
© 2010 D.A. Menasce. All Rights Reserved.

1

An Introduction to Autonomic
Computing

Daniel A. Menasce

Department of Computer Science

George Mason University

2

Based on the papers:
“The Vision of Autonomic Computing,”

Jeff Kephart and D. Chess, IEEE
Computer, January 2003.

and other papers by D.A. Menasce, his
students, and colleagues.

© 2010 D.A. Menasce. All Rights Reserved.

3

Motivation for AC
•  “…main obstacle to further progress in

IT is a looming software complexity
crisis.” (from an IBM manifesto, Oct.
2001).
– Tens of millions of lines of code
– Skilled IT professionals required to install,

configure, tune, and maintain.
– Need to integrate many heterogeneous

systems
– Limit of human capacity being achieved

© 2010 D.A. Menasce. All Rights Reserved.

4

Motivation for AC (cont’d)
•  Harder to anticipate interactions

between components at design time:
– Need to defer decisions to run time

•  Computer systems are becoming too
massive, complex, to be managed even
by the most skilled IT professionals

•  The workload and environment
conditions tend to change very rapidly
with time

© 2010 D.A. Menasce. All Rights Reserved.

5

3600 sec

60 sec

1 sec

Multi-scale time workload variation
of a Web Server

© 2010 D.A. Menasce. All Rights Reserved.

6

Autonomic Computing
•  System that can manage themselves given high-level

objectives.
–  High-level objectives can be expressed in term of service-

level objectives or utility functions.
•  Autonomic computing is inspired in the human

autonomic nervous system:
–  “The autonomic nervous system consists of sensory neurons

and motor neurons that run between the central nervous
system and various internal organs such as the: heart, lungs,
viscera, glands. It is responsible for monitoring conditions in
the internal environment and bringing about appropriate
changes in them. The contraction of both smooth muscle
and cardiac muscle is controlled by motor neurons of the
autonomic system.” http://users.rcn.com/jkimball.ma.ultranet/
BiologyPages/P/PNS.html

–  The autonomic nervous system functions in an involuntary,
reflexive manner.

© 2010 D.A. Menasce. All Rights Reserved.

7

Evolution of AC Systems
•  Automated data collection and aggregation in support

of decisions by human administrators
•  Provide advise to humans suggesting possible

courses of action
•  Take lower level actions automatically
•  Increase the scope and impact of actions taken

automatically by systems in support of their AC
behavior

•  Self-managing systems and devices will be
completely natural

© 2010 D.A. Menasce. All Rights Reserved.

8

Autonomic Computing
•  Inspiration on self-governing systems

such as social and economic systems in
addition to purely biological ones.

•  Dimension of Self-Management:
– Self-configuration
– Self-optimization
– Self-healing
– Self-protection

© 2010 D.A. Menasce. All Rights Reserved.

9

Self-Configuring Systems
•  Automatic configuration of components

within larger systems
•  Component registration

– Need to advertise behavior
– Need to advertise configuration options

and mechanisms
•  Automatic component discovery and

integration

© 2010 D.A. Menasce. All Rights Reserved.

10

Self-Optimizing Systems
•  Complex middleware and database systems have a

very large number of configurable parameters.

Web Server (IIS 5.0)
Application Server

(Tomcat 4.1)
Database Server

(SQL Server 7.0)
HTTP KeepAlive acceptCount Cursor Threshold
Application Protection Level minProcessors Fill Factor
Connection Timeout maxProcessors Locks
Number of Connections Max Worker Threads
Logging Location Min Memory Per Query
Resource Indexing Network Packet Size
Performance Tuning Level Priority Boost
Application Optimization Recovery Interval
MemCacheSize Set Working Set Size
MaxCachedFileSize Max Server Memory
ListenBacklog Min Server Memory
MaxPoolThreads User Connections
worker.ajp13.cachesize

© 2010 D.A. Menasce. All Rights Reserved.

11

Self-optimizing systems: motivation

.

.

.

Arriving requests

Q: How does the response time vary with the number of

 software threads?

cpu

disk

queue for

threads

Software threads

© 2010 D.A. Menasce. All Rights Reserved.

12

0.0

0.5

1.0

1.5

2.0

2.5

0 5 10 15 20 25 30

Number of Threads

R
e
sp

o
n

se
 T

im
e
 (

se
c)

L=1 L=2 L=3 L=3.5 SLA

Q: Why does the response time has this shape?

Obs: For each workload level there is an optimal

 number of threads.

© 2010 D.A. Menasce. All Rights Reserved.

13

Workload and QoS metrics

Computer system

Workload:

•  transactions

•  HTTP requests

•  video downloads

•  calls to Call Center

QoS metrics:

•  response time

•  throughput

•  availability

•  page download time

•  revenue throughput

•  abandonment rate

© 2010 D.A. Menasce. All Rights Reserved.

14

Self-optimizing System

Computer system

Workload:

•  transactions

•  HTTP requests

•  video downloads

•  calls to Call Center

QoS metrics:

•  response time

•  throughput

•  availability

•  page download time

•  revenue throughput

•  abandonment rate

Controller

Service Level Objectives
© 2010 D.A. Menasce. All Rights Reserved.

15

Self-optimizing System

Computer system

Workload:

•  transactions

•  HTTP requests

•  video downloads

•  calls to Call Center

QoS metrics:

•  response time

•  throughput

•  availability

•  page download time

•  revenue throughput

•  abandonment rate

Controller

Service Level Objectives

Monitoring Monitoring

© 2010 D.A. Menasce. All Rights Reserved.

16

Self-optimizing System

Computer system

Workload:

•  transactions

•  HTTP requests

•  video downloads

•  calls to Call Center

QoS metrics:

•  response time

•  throughput

•  availability

•  page download time

•  revenue throughput

•  abandonment rate

Controller

Service Level Objectives

Parameter
Change

© 2010 D.A. Menasce. All Rights Reserved.

17

Engineering with QoS in Mind
•  Poor QoS may lead to loss of human life (e.g.,

homeland security and disaster relief support
systems) and financial losses due to customer
dissatisfaction.

© 2010 D.A. Menasce. All Rights Reserved.

18

Engineering with QoS in Mind
•  Poor QoS may lead to loss of human life (e.g.,

homeland security and disaster relief support
systems) and financial losses due to customer
dissatisfaction.

•  QoS has to be an integral part of the design of any
computer system.

© 2010 D.A. Menasce. All Rights Reserved.

19

Engineering with QoS in Mind
•  Poor QoS may lead to loss of human life (e.g.,

homeland security and disaster relief support
systems) and financial losses due to customer
dissatisfaction.

•  QoS has to be an integral part of the design of any
computer system.

•  Online computer systems (e.g., Web sites, e-
commerce sites, call centers) have workloads that
can be widely varying.

© 2010 D.A. Menasce. All Rights Reserved.

20

Engineering with QoS in Mind
•  Poor QoS may lead to loss of human life (e.g.,

homeland security and disaster relief support
systems) and financial losses due to customer
dissatisfaction.

•  QoS has to be an integral part of the design of any
computer system.

•  Online computer systems (e.g., Web sites, e-
commerce sites, call centers) have workloads that
can be widely varying.

•  QoS autonomic control should be part of the design
of complex online computer systems.

© 2010 D.A. Menasce. All Rights Reserved.

21

Results of a Self-Optimizing
E-commerce Site

Arrival rate

0

10

20

30

40

50

60

70

80

90

100

0 5 10 15 20 25 30 35

Time (Controller Intervals)

A
rr

iv
al

 R
at

e
(r

eq
ue

st
s/

se
c)

© 2010 D.A. Menasce. All Rights Reserved.

"Preserving QoS of E-commerce Sites Through Self-Tuning: A Performance Model
Approach," Menasce, Dodge and Barbara, Proc. 2001 ACM Conference on E-commerce,
Tampa, FL, October 14-17, 2001.

22

Results of QoS Controller

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

14
.4

14
.0

14
.4

41
.3

38
.1

36
.6

62
.2

61
.5

63
.5

77
.3

80
.4

78
.5

83
.8

85
.7

85
.9

88
.2

88
.3

89
.2

90
.0

90
.3

89
.5

85
.7

81
.4

83
.7

79
.0

75
.9

73
.5

66
.2

64
.1

64
.4

Arrival Rate (req/sec)

Q
oS

Controlled QoS Uncontrolled QoS

© 2010 D.A. Menasce. All Rights Reserved.

23

Experiment Results

Arrival rate

0

10

20

30

40

50

60

70

80

90

100

0 5 10 15 20 25 30 35

Time (Controller Intervals)

A
rr

iv
al

 R
at

e
(r

eq
ue

st
s/

se
c)

QoS is not met!

© 2010 D.A. Menasce. All Rights Reserved.

24

0

5

10

15

20

25

30

35

40

45

1 1.5 2 2.5 3 3.5 4 4.5 5
Avg. Arrival Rate (requests/sec)

A
vg

. N
o.

 Id
le

 P
ro

ce
ss

es

20 Processes 40 Processes 30 Processes

Dynamic Variation of Process Pool Size in Web Servers

© 2010 D.A. Menasce. All Rights Reserved.

25

Dynamic Variation of Pool
Size

Scenario
Number of
processes

Arrival
Rate

(req/sec)

Avg. No.
Idle

Processes
1 20 4.5 10.3
2 20 4.8 5.3
3 30 4.8 11.3
4 30 4.9 6.6
5 40 4.9 11.4

© 2010 D.A. Menasce. All Rights Reserved.

26

Self-Healing Systems
•  Automatic mechanisms to:

–  Identify failures
–  Identify their root causes
–  Determine how to repair the system
–  Take into account complex dependencies between hardware

and software failures
•  Tools include:

–  Logs from various types of monitors
–  Data aggregation mechanisms
–  Statistical techniques to determine correlation between

events and diagnose faults

© 2010 D.A. Menasce. All Rights Reserved.

27

Self-Protecting Systems
•  Automatic mechanisms to:

– Defend the system against malicious
security attacks

– Prevent security compromises to occur due
to component failures

– Predict the onset of security attacks by
analyzing events recorded in various types
of logs and analyzing correlations that may
lead to attacks.

© 2010 D.A. Menasce. All Rights Reserved.

Utility Functions

28

1

0
Response Time (R)

1

0
Throughput (X)

1

0
Security Level (S)

1

0
Availability (A)

1 0.95

0 0

Low

U (R)

U (S)

U (X)

U (A)

© 2010 D.A. Menasce. All Rights Reserved.

Medium High

€

Ug (R,X,A,S) = f (U(R),U(X),U(A),U(S))

29

Architectural Considerations

Plan

Execute

Managed Element

Knowledge Monitor Execute

Autonomic Manager

Autonomic Element

 Plan Analyze

M A P E-K cycle

© 2010 D.A. Menasce. All Rights Reserved.

30

Architectural Considerations
•  Manage internal behavior and relationships

with other autonomic elements guided by
human-specified policies

•  Distributed service-oriented architecture is
useful to support AC
–  SOA
–  Web Services
–  Grid Computing

•  Autonomic Elements (AEs) may need resources from other
autonomic elements
–  Need for robust and secure negotiation protocols for obtaining and

releasing resources from other AEs
–  Need to monitor consumers for not overusing the AE’s resources
–  Behavior of one AE may depend on behavior of other loosely-

coupled AEs
–  Need formal languages (machine and human-readable) to express

service contracts and SLAs with other AEs
© 2010 D.A. Menasce. All Rights Reserved.

31

Engineering Challenges
•  How to program AEs?

–  Need tools to acquire and represent policies
–  Need tools to translate from high-level to low-level goals

•  How to test AEs?
–  Repeatability issues
–  Interconnected AEs
–  AE interconnection and binding determined at run-time
–  Difficult to put together controlled test environments

•  Installation and configuration issues
–  Need directory services and brokers that locate AEs based on

policies and SLAs
•  Monitoring and problem determination

–  Continuously monitor suppliers to ensure compliance with SLAs
and policies

–  Monitoring of consumers
–  Need statistical and aggregation techniques to be able to cope with

huge amounts of data

© 2010 D.A. Menasce. All Rights Reserved.

32

Engineering Challenges
•  Relationship with other AEs

–  Interoperability can be achived through ontologies
–  Need to assess reliability and trustworthiness of other AEs
–  Negotiation with other AEs:

•  Demand-for-service
•  FCFS
•  Posted-price
•  Bi-lateral or multi-lateral negotiations over multiple attributes
•  Third-party arbiter running auctions

•  Provisioning of resources after agreements are achieved
•  Monitoring to check for compliance
•  Security and privacy issues
•  Robustness with respect to erroneous/not feasible policies.
•  Mapping from high-level objectives to low-level ones.

© 2010 D.A. Menasce. All Rights Reserved.

