction Flow

CH-AS-REP

Client
Alice KDC Server

Bob

CH-AS-REQ

Message Exchange Semantics

Alice uses the Charon proprietary
protocol to obtain a TGT from the
KDC; the proxy uses standard
Kerberos v4 to obtain the TGT
and pass it back to Alice. The
proxy can not use the TGT.

Alice obtains a ticket and session
key for use with the proxy in
establishing a trust relationship
and potentially a secure link.

The client requests a ticket for an
application server through the
proxy.

The client authenticates to the
application server.

Proxy

AS-REQ

AS-REP

CH-TGS-REQ TGS-REQ

CH-TGS-REP TGS-REP

CH-KRB-CRED

CH-TGS-REQ TGS-REQ

TGS-REP TGS-REP

CH-AP-REQ AP-REQ

AP-REP

CH-AS-REP

Client
Alice KDC Server

Bob

CH-AS-REQ

Message Exchange Semantics

Alice uses the Charon proprietary
protocol to obtain a TGT from the
KDC; the proxy uses standard
Kerberos v4 to obtain the TGT
and pass it back to Alice. The
proxy can not use the TGT.

Alice obtains a ticket and session
key for use with the proxy in
establishing a trust relationship
and potentially a secure link.

The client requests a ticket for an
application server through the
proxy.

The client authenticates to the
application server.

Proxy

AS-REQ

AS-REP

CH-TGS-REQ TGS-REQ

CH-TGS-REP TGS-REP

CH-KRB-CRED

CH-TGS-REQ TGS-REQ

TGS-REP TGS-REP

CH-AP-REQ AP-REQ

AP-REP

Message Exchange Semantics

The first four exchanges establish
security parameters in a manner very
similar to the TLS protocol. The
exchange of certificates in each
direction is optional and performed if
authentication is required. WTLS
certificates, optimized for size, can be
used instead of X.509v3.

WTLS is a client server protocol and
could be used directly with the target
application server. However, since
WTLS support is limited, a more
typical scenario is to authenticate to
the WAP gateway and use TLS
between the gateway and the target
server.

Server
Bob

TLS

Server Hello
Server Certificate

Server Key Exchange
Certificate Request
Server Hello Done

Client
Alice

Client Hello

WAP
Gateway

Client Certificate
Client Key Exchange

Certificate Verify
Finished

Finished

Application
Data

Message Exchange Semantics

The first four exchanges establish
security parameters in a manner very
similar to the TLS protocol. The
exchange of certificates in each
direction is optional and performed if
authentication is required. WTLS
certificates, optimized for size, can be
used instead of X.509v3.

WTLS is a client server protocol and
could be used directly with the target
application server. However, since
WTLS support is limited, a more
typical scenario is to authenticate to
the WAP gateway and use TLS
between the gateway and the target
server.

Server
Bob

TLS

Server Hello
Server Certificate

Server Key Exchange
Certificate Request
Server Hello Done

Client
Alice

Client Hello

WAP
Gateway

Client Certificate
Client Key Exchange

Certificate Verify
Finished

Finished

Application
Data

Server
Bob

TLS

Server Hello
Server Certificate

Server Key Exchange
Certificate Request
Server Hello Done

Client
Alice

Client Hello

WAP
Gateway

Client Certificate
Client Key Exchange

Certificate Verify
Finished

Finished

Application
Data

Server Hello
Server Certificate

Server Key Exchange
Certificate Request
Server Hello Done

Client
Alice

Client Hello

WAP
Gateway

Client Certificate
Client Key Exchange

Certificate Verify
Finished

Finished

Application
Data

3. THE DESIGN OF PUBLIC KEY-
KERBEROS AUTHENTICATION FOR
MOBILE ENVIRONMENTS
Many current security architectures employ public key
cryptography to implement confidentiality, integrity, and
availability features. There are several proposals to add public key
cryptography to the stages of Kerberos [1, 13-14]. The proposal to
add public key cryptography to the initial user authentication in
Kerberos is documented in an IETF draft and called PKINIT [1].
The PKINIT transaction is illustrated in Figure 3. Adapting
PKINIT to a mobile computing platform would provide a mature
authentication mechanism for mobile users. It would allow mobile
users to operate in a public key infrastructure (PKI)-supported
environment. However, there are at least two challenges in
making this adaptation: (1) processing resource constraints on the
mobile platform, and (2) communications resource constraints in
the mobile network. These performance constraints could result in
extended authentication response time for the user.

3.1 Design Guidelines
We began our formulation of PKINIT for a mobile platform by
identifying a set of design guidelines. We have chosen guidelines
that will potentially lead to lower response times and address
some of the limitations identified in Charon and WTLS. The
guidelines are:

• Reduce the number of public/private key operations performed
on the mobile platform. In general, public key operations
consume a significant amount of processing resources and will
negatively impact performance and user response time. In some
algorithms, and depending upon the encryption parameters,
private key operations (e.g., signing) consume more compute
resources than public key operations (e.g., signature verification).
Minimizing the total number of public and private key operations
will always improve performance. Designing the protocol such
that the private key operation is executed on the mobile platform
and the public key operation is executed on the KDC may
improve mobile platform performance at the price of increased
KDC workload.

• When a proxy is used, maintain the option to preserve the
encrypted data stream through the proxy. A fundamental security
criticism of WAP WTLS is that it requires the data stream to be
decrypted and re-encrypted in the proxy. PKINIT for mobile
platforms should implement end-to-end security and not require
decryption in the proxy. However, if the proxy is proven to be
trusted, it may be valuable to provide an option for the proxy to
decrypt the data stream so that it can support the mobile platform
in a manner similar to Charon.

• Retain the standard Kerberos message formats to the KDC and
application server. This will allow the protocol to be used with
standard Kerberos KDCs and application server implementations.

• Preserve the semantics of Kerberos. This will allow existing
proofs of Kerberos correctness to be used in arguing that the new
protocol is also correct.

3.2 PKINIT Adaptations in a Mobile
Environment
Figure 4 presents a mapping of the PKINIT protocol onto a mobile
client, KDC, and target application server. We call this adaptation
M-PKINIT. In M-PKINIT, there are only minor modifications made
to the PKINIT protocol. One modification is to use an optional
feature that appeared in a PKINIT draft that expired May 26, 1998,
but was removed in more recent drafts. This feature accommodates
the operation of PKINIT in situations where the client only
possesses a signing key, but can also be used with RSA that allows
both signing and encryption with the same key and algorithm. In this
situation, the client generates the session key and encrypts it with the
KDC’s public key. Normally, it is the KDC that generates the
session key and encrypts it with the client’s public key. This feature
swaps a private key operation for a public key operation on the
mobile platform. It assumes that the client knows the KDC’s public
key prior to receiving it as a part of the certification chain. One
potential security risk is that the mobile client will not generate a
session key that is strong enough. However, the KDC retains the
option to reject the client-generated session key if it does not meet
the KDC’s policies for encryption strength.

Figure 3. PKINIT Transaction

Figure 4. M-PKINIT Transaction

AS-REP**

AS-REQ*

Authentication Function

Initial TGT request to KDC. Public keys
are used to authenticate client and KDC

Request a ticket to application server
using secret key encryption

Authenticate to the remote application
server using secret key encryption

TGS-REQ

TGS-REP

KDC

AP-REP

AP-REQ

Server
Bob

* a standard Kerberos Version 5 message that contains a PA-PK-AS-REQ pre-
authentication field including the userCert and SignedAuthPack

** a standard Kerberos Version 5 message that contains PA-PK-AS-REP pre-
authentication field including the kdcCert, SignedReplyKeyPack, and
encTmpKeyPack

Client
Alice

AS-REP**

AS-REQ*

Authentication Function

Initial TGT request to KDC. Public keys
are used to authenticate client and KDC

Request a ticket to application server
using secret key encryption

Authenticate to the remote application
server using secret key encryption

TGS-REQ

TGS-REP

KDC

AP-REP

AP-REQ

Server
Bob

* a standard Kerberos Version 5 message that contains a PA-PK-AS-REQ pre-
authentication field including the userCert and SignedAuthPack

** a standard Kerberos Version 5 message that contains PA-PK-AS-REP pre-
authentication field including the kdcCert, SignedReplyKeyPack, and
encTmpKeyPack

Client
Alice

Authentication Function

Initial TGT request to KDC: Alice generates a
session key, encrypts it with the KDC’s public
key, and signs it with her private key. The KDC
returns a standard Kerberos response.

Service ticket request: Alice can now trust the
KDC since it has demonstrated knowledge of
its private key by decrypting the session key.
She requests a ticket to the application server
using secret key encryption

Server authentication: Alice authenticates to
Bob using the standard secret key Kerberos
exchange.

* a standard Kerberos Version 5 message that contains a PA-PK-AS-SIGN pre-
authentication field including the “userCert” and “encSignedRandomKeyPack”

AS-REP

Mobile
Client
Alice

AS-REQ*

TGS-REQ

TGS-REP

KDC

AP-REP

AP-REQ

Server
Bob

Authentication Function

Initial TGT request to KDC: Alice generates a
session key, encrypts it with the KDC’s public
key, and signs it with her private key. The KDC
returns a standard Kerberos response.

Service ticket request: Alice can now trust the
KDC since it has demonstrated knowledge of
its private key by decrypting the session key.
She requests a ticket to the application server
using secret key encryption

Server authentication: Alice authenticates to
Bob using the standard secret key Kerberos
exchange.

* a standard Kerberos Version 5 message that contains a PA-PK-AS-SIGN pre-
authentication field including the “userCert” and “encSignedRandomKeyPack”

AS-REP

Mobile
Client
Alice

AS-REQ*

TGS-REQ

TGS-REP

KDC

AP-REP

AP-REQ

Server
Bob

Figure 5 presents a mapping of the PKINIT protocol onto a mobile
client, proxy, KDC, and target application server. We call this
adaptation MP-PKINIT. MP-PKINIT also uses the option that
allows the client to generate the KDC session key to save a public
key operation. In the first message sent from the client to the proxy,
the client has the option of revealing the KDC session key to the
proxy. To do this, the client will encrypt the session key with the
proxy’s public key so that the discovery of the session key will
require knowledge of the proxy private key. The proxy introduces an
additional store and forward node into the protocol. This will
certainly create more processing and communications overhead. To
attempt to mitigate this overhead, an additional shortcut is taken: the
client’s certificate chain is cached at the proxy. This eliminates the
need to transfer the client certificate(s) over the wireless network.

3.3 Skeleton Implementations of M-PKINIT
and MP-PKINIT
In order to evaluate the performance characteristics of M-PKINIT
and MP-PKINIT, we constructed skeleton implementations. The
objective of the skeleton implementations is to consume
processing and communications resources as would be expected
in a full implementation while avoiding complexities such as error
processing and optional features that would increase development
time and not consume significant additional resources.

The development and test configuration is illustrated in Figure 6.
The mobile device is a Vadem Clio C-1000 that uses Windows
CE—a popular operating system for PDAs and other handheld
devices. The C-1000 incorporates a 100 MHz MIPS R4000 CPU
and has 16 MB of RAM available for programs and storage. The
KDC and servers are all low-end Pentium processors running the
Windows NT operating system. The configuration includes four
conventional Windows 98 low-end Pentium client workstations to
generate larger numbers of transactions and load the servers. We
wrote the application in C++ and employed the RSAREF

implementation standard software for public key encryption and the
Karn portable C DES software for secret key encryption. All RSA
keys were 1024 bits in length. We measured system performance by
instrumenting the code and using an IP-level packet monitor.

The skeleton software architecture is illustrated in Figure 7. Two
processes run on the proxy and Kerberos KDC. Processes P1 and
K1 each open a TCP listening socket and wait for PKINIT
transactions. Processes P2 and K2 wait for standard Kerberos
requests arriving as UDP datagrams. The architecture follows the
PKINIT IETF draft recommendations that the public key exchanges
use TCP because of longer message sizes and the potential for
message fragmentation. TCP connections are kept open as long as
possible to reduce the effects of connection setup and slowstarts. For
example, the proxy (i.e., process P1) holds its connection with the
client open while it is communicating with the KDC on the client’s
behalf. The standard (i.e., secret key) Kerberos transactions use
UDP as is common in current Kerberos implementations. All KDC,
proxy, and application server processes are multi-threaded. When
they receive a message, they dispatch a thread to process and
respond to the request. The mobile client either communicates
entirely through the proxy or directly to the KDC and application
server depending on the protocol we are testing.

M-AS-REP

Mobile
Client
Alice

M-AS-REQ AS-REQ*

AS-REP

M-TGS-REQ TGS-REQ

M-TGS-REP TGS-REP

M-AP-REQ AP-REQ

AP-REP

Proxy Server
BobKDC

* a standard Kerberos Version 5 message that contains a PA-PK-AS-SIGN pre-
authentication field including the “userCert” and “encSignedRandomKeyPack”

M-AP-REP

Authentication Function

Initial TGT request: Alice
generates a session key,
encrypts it with the KDC’s
public key, and signs it
with her private key. She
may do the same for the
proxy.

Service ticket request:
Alice can trust the KDC
since it has demonstrated
knowledge of its private
key by decrypting the
session key. She requests
a ticket to application
server using secret key
encryption

Server authentication:
Alice authenticates to Bob
using the standard secret
key Kerberos exchange.

Optional

Alice can encrypt the
same or a new session
key with the proxy’s
public key and sign it.
This creates a trust
relationship with the
proxy. The proxy may
take over the
responsibility of
forwarding a cached
copy of client’s
certificate(s) to the KDC.

Alice can trust the Proxy
if it has demonstrated
knowledge of its private
key by decrypting the
session key.

If Alice has established
trust with the Proxy, the
Proxy can assist in
applications functions
such as filtering content.

M-AS-REP

Mobile
Client
Alice

M-AS-REQ AS-REQ*

AS-REP

M-TGS-REQ TGS-REQ

M-TGS-REP TGS-REP

M-AP-REQ AP-REQ

AP-REP

Proxy Server
BobKDC

* a standard Kerberos Version 5 message that contains a PA-PK-AS-SIGN pre-
authentication field including the “userCert” and “encSignedRandomKeyPack”

M-AP-REP

Authentication Function

Initial TGT request: Alice
generates a session key,
encrypts it with the KDC’s
public key, and signs it
with her private key. She
may do the same for the
proxy.

Service ticket request:
Alice can trust the KDC
since it has demonstrated
knowledge of its private
key by decrypting the
session key. She requests
a ticket to application
server using secret key
encryption

Server authentication:
Alice authenticates to Bob
using the standard secret
key Kerberos exchange.

Optional

Alice can encrypt the
same or a new session
key with the proxy’s
public key and sign it.
This creates a trust
relationship with the
proxy. The proxy may
take over the
responsibility of
forwarding a cached
copy of client’s
certificate(s) to the KDC.

Alice can trust the Proxy
if it has demonstrated
knowledge of its private
key by decrypting the
session key.

If Alice has established
trust with the Proxy, the
Proxy can assist in
applications functions
such as filtering content.

Mobile Client

MP-PKINIT
Process

KDC

KDC Process K2

Threads for secret
key messages

KDC Process K1

Threads for public
key messages

Application Server

App Server Process A1

Threads for secret
key authentication

UDP
datagrams

Proxy

Proxy Process P1

Threads for public
key messages

Proxy Process P2

Threads for secret
key messages

TCP
connection TCP

connection

UDP
datagrams

Mobile Client

MP-PKINIT
Process

Mobile Client

MP-PKINIT
Process

KDC

KDC Process K2

Threads for secret
key messages

KDC Process K1

Threads for public
key messages

KDC

KDC Process K2

Threads for secret
key messages

KDC Process K2

Threads for secret
key messages

KDC Process K1

Threads for public
key messages

KDC Process K1

Threads for public
key messages

Application Server

App Server Process A1

Threads for secret
key authentication

Application Server

App Server Process A1

Threads for secret
key authentication

UDP
datagrams

Proxy

Proxy Process P1

Threads for public
key messages

Proxy Process P2

Threads for secret
key messages

Proxy

Proxy Process P1

Threads for public
key messages

Proxy Process P2

Threads for secret
key messages

TCP
connection TCP

connection

UDP
datagrams

Windows CE mobile
test client

Windows 98 workload generation clients

Windows NT
KDC

Windows NT
Proxy Server

Windows NT
Application Server

High-speed Processor Interconnect10 Mbps Ethernet LAN

Windows CE mobile
test client

Windows CE mobile
test client

Windows 98 workload generation clientsWindows 98 workload generation clients

Windows NT
KDC

Windows NT
KDC

Windows NT
Proxy Server
Windows NT
Proxy Server

Windows NT
Application Server

Windows NT
Application Server

High-speed Processor Interconnect10 Mbps Ethernet LANHigh-speed Processor Interconnect10 Mbps Ethernet LAN

Figure 6. Development and Test Configuration

Figure 7. MP-PKINIT Skeleton Implementation

Figure 5. MP-PKINIT Transaction Flow

4. PERFORMANCE ANALYSIS
4.1 Service Time Measurement
The skeleton implementation and the test platform allowed us to
measure no-load service time for a single authentication transaction
under a variety of protocol permutations. The protocol permutations
selectively engage subsets of the features proposed in Section 3.
Table 1 summarizes the results. We recorded service times for six
permutations: (1) M-PKINIT standard is the unmodified PKINIT
protocol skeleton executed on the mobile client, a KDC, and an
applications server; (2) M-PKINIT client session key adds the
feature whereby the client generates the session key and trades a
private key operation for a public key operation; (3) MP-PKINIT
standard is the unmodified PKINIT protocol mapped onto the
mobile client, a proxy, a KDC, and an application server. The proxy
only performs store and forward operations; (4) MP-PKINIT client
session key has the client generate the session key; (5) MP-PKINIT
trusted proxy includes an authentication between the client and the

proxy to establish a trust relationship; and (6) MP-PKINIT proxy
assist has the proxy cache and add the client’s certificate chain to
the transaction as it passes through, reducing the message size across
the wireless network. Only in the MP-PKINIT trusted proxy and
MP-PKINIT proxy assist transactions can the proxy provide added
benefit to the client. In the other adaptations, the proxy acts as a
pass-through node. The authentication transaction is broken up into
four segments for the purpose of service time measurement and
analysis: (1) Pre-auth includes the mobile device’s processing prior
to transmission of the first message, (2) Auth includes transmission
and Proxy/KDC processing time to process the first authentication
message, (3) Post-auth includes the mobile device’s processing of
the reply from the Proxy/KDC, and (4) TGT & ST includes all other
client, Proxy, KDC, and application server processing related to the
Kerberos ticket granting ticket (TGT) and service ticket (ST). Table
1 indicates that the Auth step always consumes the most time since
it includes a significant amount of KDC processing, such as look-up
of the client and application server in the Kerberos database, in
addition to encryption functions.

Table 1 also illustrates the impact of the client generating the session
key. Row 2 service times reflect the increases in Pre-auth and Auth
to account for the additional time required for the client to first
generate the key, sign it, and encrypt it with the KDC’s public key
and then for the KDC to decrypt the key and verify the client’s
signature. In contrast, there is a PDA service timesaving in the Post-
auth step. Since only the KDC can decrypt the session key with its
private key, the client can authenticate the KDC by simply
confirming that the KDC properly encrypted the “EncKDCRepPart”
[1] portion of the message. There are no further public key
operations required in Post-Auth for the client to authenticate the
KDC. For the test configuration, the increase in KDC service time
results in the M-PKINIT client session key transaction producing a
longer response time than the M-PKINIT standard transaction. This

effect is similar when the same feature is added to MP-PKINIT
(rows 3 and 4 in Table 1), although the total response time is higher
because of the additional delays introduced by communicating
through the proxy. Even more delay is added when the proxy and
client mutually authenticate to establish a trust relationship (rows 5
and 6 of Table 1). The MP-PKINIT proxy assist transaction (row 6)
does not produce a meaningful reduction in service time over the
MP-PKINIT trusted proxy transaction (row 5). This is because the
message size savings that results from the proxy caching the client
certificate is not significant at the local area network speeds of the
test configuration.

The performance of the components of a typical mobile
computing environment may vary significantly from our test
configuration. In particular, the network connecting all computers
in the test configuration is a 10 Mbps Ethernet. Generally, data
transfer rates in a wireless network will be significantly slower.
The link between the KDC and the application server will most
likely run at wide area network speeds rather than local area
network speeds. On the other hand, the servers (i.e., KDC, proxy,
and application server) will most likely be more powerful than the
low-end Pentium workstations that we used for testing.

Figure 8 presents an analysis of sensitivity to server and wireless
network capacity. The transaction component service times were
varied in three ways: (1) we lowered wide area network throughput
to 12,750 bytes/second to reflect typical Internet speeds [16]; (2) we
used two wireless network rates—9600 bits/second to represent 2G
and 384 Kbits/second to represent 3G network capacities [17]; and
(3) we varied the server capacities by a multiplier ranging from 1 to
20 times the capacity of those in the test bed. At both wireless
network speeds measured, the M-PKINIT client session key protocol
variant performs sightly better than the M-PKINIT standard variant
as the server speed-up hits the factor of ten range. We expect at least
a factor of ten improvement in server capacity over the low powered
PCs used—a comparison using benchmarks such as SPEC CINT
indicate that multipliers as high as 100 are appropriate if comparing
the CPU capacity of a high end server to our test bed PCs. A more
interesting result is that adding the proxy service, in this case,
caching certificates for the client, bring the response times into a
reasonable range at 2G speeds—reducing the overall response time
from about 15 seconds to just above 8 seconds. This reduction is based
on an average certificate size of 1.8KB, consistent with the range of
sizes of commercial certificates [18, 19]. When the wireless network
throughput is increased to 3G speeds, the proxy is a response time
burden and increases the response time by over a second.

4.2 Closed Queuing Network Modeling
The service time analysis does not represent operation in a network
in which resources are shared among many users. The KDC, proxy,
and application servers are of particular concern. Authentication
protocols that use public key encryption have been observed to
consume a significant amount of server resources [20].

In [21], we developed a modeling strategy that used closed
queuing networks with class switching [22] to represent public
key variants of Kerberos under a variety of host and network
assumptions. This technique allowed us to model transactions that
consumed widely varying average service times at different visits
to each queuing server. It permits modeling protocols that
combine both public key and secret key encryption—potentially
generating different average service times on each queuing server

Time in Milliseconds for Protocol Phase
Protocol Variant Pre-Auth Auth Post-Auth TGT & ST Total

1. M-PKINIT standard 864 3060 255 61 4240
2. M-PKINIT client session key 929 5404 4 65 6398
3. MP-PKINIT standard 866 3240 256 144 4507
4. MP-PKINIT client session key 920 5587 2 136 6646
5. MP-PKINIT trusted proxy 1773 8595 2 136 10506
6. MP-PKINIT proxy assist 1807 8421 3 142 10373

Time in Milliseconds for Protocol Phase
Protocol Variant Pre-Auth Auth Post-Auth TGT & ST Total

1. M-PKINIT standard 864 3060 255 61 4240
2. M-PKINIT client session key 929 5404 4 65 6398
3. MP-PKINIT standard 866 3240 256 144 4507
4. MP-PKINIT client session key 920 5587 2 136 6646
5. MP-PKINIT trusted proxy 1773 8595 2 136 10506
6. MP-PKINIT proxy assist 1807 8421 3 142 10373

Table 1. Service Time Measurements

visit. Using the class switching formulation, the queuing network
maintains independent Markov chains for each closed group of
classes and preserves the assumptions necessary to use fast
solution methods [23, 24]. We used the Mean Value Analysis
(MVA) technique with a Schweitzer approximation [25], resulting
in very fast solution computation times.

Figure 9 presents the queuing network topology. Customers
circulate among the servers in the closed network and sequentially
wait for service, consume processing resources, and then proceed
to the next service station. The topology anticipates that a wide
area network (WAN), such as the Internet, connects the KDC and
application server. The mathematical solution to the queuing
network produces performance metrics for each queuing station
and the system as a whole, such as the average number of
customers, the average delay time, and the customer throughput.
These metrics can be used to compare the performance of the
alternative Kerberos adaptations.

Figure 10 plots the results of the model’s predictions against
measured results for the test configuration. We recompiled and
relinked the Windows CE client source code to run in a Win32
environment so that it could be run on a standard PC for the purpose
of generating higher transaction rates and workload. Only very minor
code changes were required for the port from CE to Win32. Figure
10 demonstrates good calibration between the model and observed
test bed results supporting the model’s predictive accuracy.

Figure 11 plots M-PKINIT and MP-PKINIT authentication
transaction throughput versus response time, assuming a wireless
network speed of 9600 bps and several server speed-up multipliers.
The figure shows a long flat response time curve and a sharp knee
for all modeled conditions. This is a result of the dominance of the
wireless network delay in the total response time. The wireless

network is modeled as a fixed delay server—no increases in
response time as a result of increased authentication traffic. We
make this assumption because we have no control over the amount
of additional traffic going through the wireless network and we
would expect authentication traffic to be a negligible fraction of the
overall traffic. We derive the throughput for the wireless network by
degrading transmission speeds to account for frame errors using the
measurements and analysis performed in [26]. Figure 11
demonstrates that the response times start to climb rapidly at the
point at which the KDC saturates and server delay exceeds wireless
network delay. The KDC is the bottleneck server in all models.

o o o

Mobile
Clients

KDC

WAN

Wireless
Network Proxy

App.
Server

o o oo o o

Mobile
Clients

KDCKDC

WANWANWAN

Wireless
Network
Wireless
Network ProxyProxy

App.
Server
App.

Server
App.

Server

Figure 8. Sensitivity to Server and Network Capacity

Figure 9. Queuing Network Topology

M-PKINIT client key on 2G net M-PKINIT std on 2G net
M-PKINIT client key on 3G net M-PKINIT std on 3G net

MP-PKINIT proxy assist on 2G net
MP-PKINIT proxy assist on 3G net

1 3 5 7 9 11 13 15 17 19
Server Improvement Multiplier

2000

4000

6000

8000

10000

12000

14000

16000

18000
Au

th
en

tic
at

io
n

Tr
an

sa
ct

io
n

R
es

po
ns

e
Ti

m
e

(m
ill

is
ec

on
ds

)

M-PKINIT client key on 2G net M-PKINIT std on 2G net
M-PKINIT client key on 3G net M-PKINIT std on 3G net

MP-PKINIT proxy assist on 2G net
MP-PKINIT proxy assist on 3G net

M-PKINIT client key on 2G net M-PKINIT std on 2G net
M-PKINIT client key on 3G net M-PKINIT std on 3G net

MP-PKINIT proxy assist on 2G net
MP-PKINIT proxy assist on 3G net
MP-PKINIT proxy assist on 2G net
MP-PKINIT proxy assist on 3G net

1 3 5 7 9 11 13 15 17 19
Server Improvement Multiplier

2000

4000

6000

8000

10000

12000

14000

16000

18000
Au

th
en

tic
at

io
n

Tr
an

sa
ct

io
n

R
es

po
ns

e
Ti

m
e

(m
ill

is
ec

on
ds

)

1 3 5 7 9 11 13 15 17 19
Server Improvement Multiplier

1 3 5 7 9 11 13 15 17 19
Server Improvement Multiplier

2000

4000

6000

8000

10000

12000

14000

16000

18000
Au

th
en

tic
at

io
n

Tr
an

sa
ct

io
n

R
es

po
ns

e
Ti

m
e

(m
ill

is
ec

on
ds

)

2000

4000

6000

8000

10000

12000

14000

16000

18000
Au

th
en

tic
at

io
n

Tr
an

sa
ct

io
n

R
es

po
ns

e
Ti

m
e

(m
ill

is
ec

on
ds

)

2000

4000

6000

8000

10000

12000

14000

16000

18000
Au

th
en

tic
at

io
n

Tr
an

sa
ct

io
n

R
es

po
ns

e
Ti

m
e

(m
ill

is
ec

on
ds

)

To underscore the role of the KDC, we decreased the speed up of
the Proxy—the KDC was increased by a factor of 50, and the
Proxy by a factor of 30. This made no noticeable change in the
response time curve, indicating that the Proxy can be a lower
capacity server than the KDC with little detrimental impact on
user performance. The non-proxy protocol curve knee occurs at
the same place as the proxied version. This is because the KDC
workload is the same for both proxied and non-proxied protocol
variants. Finally, we observe the positive effect of increasing the
capacity of the KDC by a factor of 100—more than double the
achievable throughput.

5. ANALYSIS AND CONCLUSIONS

5.1 Do M-PKINIT and MP-PKINIT Meet the
Design Guidelines?
In Section 3 of this paper, we defined four design guidelines for
the adaptation of Kerberos to a mobile computing environment.
Does M-PKINIT and MP-PKINIT meet these guidelines?
Specifically, did we:

Reduce the number of public key operations performed on the
mobile platform? By using an optional feature of PKINIT
intended for situations where only a signing key is available, we
swapped a private key operation for a public key operation and
eliminated the need for the client to validate the KDC’s signature
on the PKINIT reply message. The client does not have to verify
the KDC’s signature since the KDC can only decrypt the client-
generated session key with its private key. If the KDC can reply
with a message encrypted with the session key, it has effectively
authenticated itself to the client. Both M-PKINIT and MP-
PKINIT reduce the number of public key operations performed on
the mobile platform.

When a proxy is used, maintain the options to preserve the
encrypted data stream through the proxy? The client can choose
whether or not to send the proxy a session key. That session key,
encrypted with the proxy’s public key, can be the same session
key as that used for the KDC or it can be a unique key—at the
client’s choice. MP-PKINIT provides the option for the client to
preserve the encrypted data stream through the proxy.

Retain standard Kerberos message formats to the KDC, and
application server? There are two difficulties in implementing MP-
PKINIT and maintaining standard Kerberos message formats. First,
Kerberos was not designed to communicate through a proxy and
there are several implementation details that must be addressed to
make this work. An IETF draft [27] specifies a Kerberos protocol
enhancement called IAKERB that works through these details.
Second, the KDC must know and implement the PKINIT optional
feature that allows the client to use a signing key—this feature is not
in the current PKINIT draft. We observed that having the client
generate the session key only nominally reduces overall response
times if the KDC is not the bottleneck and it may not be worth
changing current Kerberos implementations to support this feature.
Beyond these two areas, M-PKINIT and MP-PKINIT can both
employ standard Kerberos message formats at the interface to the
KDC and application server.

Preserve the semantics of Kerberos? The introduction of the
proxy and the client-generated session key represents a change to
the semantics of Kerberos. The change is significant enough to
require a re-formulation of the Kerberos formal proof before one
could assert that M-PKINIT and MP-PKINIT are provably correct
adaptations of Kerberos.

Our measurements and models have demonstrated that public key
Kerberos can be adapted to a mobile environment and with suitable
KDC performance, can provide reasonable user response times (i.e.,
approximately 8 seconds). We achieved acceptable performance
with a well-proven public key encryption algorithm: RSA with
1024-bit keys. At G2 wireless network speeds (i.e., 9600 bps),
assistance is required from a proxy server in order to produce
adequate response times—the proxy caches certificates for the client
to reduce the wireless network message traffic. The current IETF
draft for PKINIT allows the KDC to store client private keys. While
this would also eliminate the need to transmit certificates, it would
reduce the general applicability of the protocol to situations where
the client was pre-registered with the KDC.

5.2 Future Work
Through our skeleton implementation and analytical models, we
have demonstrated that assistance from a proxy server makes our
adaptation of public key Kerberos a viable authentication protocol

Figure 10. Model Calibration Results

Figure 11. Server-Driven Performance Characteristics for

M-PKINIT and MP-PKINIT

0

2
4

6

8

10
12

14

16
18

20

22

24

0.10 0.12 0.14 0.16 0.18 0.20 0.22 0.24

Throughput in transactions/second

R
es

po
ns

e
tim

e
in

 s
ec

on
ds

MP-PKINIT measured
MP-PKINIT predicted

M-PKINIT measured
M-PKINIT predicted

0

2
4

6

8

10
12

14

16
18

20

22

24

0.10 0.12 0.14 0.16 0.18 0.20 0.22 0.24

Throughput in transactions/second

R
es

po
ns

e
tim

e
in

 s
ec

on
ds

MP-PKINIT measured
MP-PKINIT predicted

M-PKINIT measured
M-PKINIT predicted

0 2 4 6 8 10 12 14 16 18 20

Throughput in transactions/second

0

2

4

6

8

10

12

14

16

18

20

22

24

R
es

po
ns

e
tim

e
in

 s
ec

on
ds

KDC*50, no proxy

KDC*50, Proxy*30

KDC*50, Proxy*50

KDC*100, Proxy*100

0 2 4 6 8 10 12 14 16 18 20

Throughput in transactions/second

0

2

4

6

8

10

12

14

16

18

20

22

24

R
es

po
ns

e
tim

e
in

 s
ec

on
ds

KDC*50, no proxy

KDC*50, Proxy*30

KDC*50, Proxy*50

KDC*100, Proxy*100

0 2 4 6 8 10 12 14 16 18 20

Throughput in transactions/second
0 2 4 6 8 10 12 14 16 18 20

Throughput in transactions/second

0

2

4

6

8

10

12

14

16

18

20

22

24

R
es

po
ns

e
tim

e
in

 s
ec

on
ds

0

2

4

6

8

10

12

14

16

18

20

22

24

R
es

po
ns

e
tim

e
in

 s
ec

on
ds

KDC*50, no proxy

KDC*50, Proxy*30

KDC*50, Proxy*50

KDC*100, Proxy*100

KDC*50, no proxy

KDC*50, Proxy*30

KDC*50, Proxy*50

KDC*100, Proxy*100

at 2G wireless network speeds. There are several areas where
further work may be conducted.

Our skeleton software uses the RSAREF public key encryption
utilities. While RSA algorithms are common in public key
applications, there are other ciphers that are also of interest for
authentication. The PKINIT draft cites the Diffie-Hellman key
establishment algorithm as a mandatory implementation
requirement. In addition, there has been significant interest and
use of elliptic curve-based encryption algorithms in mobile
computing environments. Elliptic curve algorithms are believed to
provide comparable assurance levels to RSA with a smaller key
and, as a result, a less computationally intensive calculation. The
extension of the analysis presented by substituting Diffie-Hellman
and elliptic curve for RSA remains as future work.

The test and model configurations both assumed a mobile client
and a stationary KDC and application server. A variation of this
configuration might include KDCs and applications servers that
are also mobile. We envision that such a configuration might be
found, for example, in a military battlefield environment. This
variation potentially reduces the speed of communications
between the proxy and the KDC and the benefits that accrue from
proxy-cached certificates. Further analysis of a mobile KDC and
proxy remains as future work.

We have shown that the class switching queuing formulation is an
effective way to quantitatively analyze the performance of
protocols that combine secret and public key cryptography. The
application of this analysis technique to a broader range of
protocols will also be the topic of future research.

Finally, our specification of M-PKINIT and MP-PKINIT, as well
as the original PKINIT protocol, does modify the semantics of
Kerberos. Extension of the work in [7] to demonstrate the
correctness of M-PKINIT and MP-PKINIT protocols remains as
future work.

6. REFERENCES
[1] Tung, B., et al., Public Key Cryptography for Initial

Authentication in Kerberos, 2001: http://www.ietf.org
/internet-drafts/draft-ietf-cat-kerberos-pk-init-12.txt.

[2] Zenel, B., A General Purpose Proxy Filtering Mechanism
Applied to the Mobile Environment. Wireless Networks,
1999. 5: p. 391-409.

[3] Fox, A. and S.D. Gribble. Security on the Move: Indirect
Authentication Using Kerberos. in MOBICOM 96. 1996.
Rye, New York.

[4] Wireless Application Forum, Ltd. 2000, Wireless
Application Protocol Wireless Transport Layer Security
Specification, WAP-199-WTLS, February 18, 2000.

[5] MIT, Kerberos: The Network Authentication Protocol, 1998,
http://web.mit.edu/kerberos/www/.

[6] Kaufman, C., R. Perlman, and M. Speciner, Network
Security, Private Communication in a Public World. 1995,
Englewood Cliffs, New Jersey: PTR Prentice Hall.

[7] Burrows, M., M. Abadi, and R. Needhan, A Logic of
Authentication. ACM Transactions on Computer Systems,
1990. 8(1): p. 18-36.

[8] Khare, R., W* Effect Considered Harmful, 1999, 4K
Associates.

[9] Jormalainen, S. and J. Laine, Security in the WTLS, 1999,
Helsinki University of Technology: Helsinki.

[10] DeJesus, E.X., Locking Down the..., in Information Security
Magazine. 2000.

[11] Cylink, "Closing the ‘Gap in WAP’", 2000.

[12] WAP, Wireless Application Protocl TLS Profile and
Tunneling Specification, 2000.

[13] Medvinsky, A., et al., Public Key Utilizing Tickets for
Application Servers (PKTAPP), 1997: http://www.ietf.org
/internet-drafts/draft-ietf-cat-kerberos-pk-tapp-03.txt.

[14] Hur, M., et al., Public Key Cryptography for Cross-Realm
Authentication in Kerberos, 2000: http://www.ietf.org
/internet-drafts/draft-ietf-cat-kerberos-pk-cross-06.txt.

[15] Tung, B., et al., Public Key Cryptography for Cross-Realm
Authentication in Kerberos, 1998: http://www.internic.net
/internet-drafts/draft-ietf-cat-derberos-pk-cross-03.txt.

[16] Menascé, D.A. and V.A.F. Almeida, Capacity Planning for
Web Performance. 1998: Prentice-Hall Inc.

[17] Personal Communications Industry Association, Market
Demand Forecast for Terrestrial Third Generation (IMT-
2000) Service for the Peronal Communications Industry
Association, 1998.

[18] Taschler, S., Datakey CIP 3.0 Whitepaper, 1997.

[19] Consideration of Smart Cards as the DoD PKI
Authentication Device Carrier, 2000, Office of the Secretary
of Defense.

[20] Apostolopoulos, G., V. Peris, and D. Saha. Transport Layer
Security: How much does it really cost? in IEEE INFOCOM.
1999.

[21] Harbitter, A. and D.A. Menascé. Performance of Public Key-
Enabled Kerberos Authentication in Large Networks. in
IEEE Conference on Security and Privacy. 2001. Oakland,
California.

[22] Bruell, S.C. and G. Balbo, Computational Algorithms for
Closed Queueing Networks. The Computer Science Library,
ed. P.J. Denning. 1980, New York: Elsevier North Holland,
Inc.

[23] Menascé, D.A., V.A.F. Almeida, and L. Dowdy, W.,
Capacity Planning and Performance Modeling. 1994,
Englewood Cliffs, New Jersey: Prentice-Hall, Inc.

[24] Gross, D. and C.M. Harris, Fundamentals of Queuing
Theory. Third ed. 1998, New York: John Wiley & Sons, Inc.
439.

[25] Schweitzer, P.J., A Survey of Mean Value Analysis, its
Generalizations, and Applications, for Networks of Queues,
1991, William I. Simon Graduate School of Business
Administration, University of Rochester: Rochester, NY.

[26] Xylomenos, G. and G.C. Polyzos, Internet Protocol
Performance over Networks with Wireless Links. Mobicom
99, 1999.

[27] Swift, M., et al., Initial and Pass Through Authentication
Using Kerberos V5 and the GSS-API (IAKERB), 2001, IETF.

