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Computer Science Department

George Mason University

Fairfax, VA, USA

menasce@gmu.edu

Abstract—Many computing environments consist of a multi-
tude of servers that process requests that arrive from a population
of customers. Incoming requests that find all servers busy have
to wait until a server becomes idle. This type of queuing system
is known as a G/G/c system and has been extensively studied
in the queuing literature under steady state conditions. In this
paper we study multi-server systems that are subject to workload
surges during which time the average arrival rate of requests
exceeds the system’s capacity. This paper’s main contributions
are (1) The derivation of a set of equations to estimate the
impact of workload surges on response time; (2) A simulator
for a G/G/c system to evaluate the accuracy of the equations in
(1); and (3) The design, implementation, and extensive evaluation
of an autonomic controller for multi-server elasticity that uses
the equations derived in (1). The results show that our equations
estimate with great accuracy the impact of surges on response
time and that our autonomic controller is able to successfully
determine how to vary the number of servers to mitigate the
impact of workload surges.

Index Terms—elasticity control; cloud computing; autonomic
computing; queuing theory; G/G/c; workload surge;

I. INTRODUCTION

Many computing environments consist of a multitude of

servers that process requests that arrive from a population of

customers (e.g., web sites with multiple web servers at the

front tier). Each request is served by one server only. When

all servers are busy serving requests, arriving requests have

to wait in a waiting line until a server becomes available.

This type of queuing system is known as a G/G/c system

in Kendall’s notation [1]. In this notation, the first letter

represents the type of distribution of the interarrival time

of requests, the second letter indicates the distribution for

the service time of requests, and c denotes the number of

servers. The letter G stands for a generic distribution, while

M (for Markovian or memoryless) stands for an exponential

distribution, and D for a deterministic distribution (i.e., a

constant value).

There is an extensive literature on the study of analytical

models of queueing systems in steady state, i.e., when the

average arrival rate of requests is smaller than the maximum

rate at which the system can perform work, i.e., the system
capacity (see e.g., [1]–[3]). The ratio between the average

arrival rate of requests and the system’s capacity is called

traffic intensity and is typically denoted by ρ in the queuing

literature. A queuing system is in steady-state when ρ < 1. For

some queuing systems (e.g., M/G/1, M/M/c) there are exact

steady state results while for others (e.g., G/G/1 and G/G/c)

there are approximations and/or bounds. Nevertheless, these

results apply only to systems in steady state.

However, most actual systems are subject to workload
surges (aka flash crowds), i.e, periods during which the arrival

rate exceeds the system’s capacity (see e.g., [4]–[9]). When

that happens, the queue length grows continuously and so does

the response time of requests. It turns out that the response

time continues to increase even after the surge is finished. In

other words, the response time does not return to its steady

state value as soon as the surge is over. As an illustration,

consider Fig. 1 that shows a rectangular-shaped workload

surge that lasts from t = 300 sec to t = 600 sec. The left

axis shows the response time R and the right axis shows the

average arrival rate. The traffic intensity shows a surge from

a value of 5 to 20 requests/sec and lasts for 5 minutes. The

response time curve (blue curve) shows the response time of

transactions that leave the system at a given time instant. As

we can see, even though the traffic intensity returned to its

steady-state value of 0.5 at time 600 sec, the response time

peak of 290 seconds was observed at time 880 sec and it only

returned to its pre-surge level at time 1,260 sec.

As illustrated above, workload surges generate very high

response times that can be orders of magnitude higher than

corresponding steady state values and can be very disruptive

to users and damaging to organizations that provide comput-

ing services. Fluid approximations to queuing theory have

been suggested as a way to analyze the transient behavior

of queues [10]. In that formulation, customers arrive as a

continuous fluid with a time-varying arrival rate. The equations

we derive here have a fluid approximation flavor but go beyond

what has been proposed previously.

Cloud providers, such as Infrastructure as a Service (IaaS),

allow for resources in the form of virtual machines to be

dynamically added or removed from the set of available

resources to cope with traffic intensity variability so as to help

ensure that response times stay within expected values. This

is called elasticity (see e.g., Amazon Elastic Compute Cloud,

EC2). Elasticity has been defined as the degree to which a
system is able to adapt to workload changes by provisioning
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Fig. 1. Example of workload surge and corresponding effect on the response
time for 5 servers. Workload surge duration: 5 minutes; average service time:
0.5 sec; average arrival rate before and after surge: 5.0 requests/sec; average
arrival rate during surge: 20.0 requests/sec; coefficient of variation of the
interarrival time: 2; coefficient of variation of the service time: 2.

and de-provisioning resources in an autonomic manner, such
that at each point in time the available resources match the
current demand as closely as possible [11].

Most of the current approaches to elasticity are reactive, i.e.,

more capacity is added when performance degrades. However,

these approaches suffer from the following drawbacks: (1)

deployment of extra capacity (e.g., more virtual machines) is

not instantaneous; while additional resources have not been

deployed, degraded performance will be experienced by users.

(2) because it is not straightforward to determine how many

resources have to be added or released as the traffic intensity

varies, there is a risk of overprovisioning or underprovisioning.

Therefore, there is a need to control the system’s capacity

in an autonomic manner [12] so that the system capacity can

be dynamically changed in order to mitigate the effects of

workload surges. The main contributions of this paper are: (1)

The derivation of a set of equations to estimate the impact of

workload surges on response time; (2) A simulator for a G/G/c

system to evaluate the accuracy of the equations mentioned in

(1); and (3) The design, implementation, and extensive eval-

uation, using the G/G/c simulator, of an autonomic controller

for server elasticity .

The rest of this paper is organized as follows. Section II

presents the basic concepts and notation used in the paper.

Section III presents a set of analytical expressions that can be

used to estimate the effects of a workload surge. These analytic

expressions are thoroughly validated in Section IV through

simulation. Section V presents the algorithms used by two

autonomic controllers to dynamically control the elasticity of

a multi-server system. This autonomic controller is evaluated

in Section VI. Section VII discusses related work. Finally,

Section VIII concludes the paper and discusses future work.

II. BASIC CONCEPTS AND NOTATION

A multi-server queue is modeled as a G/G/c queuing system

(see Fig. 2) and is characterized by the following parameters:

• c: number of servers

• λ: average arrival rate of requests. Thus, the average

interarrival time is 1/λ.

• μ: average service rate of each of the c servers. Thus, the

average service time of a request is 1/μ.

• Ca: coefficient of variation of the interrarival time, i.e.,

the ratio of the standard deviation of the interrarival time

by its average.

• Cs: coefficient of variation of the service time, i.e., the

ratio of the standard deviation of the service time by its

average.

• ρ: traffic intensity. ρ = λ/(μc).

As mentioned above, there are no exact solutions for the

average response time or average queue length for the G/G/c

queue. Most approximations for steady state are based on the

first two moments of the interarrival time and service time

distributions (i.e., are a function of Ca and Cs) [13]. Our

simulation experiments show results for different values of

Ca and Cs.
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Fig. 2. Diagram of a G/G/c queue

III. ESTIMATING THE EFFECT OF THE SURGE

In this section we derive analytic expressions for the fol-

lowing metrics and use Fig. 3 to illustrate the notation:

• R2 = R(t‘2): estimate for the peak response time.

• δ = t‘2− t2: estimate for the peak response time lag, i.e.,

the time after the surge finished until the response time

achieves its peak.

Fig. 3. Rectangular workload surge. Top: variation of the traffic intensity.
Bottom: variation of the response time
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• Δ = t‘3 − t‘2: estimated time needed for the response

time to decrease from its peak value of R2 to its value

R1 before the surge started.

• ⊕R : estimated increase rate of R(t) during t1 ≤ t ≤ t‘2.

• �R : estimated decrease rate of R(t) during t‘2 ≤ t ≤ t‘3.

We consider the rectangular-shaped workload surge shown in

Fig. 3. Let the average arrival rate before the workload surge

be λ1; therefore the traffic intensity is ρ1 = λ1/(μc). During

the surge, the average arrival rate is considered to be λ2 and

therefore the traffic intensity during the surge is ρ2 = λ2/(μc).

A. Estimating R2

Let nq(t1) be the average queue size at time t < t1 and

nq(t2) be the queue size immediately before t = t2. When

the traffic intensity reaches its peak right after t = t1, all

c servers are busy almost 100% of the time, especially for

ρ2 � 1, and the rate at which the system completes work is

μc, while the rate at which it receives work is λ2. So, work

accumulates at a rate of λ2 − μc requests/sec. Therefore,

nq(t2) = nq(t1) + (λ2 − μc)β (1)

where β is the surge duration.

But, because ρ2 > 1 and ρ1 < 1, we can expect that the

growth in queue size during the surge will be much higher

than the queue size before the surge. Thus,

nq(t2) ≈ (λ2 − μc)β. (2)

The peak in response time occurs for a request that arrives

at approximately t = t2 and finds the longest queue size,

which is nq(t2). We call this the tagged request. This request

leaves the system at t = t‘2 and its response time, R(t‘2), is

approximately equal to the time needed to serve all requests

it finds in the queue plus its own service time 1/μ. When the

system is constantly busy, requests complete at a rate of μc
requests/sec. Therefore, it will take nq(t2)/(μc) sec to serve

all nq(t2) requests. Thus,

R(t‘2) ≈ 1

μ
+

nq(t2)

μc
=

1

μ

[
1 +

nq(t2)

c

]

=
1

μ

[
1 +

(λ2 − μc)β

c

]
. (3)

But, if (λ2−μc)β � c (i.e., a heavy load assumption) we can

write that

R(t‘2) ≈ (λ2 − μc)β

μc
= (ρ2 − 1)β. (4)

B. Estimating δ

The tagged request leaves the system at t = t‘2. This

request’s response time, R(t‘2) = t‘2 − t2 = δ. Thus, using

Eq. (4), we obtain

δ = R(t‘2) ≈ (ρ2 − 1)β. (5)

Because t‘2 − t2 = δ,

t‘2 = t2 + δ. (6)

C. Estimating Δ

We estimate now the average time, Δ = t‘3 − t‘2, for the

response time to return to its value before the surge. The

requests that arrive after the tagged request but before that

request leaves the system accumulate at a rate of λ1 during

the response time R(t‘2) of the tagged request. After the tagged

request leaves at time t‘2 and before time t‘3, an additional λ1Δ
requests accumulate in the system. Thus, the total number N
of requests accumulated since t2 (end of the surge) until t‘3
(return to the normal response time) is

N = λ1R(t‘2) + λ1Δ = λ1[R(t‘2) + Δ] (7)

Let X be the average rate at which the system serves requests.

Thus the time it takes to serve all N requests is

Δ = N/X =
λ1[R(t‘2) + Δ]

X
. (8)

An approximate value for Δ can be obtained by assuming that

the number of requests in the system will always be at least

equal to c, so the rate X = μc. Thus,

Δ ≈ λ1[R(t‘2) + Δ]

μc

= ρ1[R(t‘2) + Δ]. (9)

Solving Eq. (9) for Δ gives us

Δ = t‘3 − t‘2 ≈
ρ1

1− ρ1
R(t‘2) (10)

Using the value of R(t‘2) from Eq. (4) in Eq. (10) yields

Δ = t‘3 − t‘2 ≈
ρ1(ρ2 − 1)

1− ρ1
β. (11)

So, the time for the response time to return to its steady

state value after the surge ends is δ +Δ according to Fig. 3.

This value can be computed using Eqs. (5) and (11):

δ +Δ ≈ (ρ2 − 1)β +
ρ1(ρ2 − 1)

1− ρ1
β

=
β(ρ2 − 1)

1− ρ1
. (12)

D. Estimating ⊕R
The rate of increase in the response time, ⊕R, can be

estimated by computing the slope of the line in Fig. 3 that

shows the increase in response time due to the surge. Thus,

⊕R =
R2 −R1

β + δ
. (13)

But assuming that R2 � R1 and using Eqs. (4) and (5) we

obtain

⊕R ≈ (ρ2 − 1)β

β + β(ρ2 − 1)
=

ρ2 − 1

ρ2
. (14)

It is interesting to note that this slope is independent of the

duration of the surge and only depends on the traffic intensity

during the surge.
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E. Estimating �R
The value of �R can be estimated as the negative slope of

the response time line that indicates the return from the peak

response time to its original value. So,

�R =
−R2 +R1

Δ
. (15)

But, using the heavy load assumption and Eqs. (4) and (11)

we obtain

�R ≈ −R2

Δ
=

−(ρ2 − 1)β

[ρ1(ρ2 − 1)β]/(1− ρ1)
=

ρ1 − 1

ρ1
. (16)

This estimate neither depends on the surge duration nor on

the peak response time; it only depends on the traffic intensity

before the surge.

IV. VALIDATION

This section describes how we validated the equations

derived in the previous section. To that end we developed a

simulator for a G/G/c queue. The simulator also includes the

autonomic elasticity controller described in Section V.

A. The G/G/c Simulator

The G/G/c simulator (see Fig. 4) is a discrete-event sim-

ulator that generates request arrival events and service time

completions events according to given distributions for a G/G/c

system. For the generation of non-exponential distributions we

used Coxian distributions and the procedure described in [14]

for generating values that follow a distribution with a given

mean and given coefficient of variation. Generated events are

placed in a calendar of events in chronological order and are

removed and processed by either a Queue Manager in the

case of arrival events or the Multi-Server Manager in the

case of service completion events. Statistics about requests

(e.g., time in the queue, service time) are recorded by the

Statistics Manager so that reports, including 95% confidence

intervals, can be generated when the simulation is complete.

The Simulation Control module controls the duration of the

simulation which consists of 100 independent runs for each

set of parameters. Time is divided into slots of duration equal

to 2 sec for each run at the post-processing stage. The values

of R(t) are computed as the averages of the R(t) values in the

same slot across all runs. The Autonomic Elasticity Controller

is activated at regular time intervals and makes a decision

about increasing or decreasing the number of servers. Details

about this controller are given in Section V.

To validate the implementation of the simulator we com-

pared its results with those of well-known analytic steady-

state results for queues such as D/D/1, D/D/c, M/M/1, M/M/c,

M/G/1, M/G/c, G/G/1, and G/G/c. Some of these results are

exact and some are approximations (e.g., G/G/1 and G/G/c).

Our comparisons varied the values of the traffic intensity from

0.5 to 0.95 and varied the number of servers from 1 to 9.

The absolute relative percentage error between simulation and

steady state analytic results was very small (less than 1% in

most cases where exact queuing results exist and less than 5%

where only approximate results exist). The validated simulator
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Fig. 4. Block Diagram of the G/G/c Simulator with the Autonomic Controller

was then used in situations where the offered load exceeds

the system capacity. These are the cases for which we derived

the analytical results in the previous section. A comparison

between these results and simulation results is presented next.

B. Comparing Estimates with Simulation

Figure 5 shows a surge lasting 300 seconds during the

interval (300 sec, 600 sec) and the resulting response time

curve for a G/G/5 system. The following parameters were used

to generate this figure: λ1 = 5 req/sec; λ2 = 20 req/sec; μ = 2
req/sec; Ca = Cs = 2.0. Therefore, ρ1 = 0.5 and ρ2 = 2.0.

A total of 1.5 million requests were processed by the G/G/5

simulator for 100 independent runs.

The figure shows a peak response time of about 285 sec,

while the estimated value of R2, according to Eq. (4), is (ρ2−
1) β = (2 − 1) × 300 = 300 sec. The peak response time

according to Fig. 5 occurs at time 900 sec. Since the surge ends

at time 600 sec, δ = 900 − 600 = 300 sec. This is precisely

the value estimated by Eq. (5). The estimated value of Δ is,

according to Eq. (11), ρ1(ρ2 − 1) × β/(1 − ρ1) = 0.5(2 −
1) × 300/(1 − 0.5) = 300 sec. This estimated value would

take us to time 900 sec + 300 sec = 1,200 sec, which is close

to the 1,280 sec shown in the figure. The slope ⊕R according

to the figure is 285 / (900 - 300) = 0.475, which compares

well with the value (ρ2 − 1)/ρ2 = (2− 1)/2 = 0.5 predicted

by Eq. (14). The response time decreases in an almost linear

fashion most of the time after it reaches the peak. The slope

of the linear portion of this line according to the figure is

approximately - 285 / 1,200 = - 0.95 which matches closely

with the estimated value of (ρ1−1)/ρ1 = (0.5−1)/0.5 = −1
predicted by Eq. (16).

We now show several other comparisons between estimated

values and simulation results in Table I, which illustrates the

results of eight experiments with different sets of parameters.

For each experiment, we report the value of the peak response

time (R2), and the values of δ,Δ,⊕R, and �R obtained by
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Fig. 5. Example of workload surge and corresponding effect on the response
time for 5 servers (average over 100 runs). Workload surge duration: 300 sec;
average service time: 0.5 sec; average arrival rate before and after surge: 5.0
requests/sec; average arrival rate during surge: 20.0 requests/sec; coefficient
of variation of the interarrival time: 2; coefficient of variation of the service
time: 2

the G/G/c simulator and through the estimates. The simulation

values are averages over 100 runs and also show the 95%

confidence intervals. The number of requests processed in

each run varied between one million and 1.5 million. We also

report the percent absolute error between the simulation and

the analytic estimates as

ε = 100× (simulation− estimate)/simulation. (17)

Experiments 1-6 are for G/G/5 and experiments 7 and 8 are for

M/M/5 and D/D/5, respectively. The surge duration β varies

from experiment to experiment as indicated in the table. The

pre-surge traffic intensity, ρ1, was 0.6 in all cases and the

traffic intensity during the surge, ρ2, was 1.5 in all cases except

for experiment 6, when it was 2.0. The table also indicates

for each experiment the values used for the coefficients of

variation Ca, for the interarrival time, and Cs, for the service

time distributions. Clearly, for M/M/5 Ca = Cs = 1 and for

D/D/1 Ca = Cs = 0.

The first observation is that the percent error ε is very small

(less than 8%) in all cases, i.e., for all experiments and all

five metrics. The largest errors occur for Δ, in which case the

maximum error is 7.6% and occurs in experiment 1. Even in

that case, the predicted value of Δ, which is 45 sec, is very

close to the lower bound (46.2 sec) of the 95% confidence

interval. We also observe that as the surge duration β increases

from 60 sec to 300 sec from experiment 1 to 5, the error ε for

Δ tends to decrease. This is expected because of the heavy

load assumption ([ρ2− 1]β � c) used in the derivation of the

analytic predictions. For the same reason, higher values of ρ2
improve the accuracy of the prediction. This can be seen in

experiment 6 that uses ρ2 = 2.0.

C. Analyzing the Effects of Ca and Cs

Here we examine the effects of Ca and Cs on the five

metrics we proposed in Section III by comparing the mean

errors from the simulation values with the analytic estimates.

In addition, we study the effects of Ca and Cs in isolation from

each other. We chose the following three broad categories of

experiments, i.e., models.

1) G/D/c: effects of Ca alone because Cs=0;

2) D/G/c: effects of Cs alone because Ca=0;

3) G/G/c: effects of Ca and Cs together.

We designed a set of experiments for each model by varying

the values of Ca, Cs, ρ2, and β and keeping c = 5 for all

experiments.

• Ca ∈ {0.8, 1.0, 1.2, 1.4, 1.6, 1.8, 2.0}; or 0.0 for D/G/5;

• Cs ∈ {0.8, 1.0, 1.2, 1.4, 1.6, 1.8, 2.0}; or 0.0 for G/D/5;

• Ca = Cs for all G/G/5 experiments;

• ρ1 = 0.6;

• ρ2 ∈ {1.25, 1.50, 1.75, 2.00};
• β ∈ {60, 120, 180, 240, 300} sec

All combinations of these input variables resulted in 140

experiments for each model and each experiment consisted of

100 runs each. Thus, we conducted a total of 420 experiments

or 42,000 runs in total. We refer to each of these three sets of

140 experiments as a set of experiments in our discussion. The

total number of requests processed during these simulations

was around 177 million for each model.

Table II shows the mean and 95% confidence intervals for

the errors of the metrics for the three sets of experiments. In

addition, Table III presents the 95% confidence intervals for

a future value for all five metrics, i.e., the interval in which

values obtained in an additional experiment would lie.

We summarize our observations below, which are based

on (1) the statistical results presented in the tables and (2)

individual experimental results not presented here due to space

limitation.

• The mean absolute error ranged from 0.04% [for

G/D/5 : ε(δ)] to 3.92% [for G/G/5 : ε(Δ)]. Hence,

the analytic estimates are good proxies for the actual

results of a set of experiments. Because the widths of

the 95% confidence intervals for the mean values of the

errors are very small, this provides further validation to

the formulas.

• Combinations of input parameters with high values of β,

ρ2 and low values of Ca and Cs resulted in lower errors.

• Higher errors were obtained for combinations of input

parameters with low values of β and ρ2 with higher

values of Ca and Cs.

• The errors for D/D/5 are insignificant or very close to zero

for many combinations of β, ρ1 < 1.0 and ρ2 > 1.0.

• No significant differences in the errors were observed due

to either Ca or Cs or both.

• In general, the 95% confidence intervals ranged from low

single digit % to high single digit %, with the exception

of ε(δ) and ε(Δ) for G/G/5.

Based on all the above observations one can conclude that

the estimate formulas we proposed for the five metrics are in

close agreement with the experimental/simulation results for

a wide range of values of ρ2, β, Ca, and Cs.
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TABLE I
COMPARISON BETWEEN ESTIMATES AND SIMULATION.

[#1] G/G/5; Ca = 1.4; Cs = 1.3; ρ1 = 0.6; ρ2 = 1.5; R1 = 0.608 sec; β = 60 sec
R2 (sec) δ (sec) Δ (sec) ⊕R �R

Simulation 30.56 ± 1.0 30.37 ± 1.2 48.70 ± 2.5 0.340 ± 0.008 -0.660 ± 0.029
Estimated 30.00 30.00 45.00 0.333 -0.667
ε 1.8% 1.2% 7.6% 2.1% -1.1%

[#2] G/G/5; Ca = 1.4; Cs = 1.3; ρ1 = 0.6; ρ2 = 1.5; R1 = 0.608 sec; β = 120 sec
R2 δ Δ ⊕R �R

Simulation 60.90 ± 1.6 60.13 ± 1.6 94.06 ± 3.6 0.340 ± 0.006 -0.660 ± 0.020
Estimated 60.00 60.00 90.00 0.333 -0.667
ε 1.5% 0.2% 4.3% 2.1% -1.1%

[#3] G/G/5; Ca = 1.4; Cs = 1.3; ρ1 = 0.6; ρ2 = 1.5; R1 = 0.608 sec; β = 180 sec
R2 δ Δ ⊕R �R

Simulation 90.01 ± 1.9 89.58 ± 2.0 139.72 ± 4.4 0.330 ± 0.005 -0.650 ± 0.016
Estimated 90.00 90.00 135.00 0.333 -0.667
ε 0.0% -0.5% 3.4% -0.9% -2.6%

[#4] G/G/5; Ca = 1.4; Cs = 1.3; ρ1 = 0.6; ρ2 = 1.5; R1 = 0.608 sec; β = 240 sec
R2 δ Δ ⊕R �R

Simulation 120.45 ± 2.0 120.10 ± 2.1 183.98 ± 5.3 0.330 ± 0.004 -0.660 ± 0.016
Estimated 120.00 120.00 180.00 0.333 -0.667
ε 0.4% 0.1% 2.2% -0.9% -1.1%

[#5] G/G/5; Ca = 1.4; Cs = 1.3; ρ1 = 0.6; ρ2 = 1.5; R1 = 0.608 sec; β = 300 sec
R2 δ Δ ⊕R �R

Simulation 151.36 ± 2.5 151.07 ± 2.6 231.26 ± 6.5 0.340 ± 0.004 -0.660 ± 0.014
Estimated 150.00 150.00 225.00 0.333 -0.667
ε 0.9% 0.7% 2.7% 2.1% -1.1%

[#6] G/G/5; Ca = 1.5; Cs = 1.5; ρ1 = 0.6; ρ2 = 2.0; R1 = 0.633 sec; β = 300 sec
R2 δ Δ ⊕R �R

Simulation 300.54 ± 3.3 301.24 ± 3.4 449.90 ± 9.9 0.500 ± 0.003 -0.670 ± 0.014
Estimated 300.00 300.00 450.00 0.500 -0.667
ε 0.2% 0.4% -0.0% 0.0% 0.4%

[#7] M/M/5; Ca = 1.0; Cs = 1.0; ρ1 = 0.6; ρ2 = 1.5; R1 = 0.559 sec; β = 300 sec
R2 δ Δ ⊕R �R

Simulation 150.22 ± 1.9 149.97 ± 2.0 230.64 ± 4.5 0.330 ± 0.003 -0.650 ± 0.009
Estimated 150.00 150.00 225.00 0.333 -0.667
ε 0.1% -0.0% 2.4% -0.9% -2.6%

[#8] D/D/5; Ca = 0.0; Cs = 0.0; ρ1 = 0.6; ρ2 = 1.5; R1 = 0.500 sec; β = 300 sec
R2 δ Δ ⊕R �R

Simulation 150.03 ± 0.0 151.00 ± 0.0 226.00 ± 0.0 0.330 ± 0.000 -0.660 ± 0.000
Estimated 150.00 150.00 225.00 0.333 -0.667
ε 0.0% 0.7% 0.4% -0.9% -1.1%

TABLE II
MEAN AND 95% CONFIDENCE INTERVALS FOR A set OF EXPERIMENTS’

ERRORS OF METRIC ESTIMATE

ε (metric) G/D/5 D/G/5 G/G/5
1 ε(R2) 1.25% ± 0.3% 0.80% ± 0.3% 1.43% ± 0.4%
2 ε(δ) 0.04% ± 0.5% -0.41% ± 0.4% 0.14% ± 1.2%
3 ε(Δ) 3.24% ± 0.7% 3.23% ± 0.6% 3.92% ± 0.8%
4 ε(⊕R) 0.89% ± 0.3% 0.58% ± 0.3% 1.04% ± 0.5%
5 ε(�R) -1.11% ± 0.4% -1.55% ± 0.4% -0.37% ± 0.5%

TABLE III
95% CONFIDENCE INTERVALS FOR A FUTURE VALUE OF THE ERRORS

FOR THE METRIC ESTIMATES

ε (metric) G/D/5 D/G/5 G/G/5
1 ε(R2) 1.25% ± 3.5% 0.80% ± 3.0% 1.43% ± 5.3%
2 ε(δ) 0.04% ± 6.3% -0.41% ± 4.4% 0.14% ± 14.6%
3 ε(Δ) 3.24% ± 7.8% 3.23% ± 7.2% 3.92% ± 9.9%
4 ε(⊕R) 0.89% ± 3.8% 0.58% ± 3.1% 1.04% ± 5.8%
5 ε(�R) -1.11% ± 5.0% -1.55% ± 4.7% -0.37% ± 6.0%

V. AUTONOMIC ELASTICITY CONTROL

Elasticity control is a mechanism that dynamically changes

the number of servers (aka horizontal scaling) or changes the

capacity of the servers (aka vertical scaling) as needed. When

the servers are virtualized, it is relatively easy to change the

number of virtual machines and/or their characteristics.

We first consider an autonomic elasticity controller that

performs horizontal scaling to maintain the peak response time

below a certain threshold Rmax. Because one cannot predict

the surge duration β ahead of time and because it is preferable

not to overprovision, the controller monitors the surge duration

and at regular intervals uses the estimated peak response time

equation (see Eq. (4)) to estimate the minimum number of

servers, cmin, needed to maintain the peak response time below

Rmax. Thus,

R2 ≈ (ρ2 − 1)β ≤ Rmax ⇒ ρ2 ≤ Rmax

β
+ 1
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⇒ λ2

μc
≤ Rmax

β
+ 1

⇒ c ≥ λ/μ
Rmax

β + 1
. (18)

Because the number of servers has to be an integer, we get

cmin =

⌈
λ/μ

Rmax

β + 1

⌉
. (19)

For vertical scaling, we need to find the minimum value

μmin of μ needed to maintain the peak response time below

Rmax. Similarly to what we did in the equation above we get,

μmin =
λ/c

Rmax

β + 1
. (20)

If the server capacities can only be selected from a discrete

set such as in the set of VMs available from Amazon EC2,

then the value of μmin can be used the determine the lowest

capacity VM that is faster than μmin.

Algorithm 1 shows the elasticity controller algorithm for

horizontal scaling. The while loop between lines 2 and 21

includes the operation of the elasticity controller while the

system is operational. The inputs used by the controller are: (1)

the average arrival rate of requests λ assumed to be constantly

monitored and available to the controller, (2) the service rate μ
of each server, (3) the number c of original servers, and (4) the

maximum desirable response time Rmax. The controller wakes

up at regular intervals (called controller intervals), checks if

the traffic intensity is below a surge level (ρ < 1; see lines

5-8) or experiencing a surge (ρ ≥ ρoriginal; see lines 10-19).

The pseudo-code in Algorithm 1 assumes that λ always has

the value of the most recent average arrival rate of requests

accumulated during the most recent controller interval. The

variable CurrentTime has the current clock time and the

function Sleep (t) suspends the operation of the controller for

a time t. When the controller detects in line 5 that a surge has

started, it moves to line 9 and records the time at which the

surge started as the current time minus half of the sleep time

τ . The reason for this adjustment is that the traffic intensity

ρ could have become > 1 anytime while the controller was

sleeping in line 6. On average, we assume the surge started

midway during that time.

While the system is experiencing a surge, the surge duration

β is updated at line 12 each time the loop in lines 10-19 is

executed. Because the controller sleeps for τ seconds within

the loop, β is incremented by τ every time. In line 13, the

minimum number of servers cmin is recomputed with the

updated value of β. As β increases, cmin increases. After the

surge, the number of servers is returned to the original value

coriginal (line 20). Note that if no surge occurs, the controller

keeps executing the while loop in lines 5-8.

An algorithm for a vertical elasticity controller is given in

Algorithm 2. This algorithm is very similar to the horizontal

elasticity controller of Algorithm 1 with the server capacity

μ used as a control knob instead of the number of servers.

Algorithm 1: Horizontal Elasticity Controller

Input : λ, μ, coriginal, Rmax

1 ρoriginal ← λ/(μ coriginal)
2 while system is online do
3 c← coriginal
4 ρ← λ/(μ c)

/* wake up at regular intervals
while surge has not started */

5 while ρ < 1 do
6 Sleep (τ )

7 ρ← λ/(μc)
8 end
9 SurgeStart ← CurrentTime - τ/2

/* While surge is ongoing */
10 while ρ ≥ ρoriginal do
11 ρ← λ/(μ c)

/* Update surge duration */
12 β ← CurrentTime - SurgeStart

/* Compute min. # of servers */

13 cmin =
⌈

λ/μ
(Rmax/β)+1

⌉
14 if cmin > c then

/* Change # required servers */
15 Change # servers in the system to cmin

16 c← cmin

17 end
18 Sleep (τ )

19 end
/* return to original # servers */

20 Change # servers in the system to coriginal
21 end

Due to space limitations we do not show results here for the

vertical elasticity controller.

VI. SIMULATION-BASED EVALUATION OF THE

CONTROLLER

This section presents an experimental evaluation of the au-

tonomic elasticity controller discussed in the previous section.

We define here some additional metrics we used to assess the

effectiveness of the controller:

• D: time during which the response time suffered; D =
t‘3 − t1 = β + δ +Δ.

• Φ: area under the curve of R(t) during D; more specifi-

cally, Φ =
∫ t1+D

t1
R(t)dt.

These metrics are identified in Fig. 6, which shows the

behavior of a multi-server system during a workload intensity

surge, with and without the controller. We use the subscripts or

superscripts c and nc heretofore to indicate metrics obtained

when the controller is on and off, respectively.

We also define a function, η(X) of metric X to represent

the percentage improvement of X when using the autonomic

controller:

η(X) = 100× Xnc −Xc

Xc
. (21)
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Fig. 6. Comparing surge behavior with and without a controller.

Algorithm 2: Vertical Elasticity Controller

Input : λ, μoriginal, c, Rmax

1 ρoriginal ← λ/(μoriginal c)
2 while system is online do
3 μ← μoriginal

4 ρ← λ/(μ c)
/* wake up at regular intervals

while surge has not started */
5 while ρ < 1 do
6 Sleep (τ )

7 ρ← λ/(μc)
8 end
9 SurgeStart ← CurrentTime - τ/2

/* While surge is ongoing */
10 while ρ ≥ ρoriginal do
11 ρ← λ/(μ c)

/* Update surge duration */
12 β ← CurrentTime - SurgeStart

/* Compute min. server capacity */

13 μmin = λ/c
(Rmax/β)+1

14 if μmin > μ then
/* Update server capacity */

15 Change server capacity to μmin

16 μ← μmin

17 end
18 Sleep (τ )

19 end
/* return to original capacity */

20 Change server capacity to μoriginal

21 end

The three metrics of interest in our case are R2, D, and

Φ. Because R2nc
≥ R2c , Dnc ≥ Dc, and Φnc ≥ Φc, the

percentage improvement of these metrics is always positive.

We give below expressions for the three metrics for the case

in which the controller is disabled using the equations derived

in the prior sections and using Fig. 6:

R2nc
= (ρ2 − 1)β (22)

Dnc = β + δnc +Δnc (23)

Φnc =
1

2
R2nc

.Dnc

=
1

2
.β.(ρ2 − 1).(β + δnc +Δnc) (24)

Note that Φnc is obtained by computing the area of the triangle

with height R2nc
and base Dnc. This is a slightly conservative

approximation (i.e., a slightly lower value) of Φnc. Therefore,

according to Eq. (21), η(Φ) is slightly conservative, which is

a good property.

We conducted experiments with the horizontal elasticity

controller and measured the three metrics described above and

computed the improvement η as reported in Table V. The no

controller values in the table are obtained from Eqs. (22)-(24).

The table reports three experiments for G/G/5 with increasing

values of the surge duration (60 sec, 180 sec, and 300 sec).

Then, it reports results for M/M/5 and D/D/5, both of them for

surge durations of 300 sec. The first general observation is that

the percent relative improvement η() is very large (ranges from

53 to 2,901) for all three metrics and for all five scenarios.

Also, the largest gains are for Φ, followed by R2, and D.

When we compare the three G/G/5 cases we see that the

gains increase as the surge duration increases. This is a good
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property of the controller and it is a consequence of the fact

that the controller incrementally adjusts the number of servers

as it obtains a better estimate of the surge duration. Finally,

for the three experiments with β = 300 sec, the G/G/c one

has higher gains for D and Φ than the other two.

TABLE IV
PERFORMANCE OF THE HORIZONTAL ELASTICITY CONTROLLER -

IMPROVEMENTS ACHIEVED; η’S OF METRICS

[a] G/G/c;Ca = 1.4;Cs = 1.3;λ1 = 6 req/sec; λ2 = 15 req/sec;
μ = 2 req/sec; cnc = 5; cc = varies; τ = 15 sec; Rmax = 5 sec;
β = 60 sec

No controller With Controller η()%
1 R2 (sec) 30.0 13.5 122.3
2 D (sec) 135.0 88.3 53.0

3 Φ (sec2) 2,025.0 745.1 171.8

[b] G/G/c with the same parameters as above and β = 180 sec
No controller With Controller η()%

1 R2 (sec) 90.0 14.2 536.0
2 D (sec) 405.0 169 140

3 Φ (sec2) 18,225 1,543 1,081

[c] G/G/c with the same parameters as above and β = 300 sec
No controller With Controller η()%

1 R2 (sec) 150.0 14.7 921
2 D (sec) 675.0 189 257

3 Φ (sec2) 50,625 1,687 2,901

[d] M/M/c;λ1 = 6 req/sec; λ2 = 15 req/sec; μ = 2 req/sec;
cnc = 5; cc = varies; τ = 15 sec; Rmax = 5 sec; β = 300 sec

No controller With Controller η()%
1 R2 (sec) 150.0 14.2 957
2 D (sec) 675.0 218 210

3 Φ (sec2) 50,625 1,906 2,556

[e] D/D/c;λ1 = 6 req/sec; λ2 = 15 req/sec; μ = 2 req/sec;
cnc = 5; cc = varies; τ = 15 sec; Rmax = 5 sec; β = 300 sec

No controller With Controller η()%
1 R2 (sec) 150.0 14.4 941
2 D (sec) 675.0 299.0 126

3 Φ (sec2) 50,625.0 2,476 1,944

The behavior of the controller can be appreciated in Fig. 7

that shows 10 plots that illustrate (a) the surge (in red), (b)

the predicted response time (in light blue), (c) the average

over all runs of the response time with the controller enabled

(in dark blue), (d) the individual values of the response times

with the controller for all 100 runs (gray curves), and (e) the

variation of the number of servers (in green). All figures are for

a G/G/c case that starts with five servers and has coefficients

of variation Ca = 1.40 and Cs = 1.30, The traffic intensity

without the controller before the surge was ρ1 = 0.60 and after

the surge ρ2 = 1.50. The five plots on the left correspond to

Rmax = 5 sec and those on the right to Rmax = 10 sec. In

each side, the value of β varies from 60 (top) to 300 (bottom)

sec in increments of 60 sec. The controller interval was set to

τ = 15 sec in all cases.
The following observations can be drawn from the plots in

Fig. 7:

• In all cases, the controller was able to substantially reduce

the peak response time when compared to the response

time peak without the controller. Higher reductions can be

seen for higher values of the surge duration. For example,

for β = 60 sec and Rmax = 10 sec, the controller

brought the peak in response time to about a half of the

value without the controller. But, for β = 300 sec, the

peak response time is reduced to about 13% of the value

without the controller. This is the case because for larger

surge durations the controller has more possibilities to

adjust the number of servers. For example, for β = 300
sec the controller made more adjustments to the number

of servers while for β = 60 sec fewer adjustments were

made.

• The peak response time with the controller was higher

than the maximum desired value because we selected a

controller interval τ value (15 sec) relatively large with

respect to the surge durations used. For example, for

the small surge of 60 sec the controller would only be

able to act 4 times. Smaller values for τ would bring

the peak response time to lower values. It should be

noted however that there usually is a delay involved in

provisioning more resources (e.g., launching more virtual

machines). Thus, it may be useful for the controller to do

some minor overprovisioning above cmin to counter the

negative effects on performance due to long VM launch

times [15].

• The controller tries to minimize the cost of using more

servers by incrementally adding more servers as it has a

better estimate of the surge duration.

As Fig. 7 indicates, the number of servers is continually

increased by the controller in order to cope with the surge. It is

thus important to quantify the cost incurred by these additional

servers. We define the metric κ as the number of additional

server-seconds used by the controller:

κ =

∫ t2c

t1c

[cc(t)− cnc] dt (25)

where t1c and t2c delimit the time during which the controller

added more resources, cc(t) is the number of resources used

by the controller at time t, and cnc is the fixed number of

resources used when the controller is disabled. For illustration

purposes, Table V shows the value of κ for a G/G/5 system

with Ca = 1.4;Cs = 1.3; λ1 = 6 req/sec; λ2 = 15 req/sec;

and μ = 2 req/sec. Several values of the surge duration

β were used and two values of Rmax were used for two

different values of the controller interval time τ . The following

interesting observations can be gleaned from the table: (1)

as the surge duration increases so does the additional server-

seconds, κ, because there is a need to keep more resources for

a longer time interval. (2) A more stringent SLA (Rmax = 5
vs. Rmax = 10) requires more resources during longer time.

(3) A more frequently responsive controller (τ = 15 vs.

τ = 30) provides more resources to counter the surge.
We also conducted experiments aimed at demonstrating the

robustness of the controller even when the workload does

not have the exact shape assumed for the derivation of the

equations used by the controller. For that purpose, we injected

random upward and downward perturbations every τ seconds

to the average workload intensity outside and during the surge.

These modified average workload intensity values drive the
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Fig. 7. With Horizontal Elasticity Controller - G/G/5;Ca = 1.40;Cs = 1.30; ρ1nc = 0.60; ρ2nc = 1.50;β = 60, 120, 180, 240, 300; τ = 15
sec;Rmax = {left column= 5 sec; right column= 10 sec}; Average over 100 independent runs.
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TABLE V
ADDITIONAL RESOURCES UTILIZED BY THE HORIZONTAL ELASTICITY

CONTROLLER, κ (SERVER.SEC)

G/G/c;Ca = 1.4;Cs = 1.3;λ1 = 6 req/sec; λ2 = 15 req/sec;
μ = 2 req/sec; cnc = 5; cc = varies

τ = 15 sec τ = 30 sec
β (sec) Rmax = 5 Rmax = 10 Rmax = 5 Rmax = 10

60 99 65 102 51
120 291 219 267 195
180 509 411 462 366
240 713 645 651 555
300 962 846 852 735

Fig. 8. Controller effect under a 5% perturbation of the average arrival rate.

generation of the interarrival times during each interval of

τ seconds. For example, Fig. 8 shows that the controller

correctly detects the onset of the surge, increases the number of

servers five times during the surge, and decreases the number

of servers to its original value when it detects the end of the

surge.

VII. RELATED WORK

The authors of [16] conducted a comprehensive study on

existing elasticity mechanisms by proposing a classification

based on scope, policy, purpose and method. Under this

classification, our work falls: (1) Scope /Infrastructure, (2)

Purpose/Performance, (3) Policy/Automatic/Predictive, and (4)

Method/Redimensioning. The work in [17] describes a broker

to acquire resources on demand from a public cloud to service

requests from a client enterprise. That work does not present

any equations that can be used to predict the effects of

workload intensity surges. The authors of [18] presented an

elasticity management framework that takes the input typically

presented to reactive rule-based scaling strategies and return

a proactive auto scaler. Examples of predictive control can be

found in [19], [20]. The authors of [21] evaluated various auto-

scaling strategies using log traces from a Google’s data center

cluster comprising of millions of jobs using the utilization

level as a key performance indicator. They show that proper

management of the parameters of an auto-scaling strategy

reduces the difference between the target utilization and the

actual values.

There are many challenges involved in autoscaling in the

cloud including the need to accurately estimate resource usage

in the face of significant variability in workload patterns. The

authors of [22] discussed such challenges and then presented

a model-predictive algorithm for workload forecasting that is

used for resource autoscaling. The sensitivity of auto-scaling

mechanisms to the prediction results has been investigated by

Nikravesh et al. [23]. Their work compared threshold-based

scaling techniques based on Support Vector Machine (SVM)

and Neural Networks (NN) predictions. The authors of [24]

provided an extensive review of the two broad categories of

autoscaling techniques—reactive and proactive—and discuss

in detail five different groups: static, threshold-based policies,

reinforcement learning, queuing theory, control theory, and

time-series analysis. The authors of [25] presented a color set

algorithm for autoscaling of internet applications for cloud

computing that achieved good demand satisfaction ratio and

saved energy by reducing the number servers used when the

load is low.

The authors of [26] presented CloudPerf, a performance test

framework designed for distributed and dynamic multi-tenant

environments. CloudPerf has features for elasticity in cloud

environments. The authors of [27] designed and evaluated a

proactive and application-aware auto-scaler using an ensemble

of open-source tools available online. They used those tools

for forecasting of arrival rates, resource demand estimation,

and software performance modeling of the application. Au-

toscaling techniques have been applied to many different types

of applications. The authors in [28] have investigated elastic

scaling for stream processing applications deployed in private

clouds. They have developed an elastic switching mechanism

to reduce the latency of event processing jobs by scaling up

using resources from a public cloud.

The authors in [29] conducted experimental studies to

compare the performance of autoscaling policies applied to

applications modeled as workflows, i.e., applications modeled

as directed acyclic graphs. They evaluated seven different

policies on three scientific applications and highlighted the

trade-offs between these policies.

VIII. CONCLUDING REMARKS AND FUTURE WORK

Many computing environments, such as web sites with

multiple web servers, use many web servers to serve requests

that arrive from a multitude of customers. Such systems

may be subject to surges in the traffic intensity such that

during intervals of time the offered load exceeds the system’s

capacity. This paper derived equations that can be used to

estimate the impact of a surge on the peak response time

caused by the surge, on the time lag between the end of the

surge and the time at which the response time peaks, on the

rate at which the response time grows due to the surge and on

the rate in which it decreases after it reached a peak. These

equations were extensively validated using a simulator we

developed, which showed that the error between the analytic

estimates and simulation is very small in all cases analyzed.

We then designed and implemented two proactive elastic

controllers (a horizontal and a vertical) that use the derived

expressions to estimate the number or capacity of required
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resources to meet response time SLAs while keeping the

increase in server capacity to the minimum necessary. Several

experiments with the controller indicate that it meets its goals.

It should be noted that the duration of the controller interval

τ influences the maximum response time R2c

We are currently working on several extensions to the

work reported here. First, we are designing a hybrid elasticity

controller that combines horizontal with vertical elasticity.

Second, we are in the process of analyzing the Google

traces [30] to characterize patterns of workload surges that we

may use to further evaluate elasticity controllers. The study of

these patterns might shed some light on the shapes of these

surges. We intend to analyze more general surge patterns such

as trapezoid ones. However, we showed in Fig. 8 that our

controller works well even when the workload surge is not

exactly rectangular. We feel that our work is an important first

step towards generalizing the model-driven controller given

that many practical workload surges may be synthesized from

a combination of rectangular surges and other simple patterns.

Additionally, we intend to design controllers that use the

surge characterization to predict the surge duration if the surge

duration has exceeded a certain value.
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