
Business-Oriented Autonomic Load Balancing for

Multitiered Web Sites

John M. Ewing and Daniel A. Menascé

Dept. of Computer Science, MS 4A5

The Volgenau School of Information Technology and Engineering

George Mason University

4400 University Dr.

Fairfax, VA 22030

jewing2@gmu.edu, menasce@cs.gmu.edu

Abstract—Autonomic computing systems are able to adapt
to changing environments (such as changes in the workload
intensity or component failures) in a way that preserves high-
level operational goals, such as service level objectives. This paper
focuses on autonomic computing systems that are self-optimizing
and self-configuring. More specifically, the paper presents the
detailed design of an autonomic load balancer (LB) for multi-
tiered Web sites. It is assumed that customers can be categorized
into distinct classes (gold, silver, and bronze) according to their
business value to the site. While the example used in the paper
is that of an auction site, the approach can be easily applied to
any other Web site. The autonomic LB is able to dynamically
change its request redirection policy as well as its resource
allocation policy, which determines the allocation of servers to
server clusters, in a way that maximizes a business-oriented
utility function. The autonomic LB was evaluated through very
detailed and comprehensive simulation experiments and was
compared against a round-robin LB and against a situation where
each customer category has a dedicated number of servers. The
results showed that the autonomic LB outperforms the other load
balancing approaches in terms of providing a higher utility for
highly dynamic workloads.

I. INTRODUCTION

In complex environments where the workload varies widely

and is hard to predict, there is a need to design and build

systems that can regulate themselves without human inter-

vention. Such systems, called autonomic computing systems

(also known as self-* systems), are able to adapt to changing

environments (such as changes in the workload intensity or

the failure of a component) in a way that preserves given

operational goals (e.g., service level objectives). There has

been significant research and attention to autonomic com-

puting in recent years [2], [6], [8], [11]. Previous work

presented a technique to design self-optimizing and self-tuning

computer systems based on the combined use of heuristic

search techniques and analytic queuing network models [2],

[11]. Other approaches used to design self-configuring systems

include control theory [7], machine-learning [15], and fuzzy

logic [16].

This paper shows how autonomic techniques for self-

optimization and self-configuration can be employed to op-

timize the utility of a multi-tiered Web site through an auto-

nomic two-level policy adaptation of the application layer load

balancer.

Load balancing refers to a number of widely used tech-

niques for distributing work among multiple resources ac-

cording to a given policy. In recent work, autonomic prin-

ciples have been applied to the development of dynamic

load balancing policies that allow system adaptation in the

face of an uncertain and changing environment [3], [4], [9].

Some dynamic load balancing policies seek to improve system

efficiency by dispatching a work request to a specific resource

where the effort required to process the request is minimized

or where service level objectives are most likely to be met [3],

[4], [5], [9], [17]. Other dynamic load balancing policies seek

to prioritize work requests that generate more utility [14]. Our

paper uses some of the dynamic load balancing policies first

described in [10] that prioritize the requests most likely to gen-

erate utility. Our autonomic controller extends our work in [2],

allows for greater precision in the development of these load

balancing policies, provides the capability to reallocate cluster

resources, and is well-suited for highly dynamic workloads.

The main contribution of this paper is a business-oriented

approach to dispatching incoming requests to servers and

allocating servers to server clusters according to customer

priority classes. We differ from our previous work and that

of others in that we 1) present a business-oriented utility

maximization and workload generation, 2) provide a two-

level autonomic policy adaptation, 3) develop an efficient hill-

climbing heuristic that can quickly search a 6-dimensional

policy space and, 4) demonstrate that our approach adapts and

reacts well to highly dynamic loads. The approach considered

in this paper is aimed at improving the revenue of an e-

commerce site, an auction site in our example, by providing

better performance to groups of customers that have higher

business value at the expense of other less important cus-

tomers. More specifically, the contributions of this paper are:

• the design of an autonomic controller that can search

for load dispatching and resource allocation policies

that maximize business-value, as specified by a utility

function,

• an evaluation and comparison of the autonomic con-

troller against commonly employed static load balancing

policies through rigorous experimentation that simulates

a large e-commerce website servicing workloads drawn

from analysis of real e-commerce systems [1] on a scale

that is not practical and very expensive to reproduce in a

laboratory setting, and

• a procedure to generate dynamic workloads that mimic

extreme phenomena such as flash crowds.

The rest of this paper is organized as follows. Section

two describes the multi-tiered web site, its workload, the

utility function maximized by the autonomic controller, and

its policies. Section three describes the heuristic based con-

troller algorithm in detail. The next section discusses the

experimental results used to evaluate the controller as well as

a comparison with other load balancing approaches. Finally,

section V presents some concluding remarks.

II. BACKGROUND

A. The Environment

We consider a multi-tiered environment (see Fig. 1) that

consists of a site load balancer that receives requests from the

Internet and sends them to one of nws web servers. Many

requests may require the execution of an application by one

of the NA application servers, which are divided into three

clusters: gold, silver, and bronze. Each server cluster services

requests from its corresponding customer category as well as

requests from customers from other categories according to

the re-direction policy to be explained later.

1

n
G

.

.

.

1

n
S

.

.

.

1

n
B

.

.

.

.

.

..
.
.

1

2

n
ws

n
db

1

Web servers Application serversApplication servers DB servers

Site
load

balancer

Application
load

balancer

Fig. 1. Multi-tiered Environment

An application load balancer (LB) makes dispatching deci-

sions regarding which cluster should receive an incoming re-

quest. The number of servers in each application server cluster

is denoted by nG, nS , and nB , for gold, silver, and bronze,

respectively. These numbers vary over time according to the

autonomic behavior of the LB. However, nG+nS +nB = NA.

Backend database servers may be used by the application

servers to process their requests. This paper concentrates

on the autonomic policies used by the LB to manage the

application server tier. However, the techniques described and

evaluated here can also be used by the site load balancer to

make more efficient use of the web servers.

The workload generated by gold, silver, and bronze cus-

tomers is described using a Customer Behavior Model Graph

(CBMG) (see [13]), for each category of customers. Each node

of a CBMG represents a state in which a customer may be

found during a session. Nodes of the CBMG are connected

by directed arcs that indicate the possible transitions between

states. Arcs are labeled with the probability that a transition

between states occurs.

Figure 2 shows a simplified version of the CBMG. The

figure only shows the most important states; in each CBMG

there is an additional state, the Exit state, not shown in the

picture to make it easier to read. All the states whose sum

of the probabilities of the outgoing transitions does not add

to one have a transition to the Exit state with a probability

equal to 1 - the sum of the other transition probabilities. Our

experiments use a more elaborate version of the CBMGs, one

per customer category, with different transition probabilities

for each category.

The average number of visits to each state during a session

can be computed by solving a system of linear equations as

described in [13]. Table I shows the expected percentage of

all visits for each customer class to selected states within

the CBMG. As the table illustrates, gold customers submit

almost 25% (= 9.96/8.01) more bids on average than silver

customers and silver customers submit 140% (= 8.01/3.31)

more bids on average than bronze customers. The gold and

bronze CBMGs were developed from measurements at a real-

world e-commerce site [1]. The silver CBMG was developed

for this paper to represent a power user who navigates the site

primarily through searches.

Entry Home

Page

About Me

(authentica-

tion)

Browse

Categories

Search

Items in

Categories

View

Item

Browse

Regions

Search

Items in

Regions

Place Bid

(authentica-

tion

pe,h ph,a

ph,c

ph,r

pr,sr

pr,sc
psc,v

psr,v

psr,b

psc,b

psc,sc

psr,sr

pv,v

pv,b

pa,v

pa,b

pa,a
pa,sc

pa,sr

Fig. 2. Customer Behavior Model Graph (CBMG).

B. Utility Function

The autonomic LB optimizes a global utility function that

calculates the business-value generated by the throughput of

TABLE I
PERCENTAGE OF SESSION VISITS TO SELECTED CBMG STATES FOR EACH

CUSTOMER CATEGORY.

Customer Category
State Gold Silver Bronze

Home 1.03 2.84 8.76
Browse Catetgories 1.24 0.37 8.90
Browse Regions 0.52 0.15 3.02
About Me 17.28 11.84 2.98
Search Items in Categories 1.44 18.13 15.34
Search Items in Regions 0.58 13.98 5.21
View Item 4.70 5.35 11.10
Store Bid 9.96 8.01 3.31

specific revenue-generating transactions with a certain ex-

pected response time. We use the bid transaction through-

put because it generates revenue for the bidding site. Good

response times are also critical to generating value—when

response times are good, current customers continue to use

the auction site and new customers are attracted to the site by

favorable impressions. If response times are poor, customers

are likely to abandon the site and use a competing auction

site with better response times—this effect deprives the site

of future business. This work uses the sigmoid utility function

UR
s (Rs) from [2] as the response time factor in the global

utility function. This response time utility function, shown in

Eq. (1), models whether utility is generated by complying with

the response time service level objective (SLO):

UR
s (Rs) =

e−Rs+βs

1 + e−Rs+βs

(1)

where s is the priority class (i.e., gold, silver, or bronze), βs

is the average response time SLO, in sec, for class s, and

Rs is the average response time, in seconds, of all class s
transactions. The response time utility function has a value

between zero and 1 and goes to zero as the response time goes

to infinity. The value of the utility is 0.5 when the response

time meets the SLO (i.e., Rs = βs). We would like our load

balancing policies to maximize the values of UR
s in a way

that prioritizes those customer classes that are most likely to

generate bids. This is achieved by combining the response time

utility factors in a weighted sum:

UR
total(~R) =

∑

∀ s

ws × UR
s (Rs) (2)

where ws are weights defined by management to indicate the

priority of class s, and ~R stands for the vector of average

response times for the classes.

The bid throughput, Xbid,s, for priority class s is the

second factor in the utility. The total bid throughput, Xbid,

is computed as follows:

Xbid(~X) =
∑

∀ s

Xbid,s (3)

where ~X stands for the vector of average bid throughputs for

the classes. From a business perspective, Xbid(~X) represents

how much money is being made today, while UR
total(

~R)
represents the likelihood of customers returning tomorrow. Our

goal is to maximize both Xbid(~X) and UR
total(

~R) in a way that

maximizes revenue today while ensuring the most important

customers are satified and will continue using the site in the

future. Making the global utility, Ug , the product of Xbid(~X)

and UR
total(

~R) achieves this goal:

Ug(~R, ~X) = Xbid(~X)× UR
total(

~R). (4)

It should be noted that the values of ~R and ~X depend on the

specific policy vector ~s used by the LB (see next section) and

on the workload intensityW . Thus, the utility function can be

written as a function h of ~R, ~X , ~s, and W as

Ug(~R, ~X) = h(~R, ~X,~s,W). (5)

C. LB Policies

The LB uses two autonomic policies. The first, called f-

policy, is a re-direction policy that affects the dispatching of

requests to server clusters. This policy is specified by three

parameters of the form fi,j ∈ [−1, 1] that indicate the fraction

of requests from priority class i to cluster j. In our case, these

parameters are fS,G, fB,S , and fB,G. A positive value for

fi,j indicates redirection of class i requests to cluster j and a

negative value indicates a redirection in the opposite direction.

An f-policy is then characterized by the vector ~f =
(fS,G, fB,S , fB,G). The autonomic LB dynamically adjusts the

f-policy ~f to maximize the global utility Ug .

In order to preserve the identity of the clusters, we add one

more constraint to the values within ~f : fS,G and fB,G must

carry the same sign (i.e., fS,G × fB,G ≥ 0). Without this

restriction, the autonomic controller will occasionally swap

the clusters around (e.g., move gold to silver, silver to bronze,

and bronze to gold). At first glance, this behavior might seem

acceptable, however, moving clusters around could result in a

number of high priority requests being stuck behind a large

number of low priority requests from the previous occupant of

the cluster. This ultimately yields unacceptable response times

for high priority requests.

The second policy, called s-policy, is a resource allocation

policy that determines how many servers should be allocated

to each cluster. In other words, it determines the values of nG,

nS , and nB , which combined with the values of fS,G, fB,S ,
and fB,G maximize the global utility function. The s-policy

is characterized by the vector ~nA = (nG, nS , nB).
The state space S of all possible configurations is formally

described below with the help of the ǫ(x) function defined as

0 for x ≥ 0 and 1 for x < 0.

S = {~s = (fS,G, fB,S , fB,G, nG, nS , nB) |

nG, nS , nB ∈ {1, 2, · · · , NA − 2},

nG + nS + nB = NA,

fS,G, fB,S , fB,G ∈ [−1, 1],

fS,G × fB,G ≥ 0,

ǫ(fS,G)|fS,G|+ ǫ(fB,G)|fB,G| ≤ 1,

(1− ǫ(fS,G))fS,G + ǫ(fB,S)|fB,S | ≤ 1,

(1− ǫ(fB,S))fB,S + (1− ǫ(fB,G))fB,G ≤ 1}.

The three last constraints say that no more than 100% of

the requests initially directed to one cluster can be redirected.

III. A HEURISTIC-BASED CONTROLLER ALGORITHM

The problem to be solved by the autonomic LB can be cast

as the following non-linear constrained optimization problem:

Find the policy vector ~smax such that ~smax =
arg max~s∈S {Ug(~R, ~X) = h(~R, ~X,~s,W)}. Note that the

function h is non-linear and does not have a closed form

expression because the response time and throughput values

have to be determined by solving a multiclass closed queueing

network model. Although no closed form expression exists

for solving multiclass closed queueing networks [12], solu-

tions can be found through iterative or recursive algorithms.

Section III-C provides more details on this. Moreover, the

state space S is typically very large. Therefore, using standard

optimization techniques is not an option for an autonomic con-

troller that needs to make real-time policy change decisions.

For that reason, we present an autonomic LB that uses heuristic

techniques.

The LB controller algorithm considers that time is divided

into 30-second time intervals called controller intervals (CI).

Two control levels are implemented: 1) the f-policy is re-

evaluated at the end of each CI, and the s-policy is re-evaluated

by the controller at the end of every 10 CIs. Because of the

switching cost of moving servers from one cluster to the other,

the s-policy should be evaluated at a lower frequency than the

f-policy.

Each server manages its own queue of requests. The re-

quests in each queue are ordered by the timestamp of the

original request such that the oldest request in the queue is the

next to be serviced. The LB redirects a fraction of incoming

requests from one cluster to another cluster according to the

f-policy. The LB sends requests to servers within a cluster in a

round-robin fashion. When the heuristic search completes, the

autonomic controller may need to move one or more servers

from one cluster to another to comply with a new s-policy.

To move servers between clusters, the controller undertakes

the following actions: 1) an empty, temporary list for storing

requests is established for each cluster donating or receiving a

server 2) before each server is moved, the requests in that

server’s queue are transferred to the temporary list of the

donating cluster 3) within a receiving cluster, all requests

in server queues are transferred to the temporary list for

that receiving cluster 4) the servers are moved to comply

with the new s-policy 5) the requests in the temporary lists

are distributed round-robin to the server queues within each

cluster.

The autonomic controller (see Fig. 3) consists of five

elements: the autonomic agent (1), the heuristic search module

(2), the utility function computation module (3), the per-

formance model solver (4), and the workload monitor, not

explicitly shown in Fig. 3, embedded in the controlled site

(5).

A. Autonomic Agent

At the end of every CI, the autonomic agent (1) receives

from the workload monitor a description W of the workload

intensity seen in the previous CI. The workload intensity is

given by the number of customers of each category and their

average think times. The autonomic agent then invokes the

heuristic search module (2) to find an f-policy that maximizes

business-value according to the utility function. At the end

of every 10 CIs, the autonomic agent requests the heuristic

component to find a combination of f-policy and s-policy that

maximizes the utility function. In the case of a change in f-

policy, the LB changes its routing tables to implement the new

re-direct policy. In the case of a change in the server allocation,

the LB informs the affected clusters (5) that servers have to

be moved according to the values in ~nA.

B. Heuristic Search

The heuristic search component is given the current state

~s0 = (~f, ~nA) and the workload intensity W . For requests

asking for an optimal value of the f-policy only, the heuristic

search is given a budget of Bf,max evaluations (200 in our

implementation), while a budget of Bs,max evaluations (500

in our implementation) is provided when searching for optimal

values of ~f and ~s. To reduce the size of the state space,

searches for ~f and ~s are restricted to positive values within
~f . This is a contrast with the f-policy only search which does

allow negative values within ~f .

We use hill-climbing as the heuristic to search the space

S of possible policies. When searching only for an op-

timum f-policy, we set the initial step on the values of

fS,G, fB,S , fB,G to δf = 0.1. The neighboring states of

state (fS,G, fB,S , fB,G, nG, nS , nB) are states of the form

~s ′ = (fS,G ± δf , fB,S ± δf , fB,G ± δf , nG, nS , nB) subject

to the constraints that ~s ′ ∈ S. We are currently assessing

Autonomic

Agent

(1)

Controlled

Site

(5)

Heuristic

Search

(2)

Utility
Function

Computation
(3)

Performance

Model Solver

(4)

f, nA

f, nA

W

f, nA,W

f, nA,W

f, nA,WR,X

Ug

Fig. 3. Architecture of the autonomic controller.

the policy search performance of other heuristic search tech-

niques including beam search, simulated annealing, genetic

algorithms, evolution strategies, and particle swarm. Evolution

strategies and particle swarm have shown particular promise.

The hill-climbing heuristic visits the solution that offers

the greatest improvement in utility, and then evaluates the

neighbors of that solution. For improved efficiency, the hill-

climbing heuristic stores evaluations with their utility in a

hash table. If the heuristic encounters a previously evaluated

neighbor, it retrieves the score from the hash table to avoid

an unnecessary evaluation. If no neighboring solution offers

an improvement, the hill-climbing heuristic divides δf by

10, unless δf is already 0.001. When δf is 0.001 and no

neighboring solutions offer improvement, the heuristic search

restarts at a randomly selected, legal solution with a δf of

0.1. This process continues until the evaluation budget has

been consumed. Testing has shown that the hill-climber on

these policy landscapes is somewhat robust to the selection

of step size parameters. The values used here are simple and

provide reasonable performance. A more optimal selection of

step size parameters may offer a slight improvement in search

effectiveness.

In the search for an optimal s-policy, which occurs jointly

with the search for an optimal f-policy, the neighboring states

of state (fS,G, fB,S , fB,G, nG, nS , nB) are states of the form

~s ′ = (fS,G±δf , fB,S±δf , fB,G±δf , nG±δs, nS±δs, nB±
δs) where δs = ⌊Na × δf/2⌋ + 1, subject to the constraint

that ~s ′ ∈ S. The variation of δf follows the same approach

as described above for the case of the f-policy only.

In order to evaluate the utility of a solution

(fS,G, fB,S , fB,G, nG, nS , nB), the heuristic search algorithm

needs to obtain, from the performance model solver (3), the

performance metrics (i.e., response times ~R and throughputs
~X) for a given f-policy, s-policy, and workload W .

C. Performance Model Solver

The performance model solver (4) uses an analytic multi-

class closed queueing network (QN) model, which is solved

using the Approximate Mean Value Analysis (AMVA) tech-

nique [12]. A closed QN model is a tuple (D, C,W,D) where

D is the set of K devices used to represent the servers of the

Web site plus a device used to represent users’ think times;

C is the set of user classes—i.e., gold, silver, and bronze in

our case; W is the set of workload intensity specifications

for each class s given by the pair (Ms, Zs) where Ms is the

maximum number of class s customers that can submit class s
requests and Zs is the average think time for class s customers;

and D = [Di,j] is the K × S matrix of service demands

where Di,j is the total average service time of requests of

class s (s = 1, · · · , S) at device i (i = 1, · · · ,K).
Our performance model has three classes (S = 3)—

representing gold, silver and bronze users—and a number of

devices that corresponds to the number of web servers plus

the number of application servers plus the number of database

servers plus one delay device to represent the think time of

customers of each class.

The base service demand values (i.e., the service demands

that would be obtained if there were only one server per cluster

and no re-direction between clusters) for each user category in

the application layer are denoted by Di,G,Di,S , and Di,B at

device i and categories gold, silver, and bronze, respectively.

The values of Di,G,Di,S , and Di,B are computed as

Di,s =
∑

∀ t

pt,s ×Dt
i,s (6)

where s ∈ {gold, silver, bronze}, t is a generic transaction

requested by a customer according to the CBMG, pt,s is the

percentage of transactions of type t requested by customers of

category s during a session, and Dt
i,s is the service demand

of transactions of type t at device i due to users of category

s.

The values of fS,G, fB,S , fB,G, nG, nS , and nB are used

to compute the values of the service demands at the devices

in the QN model that represent the application servers. This

is done by adding and subtracting according to the f-values of

the redirection policy from the original service demand and

then scaling the service demand for the number of servers in

the cluster (from the s-policy).

Thus, the performance model solver can be seen as a

function M that takes as inputs a system state ~s =
(fS,G, fB,S , fB,G, nG, nS , nB) and the workload intensity W
and returns the pair (~R, ~X). In other words,

(~R, ~X) =M(~s,W). (7)

D. Utility Function Computation

The utility function computation (3) invokes the perfor-

mance model solver (4) to determine the expected response

time and bid throughput for each priority class and then uses

Eq. (4) to compute the global utility. The use of AMVA makes

it feasible for a performance model solver to be used by the

autonomic controller, which may require a large number of

evaluations of the model at each controller interval.

E. Detailed Description

The detailed description of the controller is given in Algo-

rithm 1. The following definitions are used in this description:

• Line 18 of the algorithm shows the operator ⊕f defined

as follows: if ~s = (fS,G, fB,S , fB,G, nG, nS , nB) then

~s ⊕f x returns the set {~s ′ = (fS,G±x, fB,S±x, fB,G±
x, nG, nS , nB) | ~s ′ ∈ S}, i.e., the set of all feasible

policies obtained by modifying the f-policy by a step

equal to x in all directions.

• Line 20 of the algorithm shows the operator ⊕n defined

as follows: if ~s = (fS,G, fB,S , fB,G, nG, nS , nB) then

~s ⊕n k returns the set {~s ′ = (fS,G, fB,S , fB,G, nG ±
k, nS ± k, nB ± k) | ~s ′ ∈ S}, i.e., the set of all feasible

policies obtained by modifying the s-policy by a step

equal to k in all directions.

The parameter Type (see line 1) has a value equal to F

to indicate that the controller must search for the best f-

policy only. Otherwise, the controller searches for the best

combination of f-policy and s-policy.

IV. EVALUATION OF THE LB CONTROLLER

We compared the autonomic LB with two other approaches:

round-robin (RR) and dedicated servers (DS). In all three

Algorithm 1 Controller Algorithm

1: function Controller (Type, ~scurr, W)

2: returns (~sbest)

3: Budget ← 200

4: if Type 6= F then

5: Budget ← 500

6: end if

7: δf ← 0.1; NumEvals ← 0; Ubest ← -1.0;

8: δs = ⌊Na × δf/2⌋+ 1;

9: while NumEvals < Budget do

10: Ulocal ← Ug(M(~scurr,W))
11: if Ulocal > Ubest then

12: ~sbest ← ~scurr; Ubest ← Ulocal;

13: end if

14: NumEvals ← NumEvals + 1;

15: if NumEvals ≥ Budget then

16: break while loop

17: end if

18: N ← ~scurr ⊕f δf

19: if Type 6= F then

20: N ← N
⋃

(~scurr ⊕n δs)
21: end if

22: FoundImprovement ← False

23: for all ~s ∈ N do

24: Us ← Ug(M(~ss,W))
25: if Us > Ulocal then

26: ~slocal ← ~s; Ulocal ← Us;

27: FoundImprovement ← True

28: if Us > Ubest then

29: ~sbest ← ~ss; Ubest ← Us;

30: end if

31: end if

32: NumEvals ← NumEvals + 1;

33: if NumEvals ≥ Budget then

34: break for loop and while loop

35: end if

36: end for

37: if FoundImprovement then

38: /* move to best neighbor */

39: ~scurr ← ~slocal

40: else

41: if δf > 0.001 then

42: δf ← δf/10;

43: δs = ⌊Na × δf/2⌋+ 1
44: else

45: ~scurr ← random ~s′ ∈ S
46: δf ← 0.1;

47: δs = ⌊Na × δf/2⌋+ 1
48: end if

49: end if

50: end while

51: end function

approaches, round-robin load dispatching is used at the web

tier, the database tier, and within each application tier cluster.

Where the approaches differ is in the dispatch of requests

to the application tier clusters. In the RR case, requests are

dispatched round-robin to the clusters without regard for cus-

tomer category. In the DS case, requests are always dispatched

to the cluster corresponding to the customer category of the

requester. Table II shows the number of servers in each

tier and cluster for the different load balancing approaches.

The allocation of servers for the DS approach optimizes

global utility for the initial workload and is also used by the

autonomic LB as the starting s-policy.

TABLE II
NUMBER OF SERVERS IN EACH TIER AND CLUSTER FOR RR, DS, AND THE

AUTONOMIC LB.

nws nG nS nB NA ndb

RR 99 33 33 33 99 2
DS 99 12 25 62 99 2
Autonomic LB 99 * * * 99 2

A. Description of the Experiments

The simulation was built using the CSIM 19 C++ library

(www.mesquite.com). Transaction service times are exponen-

tially distributed with a mean calculated from the experi-

mental results in [10]. In all experiments, the autonomic

controller was initialized with the policy (fS,G = 0.0, fB,S =
0.0, fB,G = 0.0, nG = 12, nS = 25, nB = 62), i.e., no

redirection and the optimal number of servers per cluster for

the initial workload as in the DS case. The response time

SLO for all customer categories is a mean response time ≤ 1.0
seconds. The response time weights used in the utility function

of Eq. (2) are wG = 0.45, wS = 0.35, and wB = 0.20.

Each load balancing approach was tested against 50 ran-

domly generated loads, each with a duration of 480 minutes.

Most web sites including auction sites experience dynamic

loads each day that can sometimes include extreme phenomena

such as flash crowds. Our goal for developing a dynamic

load was to randomly generate realistic and challenging load

tests that would sometimes include extreme phenomena such

as a flash crowd. For a more realistic test, we wanted the

loads offered by the customer categories to be moderately

but not perfectly correlated over time. Before the simulation

begins, we randomly generate a load schedule comprised of

load vectors, ~Nt, for each minute t of the test. Each load

vector, ~Nt = (Nt,G, Nt,S , Nt,B), contains a target number

of concurrent customers of each category at the beginning of

minute t. For the first five minutes of each load schedule,
~Nt = (5000, 10000, 35000) allowing the customer population

to become more distributed throughout the CBMG state space.

In generating a dynamic load schedule, time is divided into

minutes and sequences of minutes are aggregated into variable

length intervals called epochs denoted by τ1, τ2, · · · , τk (see

Fig. 4). The duration of an epoch is an integer number of

minutes determined from an exponential distribution with an

average of 5.0 minutes rounded up to the nearest minute.

time

τ1 τ2 τ3 τ
k

.

t t+1

Fig. 4. Process for generating schedules for dynamic loads.

The first step in the generation of a dynamic load schedule is

the determination of the total number of concurrent customers

Nk(t) for epoch τk and time t. The number of customers

during an epoch τk varies at a rate, given in customers per

minute, which is sampled at the beginning of each epoch from

a Normal distribution with zero mean and standard deviation

equal to 1,000 customers/minute. Web site workloads also

tend to be noisy, which may result in autonomic performance

agents overreacting to phantom phenomena or underreacting

to real phenomena. For that reason, we add a Gaussian noise

to the total number of concurrent customers at every minute

t. This value is sampled at every minute from a Normal

distribution with zero mean and standard deviation equal to

2,000 customers.

The total number of concurrent customers at time t + 1 in

epoch τk can be written as a function of the total number

of customers at time t in the same epoch as Nk(t + 1) =
Nk(t)+xk

τ×1 minute+gt+1, where xk
τ is the rate of variation

of the total number of customers during epoch τk and gt+1 is

the value sampled from the Normal distribution that represents

the noise at time t + 1.

The second step consists in determining the mix of cus-

tomers in each category (gold, silver, and bronze) at time t
for each epoch. The mix of customers at time t+1 is derived

from the mix at time t by varying the percentage of customers

in each category so that the sum of the percentages remains at

100%. We allow bidirectional moves of percentages between

1) gold and silver, 2) silver and bronze, and 3) bronze and

gold. The direction of each move is determined by a flip of a

coin and the size of the move in percentage points is sampled

from an exponential distribution. To keep the composition of

customers within a reasonable range, each customer category s
has a tether percentage, θs. Random moves towards θs tend to

be larger than moves away from θs. This is done by shrinking

the mean of the distribution for moves away from a tether

point. This allows the percentages to fluctuate with no hard

boundaries but still stay within a reasonable range. The tether

percentages used to generate the dynamic loads tests were

θG = 10%, θS = 20%, and θB = 70%. The parameters

(e.g., θG) used to generate the dynamic load schedules are

not derived from the data collected in [1] but were selected to

produce reasonable and interesting experiments.

Once the full load schedule has been determined, the simu-

lation begins. The simulation always starts with no customers

in the system. When a customer chooses to end a session

as a result of a CBMG state decision, the customer restarts

the session after waiting for an exponentially distributed time

with a mean of 3.0 seconds. This delay is also used before a

customer starts their first session.

B. Experimental Results

The tests provide a wide range of load compositions and

load levels. The mean load profile of the randomly generated

dynamic test set is shown in Table III. Overall, the average

number of customers in the dynamic load tests is about 61,000

concurrent customers, somewhat higher than the starting num-

ber of 50,000 customers. The average range in total number of

customers is over 106,000 customers. The ranges in number

of customers for each customer category are relatively large

as well.

TABLE III
AVERAGE MAXIMUM, MEAN, AND MINIMUM CUSTOMER COUNTS.

Customer Category
Gold Silver Bronze Total

Maximum 17,151 30,033 85,286 119,401
Mean 6,355 12,391 42,561 61,308
Minimum 869 2,060 8,760 12,895

The mean workload composition is depicted in Table IV. As

expected, the mean composition of the workload is fairly close

to the tether percentages. However, the composition within the

tests shows considerable variation with an average range of

15.5% for gold, 22.6% for silver, and 27.9% for bronze. When

combined with the distribution of load levels, this diversity in

workload composition should pose a significant challenge to

the the three load balancing approaches.

TABLE IV
AVERAGE MAXIMUM, MEAN, AND MINIMUM PERCENTAGE OF TOTAL

CUSTOMER COUNT.

Customer Category
Gold Silver Bronze

Maximum 18.4 31.9 83.9
Mean 10.2 20.2 69.6
Minimum 2.9 9.3 56.0

Table V shows the 99% confidence intervals for the mean

global utility produced by the three approaches during all 50

tests. All three confidence intervals are clearly separated; the

autonomic LB generated significantly higher global utility than

either the dedicated or round-robin approaches. Figure 5 shows

the utility differences between the approaches over time. In

the first hour of the tests, the load is generally near the initial

settings, and the performance disparity at this load level is

not large. As time passes, the loads become more varied,

and the autonomic LB provides superior performance. To

better understand why the autonomic LB provided outperforms

the other approaches, we examine in detail a representative

example, test number 46.

The load schedule for test 46 is shown in Fig. 6. The

most obvious feature of this schedule is that the load grows

substantially over time reaching a peak of just over 200,000

simultaneous total customers at minute 420. The number of

bronze customers also peaks at minute 419 with 152,000

customers. The number of silver customers peaks later at

TABLE V
99% CONFIDENCE INTERVAL FOR MEAN GLOBAL UTILITY.

Lower Sample Upper
Bound Mean Bound

Autonomic LB 169.3 189.9 210.5
DS 112.4 124.8 137.3
RR 95.9 109.7 123.4

 0

 10

 20

 30

 40

 50

 60

 70

 60 120 180 240 300 360 420 480

E
x
p
e
c
te

d
 P

e
rc

e
n
t
D

if
fe

re
n
c
e
 i
n
 G

lo
b
a
l
U

ti
lit

y

Time (minutes)

E[(Ug
LB
 - Ug

RR
)/Ug

LB
]*100

E[(Ug
LB
 - Ug

DS
)/Ug

LB
]*100

Fig. 5. Expected percent difference in Ug between autonomic LB and RR
and DS with 95% confidence intervals.

minute 444 with nearly 47,000 customers, while the number

of gold customers peaks at minute 416 with over 35,000

customers.

When subjected to the load depicted in Fig. 6, the three

load balancing approaches produced the global utilities also

seen in Fig. 6. The three approaches produce similar global

utility results from the start of the test through an initial drop

off around minute 45 until minute 85 when the autonomic

LB begins generating marginally more global utility. At this

point the bronze response time in the DS approach is inching

towards a SLO violation, while the RR approach generates less

bid throughput than the autonomic LB because the autonomic

LB favors gold and silver users who are more likely to submit

bids. When the load spikes at minute 133, the RR approach

violates all of its SLOs, while the DS approach violates the

bronze SLO and nearly violates the gold SLO. The autonomic

LB allows the bronze SLO to be violated while preserving

the gold and silver SLOs. This behavior repeats with more

severe consequences during the load peak at minute 183. When

the overall load ramps up at minute 225, the RR approach

violates all of its response time SLOs at approximately the

same time. As a result, the RR utility collapses and does not

recover during the course of the test. By minute 255, both

the autonomic LB and DS approaches are violating the bronze

customer response time SLO, but the autonomic LB gets more

utility by better satisfying the gold and silver response time

SLOs. At minute 257, there is a sharp increase in the number

of gold customers and the DS approach fails to satisfy the

gold response time SLO–this is reflected in the poor utility

production of the DS approach until minute 300. The DS

approach again violates the gold response time SLO during

load spikes at minutes 307 and 335. Beyond minute 355, the

DS approach struggles to meet any of its response time SLOs

under the extreme load.

Figure 6 also shows the autonomic controller’s policy se-

lections. For the first 185 minutes of the test, the autonomic

controller makes small changes to the s-policy (i.e., the server

allocation policy). The f-policy (i.e., the request redirection

policy) makes a substantial adjustment between minute 100

and 116 redirecting nearly 40% of silver requests to the gold

cluster. This helps the autonomic controller to initially respond

to a spike in the number of silver users. The load peak at

140 minutes induces a large exchange of servers beween the

bronze cluster and the gold cluster. When the temporary peak

load subsides, the controller returns to the previously used

s-policy allocation. When the load begins to ramp up, the

autonomic controller uses the s-policy to shift resources away

from the bronze cluster to the gold and silver clusters. At

minute 240, when the number of silver users declines and

the number of bronze and gold users grows, the autonomic

controller moves servers from the silver cluster to the bronze

and gold clusters. The autonomic controller then relies on the

f-policy to make sure that the silver cluster does not become

over burdened with requests. At minute 355, the number of

bronze customers drops while the number of silver and gold

customers increases sharply. The resulting s-policy moves

most of the bronze servers to the gold and silver clusters.

When the number of gold customers passes the number of

silver customers near minute 375, the autonomic controller

responds by shifting a majority of the application servers to

the gold cluster. The number of silver customers passes the

number of gold customers near minute 425, and the s-policy

begins moving gold cluster servers back to the silver cluster.

The analytic model used by the autonomic controller to

evaluate policies provided satisfactory estimates. Considering

loads with more than 25,000 users, the average percent differ-

ence between the observed global utility (Ug) and the analytic

queueing model’s prediction of Ug was -1.30% ± 0.03% at the

99% confidence level. The single-threaded simulations were

executed on systems with two dualcore 2.6 GHz Opteron

CPUs. Searches for f-policies (budget of 200 evaluations) took

an average 1.45 ± 0.18 seconds at the 95% confidence level,

while searches for f and s-policies (budget of 500 evaluations)

took an average of 4.01 ± 0.49 seconds at the 95% confidence

level.

V. CONCLUDING REMARKS AND FUTURE WORK

This paper described the design of an autonomic controller

that can search for optimal load balancing and resource allo-

cation policies at an e-commerce site according to a business-

oriented utility function. This approach is general enough

that it could be used at most e-commerce websites. We have

thoroughly tested this controller by simulating a large e-

commerce site using workloads developed from measurements

of real customer behavior [1] and real service demands [10].

We have designed and applied a new method for generating

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

 180000

 200000

 220000

 0 50 100 150 200 250 300 350 400 450

N
u
m

b
e
r

o
f
S

im
u
lt
a
n
e
o
u
s
 C

u
s
to

m
e
rs

Time (minutes)

Gold
Silver

Bronze
Total

 10
 20
 30
 40
 50
 60
 70

 0 50 100 150 200 250 300 350 400 450

N
u
m

b
e
r

Time (minutes)

nG

 10
 20
 30
 40
 50
 60
 70

o
f

nS

 10
 20
 30
 40
 50
 60
 70

S
e
rv

e
rs

nB

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 50 100 150 200 250 300 350 400 450

G
lo

b
a
l
U

ti
lit

y

Time (minutes)

Autonomic
Dedicated

Round-Robin

-0.2
 0

 0.2
 0.4
 0.6
 0.8

 0 50 100 150 200 250 300 350 400 450

R
e
q
u
e
s
t

Time (minutes)

fS,G

-0.2
 0

 0.2
 0.4
 0.6
 0.8

F
ra

c
ti
o
n

fB,G

-0.2
 0

 0.2
 0.4
 0.6
 0.8

R
e
d
ir
e
c
te

d

fB,S

Fig. 6. Results from test 46 over simulated time including load (top left), s-policy values (top right), global utility (bottom left), and f-policy values (bottom
right).

dynamic workloads that include extreme phenomena such as

flash crowds.

Our experiments provided the following results: 1) the

autonomic LB matches the performance of the DS and RR

approaches at low load levels, 2) the autonomic LB generates

substantially more utility than DS or RR at higher load levels,

3) the autonomic LB shows a significant utility benefit at

the 99% confidence level over the DS and RR approaches,

and 4) a detailed examination of the results shows that the

autonomic controller redirects requests and allocates resources

in a manner that maximizes bid throughput while minimizing

response times.

We have also tested an autonomic LB that implements

only f-policies and an autonomic LB that implements only

s-policies. Due to space limitations the detailed results are

not included in this paper, however a summary of the results

may be instructive. The f-only autonomic LB performed better

than both the RR and DS approaches but worse than the f&s

autonomic LB presented here at a 99% confidence level. The

s-only autonomic LB provided a small (1-2%) but statistically

significant performance improvement over the f&s approach.

The s-only approach only provides this performance benefit

if the s-policy is re-evaluated every 30 seconds as opposed

to every 5 minutes as in the f&s approach. However, the s-

only approach may suffer more from the following drawbacks

not considered in our simulation: 1) reduced cache efficiency

when servers are moved since different user classes may have

preferences or access to different sets of objects 2) extra

overhead in redistributing queues because servers are moved

more frequently.

We believe that our autonomic LB could be extended in a

number of ways. It could be extended to handle server failures

by allowing the total number of application servers to vary.

Workload forecasting similar to that found in [2] could further

improve the autonomic LB’s performance. Machine learning

methods similar to those described in [14] could enable on-line

discovery of customer behavior patterns and inform customer

priority.

Reducing power consumption in the data center through

autonomic computing is an active research topic [7]. We see a

few ways in which our autonomic controller might be extended

to improve energy efficiency in the data center. The autonomic

controller could consider suspending or shutting down servers

by 1) relaxing the policy space constraint nG+nS +nB = NA

to nG+nS +nB ≤ NA, 2) adding an expression for the utility

savings of a shutdown server, 3) adding a utility expression for

the switching cost and 4) adding a utility expression for the

resource shortage risk involved in shutting down a server. A

more sophisticated approach to reducing power consumption

would be to 1) add a voltage scaling parameter for each

cluster to the resource allocation policy space and 2) scale

service demands appropriately for the voltage scaling during

the heuristic search. The voltage-scaling approach creates a

nine-dimensional search space that may prove difficult to

search with the limited evaluation budget available.

ACKNOWLEDGEMENTS

The work of Daniel Menascé is partially supported by NSF

award no. CCF-0820060.

REFERENCES

[1] V. Akula and D.A. Menascé, “Two-level workload characterization of
online auctions,” Electronic Commerce Research and Applications J.,
(10) 2, June 2007.

[2] M.N. Bennani and D.A. Menascé, “Resource Allocation for Autonomic
Data Centers using Analytic Performance Models,” Proc. 2

nd IEEE Intl.
Conf. Autonomic Computing (ICAC’05), Seattle, WA, June 13-16, 2005.

[3] A. Bivens, C. Chhuor, D. Dillenberger, G. Ferris, J. Fenton, and W.
Chou, “Autonomic load balancing, Part 1: Cisco Content Switching
Module,” IBM Developer Works, April 25, 2006.

[4] D. Breitgand, R. Cohen, A. Nahir, and Danny Raz, “On Fully Distributed
Adaptive Load Balancing,” LNCS, Sept. 2007, Vol. 4785.

[5] Y. Diao, C. W. Wu, J. L. Hellerstein, A. J. Storm, M. Surendra, S.
Lightstone, S. Parekh, C. Garcia-Arellano, M. Carroll, L. Chu, and
J. Colaco, “Comparative Studies of Load Balancing With Control and
Optimization Techniques,” Proc. American Control Conf., Portland, OR,
June 8-10, 2005.

[6] M. C. Huebscher and J. A. McCann “A survey of Autonomic Computing
– degrees, models and applications,” ACM Computing Surveys, Vol 40,
Issue 3, August 2008.

[7] T. Horvath, K. Skadron, and T. Abdelzaher, “Enhancing Energy Effi-
ciency in Multi-tier Web Server Clusters via Prioritization,” Proc. IEEE
Intl. Parallel and Distributed Processing Symp. 2007 (IPDPS’07), Long
Beach, CA, March 26-30, 2007.

[8] G. Jung, K. R. Joshi, M. A. Hiltunen, R. D. Schlichting, and C. Pu,
“Generating Adaptation Policies for Multi-Tier Server Applications in
Consolidated Server Environments,” Proc. 5

th IEEE Intl. Conf. on
Autonomic Computing (ICAC’08), Chicago, IL, June 2-6, 2008.

[9] W.S. Li, D.C. Zilio, V.S. Batra, M. Subramanian, C. Zuzarte, and I.
Narang, “Load Balancing for Multi-tiered Database Systems through
Autonomic Placement of Materialized Views,” Proc. 22

nd IEEE Intl.
Conf. Data Engineering (ICDE’06), Atlanta, GA, April 3-8, 2006.

[10] D.A. Menascé and V. Akula, “A Business-oriented Load Dispatching
Framework for Online Auction Sites,” Proc. IEEE Intl. Conf. Quan-
titative Evaluation of Systems (QEST’07), Edinburgh, Scotland, Sept.
16-19, 2007.

[11] D.A. Menascé, R. Dodge, and D. Barbará, “Preserving QoS of E-
commerce Sites through Self-Tuning: A Performance Model Approach,”
Proc. 2001 ACM Conf. E-commerce, Tampa, FL, Oct. 14-17, 2001.

[12] D. A. Menascé, V. A. F. Almeida, and L. W. Dowdy, Performance by

Design: Computer Capacity Planning by Example, Prentice Hall, Upper
Saddle River, NJ, 2004.

[13] D. A. Menascé, V. Almeida, R. Fonseca, and M. Mendes, “A Method-
ology for Workload Characterization for E-Commerce Servers,” Proc.

1999 ACM Conf. Electronic Commerce, Denver, CO, Nov. 3-5, pp 119-
128.

[14] N. Poggi, T. Moreno, J.L. Berral, R. Gavaldà, and J. Torres, “Self-
adaptive utility-based web session management,” Computer Networks,
in publication.

[15] G. Tesauro, N.K. Jong, R. Das, and M.N. Bennani, “A Hybrid Reinforce-
ment Learning Approach to Autonomic Resource Allocation,” Proc. 3

rd

IEEE Intl. Conf. Autonomic Computing (ICAC’06), Dublin, Ireland,
June 13-16, 2006.

[16] J. Xu, M. Zhao, J. Fortes, R. Carpenter, and M. Yousif, “On the Use
of Fuzzy Modeling in Virtualized Data Center Management,” Proc. 4

th

IEEE Intl. Conf. Autonomic Computing (ICAC’07), Jacksonville, FL,
June 11-15, 2007.

[17] L. Zhang and D. Ardagna, “SLA Based Profit Optimization in Auto-
nomic Computing Systems,” Proc. 2

nd Intl. Conf. Service Oriented
Computing (ICSOC’04), New York, NY, Nov.15-19, 2004.

