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ABSTRACT

The complexity of Information Technology (IT) systems is steadily
increasing. System complexity has been recognised as the main
obstacle to further advance of IT and has recently raised energy
management issues. Control techniques have been proposed and
successfully applied to design Autonomic Computing systems, i.e.,
systems able to manage themselves trading-off system performance
with energy saving goals. As users behaviour is highly time varying
and workload conditions can change substantially within the same
business day, the Linear Parametrically Varying (LPV) framework
seems very promising for modeling such systems. In this paper, a
control theoretic method to investigate the trade-off between Qual-
ity of Service (QoS) requirements and energy saving objectives in
the case of admission control in Web service systems is proposed.
First, a dynamic model of the admission control dynamics is esti-
mated via LPV identification techniques. Secondly, an optimisation
problem within the Model Predictive Control (MPC) framework is
setup, based on the estimated LPV model, by means of which it is
possible to investigate the optimal trade-off policy to manage QoS
and energy saving objectives.

1. INTRODUCTION
The steady increase in the complexity of Information Technol-

ogy (IT) systems led IBM to release, in mid-October 2001, the
“Autonomic Computing Manifesto” [1] observing that current ap-
plications have reached the size of several millions of lines of code
while physical infrastructures include thousands of heterogeneous
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servers and require skilled IT professionals to install, configure,
tune, and maintain. System complexity has been recognised as the
main obstacle to further advance of IT.

Another emerging problem in this context is related to energy
management. The growth in the number of servers has caused an
enormous spike in electricity usage. IT analysts predict that, by
2012, up to 40% of an enterprise technology budget will be con-
sumed by energy costs. From an environmental point of view, over-
all, IT accounts for 2% of global CO2 emissions, i.e., IT pollutes to
the same extent as the global air traffic [2].

Furthermore, system operation has to cope with the variability
of users’ behaviour and application workloads. Nowadays, IT sys-
tems have to provide to their users prescribed Quality of Service
(QoS) levels usually defined in terms of application performance,
such as requests response time or system throughput. QoS require-
ments are difficult to satisfy, since workload may vary by several
orders of magnitude within the same business day [3]. To handle
workload variations and meet QoS requirements, resources have to
be dynamically allocated among running applications and the IT
architecture has to be re-configured at run-time.

IBM has proposed the Autonomic Computing paradigm as a so-
lution to IT complexity, energy consumption, and run-time recon-
figuration issues [1]. The basic idea is to allow IT systems to man-
age themselves, as the human autonomic nervous system governs
basic body functionalities such as heart rate or body temperature,
thus freeing the conscious brain – IT administrators – from the bur-
den of dealing with low-level vital functions.

Control theoretic techniques have been proposed and success-
fully applied to the design of Autonomic Computing systems [4,5].
The main actuation mechanisms which have been implemented are:
(i) Dynamic Voltage Scaling of server CPUs, (ii) admission control,
and (iii) resource allocation in virtualised environments. This pa-
per will focus on the first two of them.

Dynamic Voltage Scaling (DVS) is a mechanism which can be
exploited to reduce a server energy consumption [6–8]. Modern
CPUs allow varying both the CPU supply voltage and operating fre-
quency. The adoption of DVS as a control variable is very promis-
ing, as power consumption is proportional to the cube of the operat-
ing frequency, while server performance varies linearly with the op-
erating frequency. Hence, under light load conditions energy con-
sumption can be effectively reduced by lowering CPU frequency
without worsening the provided QoS level.

Admission control is an overload protection mechanism which
rejects requests under peak workload conditions in order to pro-
vide performance guarantees to the running applications [9–11].
Admission control is effective if the admitted requests are served
according to their QoS constraints. However, QoS constraints need
to be traded-off with energy saving objectives. To this end, it is
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of great importance to be able of establishing the optimal trade-
off policy at design time. This paper presents a control oriented
methodology to handle such issue.

In the utility-based context developed within the autonomic com-
puting framework, approaches have been introduced to analyse and
optimize the degree of users’ satisfaction, expressed in terms of
user-level performance metrics, which typically use performance
models based on queueing theory [12–14]. These approaches can
handle multiple decision variables (e.g., joint admission control and
resource allocation [15]) but rely on the assumption that the sys-
tem is at steady state. Hence, the optimal trade-off management
policies that such approaches convey do not take into account the
dynamic nature of the underlying physical system, which can have
a decisive importance in selecting the management policies at ma-
chine level. As a matter of fact, in the formulation of autonomic
computing as a control problem, the most critical issue is the vari-
ability of the dynamics of the Web server as a function of workload.

To capture such a variability and take it into account in the trade-
off analysis, we propose to model the Web service dynamics via
Linear Parametrically Varying (LPV) models, which have proved
effective – in the control community – to deal with such parameter
dependent systems, see e.g., [16, 17]. Recent work has shown that
the LPV framework is very general, since it allows describing the
performance of an IT system by exploiting all of the available tech-
nological mechanisms to manage QoS [18, 19]. Thus, in this work
we first perform identification and validation experiments aimed at
estimating an LPV dynamic model of the admission control dy-
namics. Such a model constitutes the basis for formulating the op-
timisation problem, the solution of which provides the optimal pol-
icy to manage the QoS/Energy trade-off. Specifically, the problem
is solved within the Model Predictive Control (MPC) framework,
which is a widely used control approach allowing to formulate the
control problem as a constrained optimisation one, see e.g., [20,21].
Thus, the performance evaluation problem associated with the Web
service system under study will be formulated in terms of a suitable
cost function expressing the QoS/Energy saving trade-off and of a
number of constraints further specifying the control objectives.

Notably, the proposed approach is quite general, in that it can
accommodate different QoS measures together with other energy-
related constraints within the same framework, and, most impor-
tantly, it can be applied to all available technological mechanisms
to manage QoS with no conceptual differences. Another advan-
tage is that the ideal formulation of the MPC control problem used
for performance evaluation can be easily adapted to obtain a con-
troller which can be actually run on the real system, so as to pro-
vide the possibility of analyzing and quantifying the discrepancy
between the optimal trade-off policy and the performance which
can be achieved on the real system at design time.

The structure of the paper is as follows. Section 2 provides the
necessary background and defines the notation for the problem un-
der study. Section 3 illustrates the LPV state space models em-
ployed for identification and shows the approach used to identify
reliable models of the admission control dynamics, together with
the experimental setting employed for identification and validation
experiments. In Section 4 the proposed MPC-based approach to
the analysis of the QoS/Energy trade-off is illustrated, and simula-
tions results are shown to assess its suitability for the considered
application.

2. PROBLEM STATEMENT AND NOTATION
In the following, a Web service system which provides DVS and

admission control will be considered. For the sake of simplicity,
Web service applications are configured to serve requests accord-

ing to the FIFO policy and run on a single CPU. In the queue-
ing theory context, [22], the following quantities are commonly
employed to describe the incoming workload over a time interval
[k∆t, (k +1)∆t], where ∆t is the sampling interval:

• λk denotes the average requests arrival rate for the Web ser-
vice application in the k-th time interval;

• sk is the average requests service time, i.e., the overall CPU
time needed to process a request for the considered appli-
cation in the k-th time interval when the CPU runs at the
maximum frequency and the CPU is fully dedicated to the
execution of the application;

• Tk is the average server response time, i.e., the overall time a
request stays in the system in the k-th time interval;

• Xk denotes the average Web service throughput, defined as
the number of served requests in the k-th time interval;

• fk is the ratio between the frequency adopted by the server
CPU in the time interval k with respect to the maximum CPU
frequency;

• Pk is the probability that a request will be admitted to the
system in the k-th time interval.

The service time represents the overall server CPU time needed
to serve a customer. Note that, generally speaking, the service time
can be regarded as inversely proportional to the server CPU fre-
quency. When physical servers are endowed with DVS capabili-
ties, in fact, the effect of - say - lowering the CPU frequency when
a light workload is present in the system causes an increase of the
effective CPU time needed to serve a request (see [7]). This as-
sumption is supported by current technology trends, since in mod-
ern systems (e.g., AMD Opteron 2347HE Barcelona core) CPUs
and RAM clock can be scaled independently. Thus, in what follows
it will be assumed that the effective service time can be defined as
s f ,k = sk/ fk. The inverse of such quantity is commonly referred to
as the maximum service rate and indicated with µk = 1/s f ,k. This
assumption has been validated experimentally on a Web server en-
dowed with the voltage scaling capability; the results of the valida-
tion experiment are depicted in Figure 1. As can be seen, the above
relationship is accurate (with an approximation of about 2%) and
therefore can be considered acceptable for the present purposes.

Figure 1: Experimental verification of s f ,k = sk/ fk on a Web
server with DVS functionalities.

The effect of admission control is to reduce the number of re-
quests served by the system. More precisely, the requests through-
put Xk is related to the requests arrival rate λk and the probability
of admission Pk by Xk = Pkλk.
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As already mentioned, classical queueing theory provides a de-
scription of the system which relies on steady-state assumptions,
and it is therefore reliable only over long time horizons. In this
context, considering for the sake of simplicity a single application,
a queueing system is said to be stable if Xk < µk, which is the
condition that guarantees that the queue does not overflow due to
an overly low effective service time or too large throughput. This
assumption is only considered for simplicity, even if the queueing
system could in principle be stable over multiple time intervals with
Xk ≥ µk for some of the time intervals, as long as the traffic inten-
sity of other time intervals is sufficiently small to balance the local
overload phenomena. Note, in fact, that we seek a dynamic model
for the server behaviour, which does not rely on queueing theory
assumptions.

By means of Little’s law, [22], queueing theory predicts that the
steady-state average response time for a stable open system (that is
for a system in which the number N of requests in the queue is
variable), can be computed as

T =
¯N

X
. (1)

For control purposes, however, a dynamical model of the server ca-
pable of capturing transients must be derived. We recall, in fact,
that one of the aims of the present work is to obtain a control-
oriented dynamical description of the server behaviour to be em-
ployed for dynamic performance evaluation via MPC control.

REMARK 1. As incoming requests – independently of the ap-
plication they may try to access – wait in a queue before accessing
the physical server, it is clear that the system dynamics will have a
feedthrough term, i.e., a direct path from input to output. In fact,
the response time Tk (i.e., the system output) is given by

Tk = s f ,k +ξk, (2)

where the queueing time ξk accounts for the time that the request
spends in the queue. As such, the real dynamics of the system are
to be found in the variable ξk = Tk − s f ,k. In what follows, LPV
models will be identified for the dynamics of ξk only, and the final
response time will then be retrieved via Equation (2).

3. LPV STATE SPACE MODELS:
IDENTIFICATION AND VALIDATION

In the considered application, an LPV modeling formulation has
been adopted to handle the system nonlinearities due to workload
variations. As shown in e.g., [18], this choice is essential since
a simple Linear Time Invariant (LTI) model would not be precise
enough to capture all the relevant dynamic behaviour of the consid-
ered system. In this Section, the LPV system structure is described,
and the identification approach used to model the dynamics of the
admission control system are briefly presented (for more details on
the identification approach, refer to [18, 19]). Further, the experi-
mental setup employed for the identification and validation experi-
ments is detailed, together with the obtained results.

3.1 LPV Model Identification Approach
LPV systems are linear time-varying plants whose state space

matrices are fixed functions of some vector of measurable, time
varying parameters. LPV model identification algorithms are avail-
able in the literature both for input/output and state space repre-
sentations of parametrically-varying dynamics. In particular, in
the recent works [6, 23] an input-output modelling approach was
adopted. If, however, the aim of the identification procedure is to

eventually work out LPV models in state space form for control
design purposes, one should keep in mind that the usual equiva-
lence notions applicable to LTI systems cannot be directly used in
converting LPV models from input-output to state space form, as
the time-variability of LPV systems ought to be taken into account
(see, e.g., the discussion in [24]). Bearing this in mind, in this work
we focus on state space LPV models in the form

xk+1 = A(pk)xk +B(pk)uk

yk = C(pk)xk +D(pk)uk,
(3)

where p ∈ Rs is the parameter vector and x ∈ Rn, u ∈ Rm, y ∈ Rl .
It is often necessary to introduce additional assumptions regarding
the way in which pk enters the system matrices: in this work we
focus on affine and input-affine models, defined as follows.

1. Affine parameter dependence (LPV-A):

A(pk) = A0 +A1 p1,k + . . .+As ps,k (4)

and similarly for B, C and D, and where by pi,k, i = 1, . . . ,s
we denote the i-th component of vector pk. This form can
be immediately generalised to polynomial parameter depen-
dence.

2. Input-affine parameter dependence (LPV-IA): this is a par-
ticular case of the LPV-A parameter dependence in which
only the B and D matrices are considered as parametrically-
varying, while A and C are assumed to be constant, i.e., A =
A0, C = C0.

As far as LPV model identification is concerned, it is usually con-
venient to consider first the simplest form, i.e., the LPV-IA one, as
its parameters can be retrieved using Subspace Model Identification
(SMI) algorithms for LTI systems by suitably extending the input
vector. In this work the MOESP class of SMI algorithms (see [25])
has been considered. LPV-IA models also provide a useful initial
guess for iterative methods which can be used for the identifica-
tion of fully parameterised models in LPV-A form, along the lines
of [26, 27]. The classical way to perform linear system identifi-
cation is by minimizing the error between the real output and the
predicted output of the model. A similar approach can be used
for LPV state-space systems of the form (3). Letting the system
matrices of (3) be completely described by a set of parameters θ ,
identification can be carried out by minimizing the cost function

VN(θ) :=
N

∑
k=1

||yk − ŷk(θ)||22 = ET
N (θ)EN(θ),

with respect to θ , where

ET
N (θ) =

[

(

y1 − ŷ1(θ)
)T

· · ·
(

yN − ŷN(θ)
)T

]

,

yk denotes the measured output and ŷk(θ) denotes the output of the
LPV model to be identified and ||v||2 indicates the 2-norm of vector
v.

3.2 Testbed setting and experimental results
To perform the experiments needed for collecting identification

and validation data, a workload generator and a micro-benchmarking
Web service application have been used. The workload generator is
based on a custom extension of the Apache JMeter 2.3.1 workload
injector, [28], which allows to generate workload according to an
open model [22] with a Poisson arrival process. As a matter of fact,
to approximate the behaviour of internet requests, the workload in-
jector generates traffic according to a Poisson distribution. This is
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motivated by the fact that several analyses of actual e-commerce
site traces have shown that the Internet workload follows a Pois-
son distribution with a good approximation, [29]. The analysis of
burstiness behaviour and long range dependent phenomena is left
as part of future work, [30].

The micro-benchmarking Web service application is implemented
as a Java servlet and is hosted within the Apache Tomcat 6.0 appli-
cation server, [31]. The servlet has been designed to consume a
fixed CPU time which allows to emulate the DVS of the physical
server (a Pentium D machine with no DVS support). The bench-
marking code has been embedded within the synchronised Java
construct in order to schedule requests execution according to a
FIFO policy. The application has been instrumented to accurately
determine the service time of each request; note, however, that this
is not a limitation as there exist several techniques to assess the
number of CPU cycles consumed by requests both at application
level (e.g., the Application Resource Measurement API, [32]) or at
operating system level (e.g., kernel-based measurements, [11]).

4 6 8 10 12 14 16 18 20 220

0.5

1

1.5

time [h]

λ 
[re

q/
s]

Request rate input

Figure 2: Time history of the request rate λk applied for LPV
model identification and validation.

For admission control dynamic modeling, the identification ex-
periments have been carried out employing the synthetic workload
profile discussed above. Specifically, the request rate behaviour is
the one shown in Figure 2, and the application service time follows
a log-normal distribution with σ [sk] = 4E[sk].

As for the admission probability Pk, it varies stepwise every 1
minute, with values between 0.1 and 1. Figure 3 shows the time
history of the resulting server utilization (which for the case of ad-
mission control can be defined as ρac,k = λk sk Pk) employed in the
identification experiments.

For validation purposes, different realisations of the same work-
load profile have been employed, while varying the parameters of
the service time log-normal distribution. Specifically, two valida-
tion tests have been performed with the standard deviation of the
log-normal σ [sk] = qE[sk] and q = {2,6}. This allows to analyse
whether the identified models are sensitive to the variability of the
CPU time distribution.

To quantitatively evaluate the models, both on identification and
validation data, two metrics will be considered: the percentage
Variance Accounted For (VAF), defined as

VAF = 100

(

1−
Var[yk − ysim,k]

Var[yk]

)

, (5)

where yk is the measured signal and ysim,k is the output obtained by
simulating the identified model, and the percentage average error

Figure 3: Time history of the server utilization ρac,k = λk sk Pk

used in the identification experiments for admission control.

eavg, computed as

eavg = 100

∣

∣

∣

∣

Et [yk − ysim,k]

Et [yk]

∣

∣

∣

∣

. (6)

This choice allows to assess the system performance both in a 1
and in a 2-norm sense.

Based on the identification data, an LPV-IA model for the ad-
mission control dynamics was estimated. Specifically, we consider
as input the admission probability, i.e., uk = Pk and use the ser-
vice time sk, the application utilization ρk = skλk and its square
as scheduling parameters, that is pk = [sk ρk (ρk)

2]. The system
output is the server response time Tk. The model order was set to
2 via cross-validation analysis and the best sampling time for this
application proved to be ∆t = 1min.

Figure 4: Detail of the measured (solid line) and simulated
(dashed line) response time obtained with an LPV-IA model for
the admission control dynamics on validation data.

Based on the discussion in Section 2, an LPV-IA model for the
dynamics of ξk was estimated, and the overall response times com-
puted according to equation (2). A plot of the simulated response
time obtained with the identified model on validation data is com-
pared to the measured one in Figure 4 for the case of q = 2. For the
considered data (see also Figure 3), the light load data are those in
the time interval t ∈ [0, 9)∪ (20, 24] h, while the heavy load data in
the time interval t ∈ [9, 20]h.

A summary of the identified model performance on validation
data for both q = 2 and q = 6 is provided in Table 1, which confirms
the validity of the proposed LPV model.
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Valid. Performance ∆t = 1min q = 2 q = 6
VAF on 24h 78.38% 74.96%
VAF light load 92.63% 83.01%
VAF heavy load 73.79% 63.57%
eavg on 24h 3.35% 6.60%
eavg light load 0.42% 2.85%
eavg heavy load 5.48% 10.74%

Table 1: Performance of the identified models for admission
control with ∆t = 1 min on validation data.

4. DYNAMIC ANALYSIS OF THE
QOS/ENERGY TRADE-OFF

The main challenge related with QoS requirements can be stated
as that of guaranteeing a given service time associated to a request,
denoted with Tre f , which is defined and negotiated between the cus-
tomers and the service provider, and a certain minimal amount of
accepted requests (here modeled as an admission probability Pk),
while either:

1. Maximizing the number of served users: Quality of Service
(QoS) objective.

2. Minimizing the power consumption: Energy saving objec-
tive.

These objectives reflect the natural QoS/Energy saving trade-off.
Indeed, the first objective reflects the ability of a service provider
to serve a large number of requests, while the second one reflects
the ability of a service provider to achieve energy saving, and thus
costs reduction.

In this Section, the optimal performance level of the server is
computed using an optimisation algorithm inspired by the Linear
Parameter Varying - Model Predictive Control (LPV-MPC) approach.

To this purpose, the relevant background on MPC is first pro-
vided in Section 4.1, while the application of MPC to optimal per-
formance computation is presented in Section 4.2.

4.1 Model Predictive Control for Performance
Evaluation

Model Predictive Control (MPC) is a widely used approach to
the solution of large scale, multivariable, possibly constrained con-
trol problems which has been developed in the Control commu-
nity over the last three decades. The main idea of MPC can be
summarised as follows: i) the control problem is formulated as
an optimisation one, based on a mathematical model for the plant
(and possibly of known external disturbances), a cost function ex-
pressing the desired performance of the system over a future time
horizon and all the relevant constraints on the input, state and out-
put variables; ii) the control action over the future horizon is com-
puted by repeatedly solving the optimisation problem on line; iii)
the implementation of the computed control action is based on the
so-called receding horizon principle, i.e., at each time step only
the first sample of the computed control sequence is actually ap-
plied and the control problem is re-solved at the subsequent time
step, [20, 21].

MPC is a very attractive idea, as it allows a very natural formu-
lation of control problems in terms of constrained optimisation. On
the other hand, however, this approach leads to a number of issues
when it comes to guaranteeing closed-loop stability, dealing with
uncertainty in the mathematical model of the plant and ensuring
that the on-line optimisation problem is computationally tractable

in view of the need to solve it on line. Such issues are a subject of
active research and have been successfully clarified in a number of
frameworks, see e.g., [33–35]. Most of the attention in the litera-
ture focused on standard MPC problems in which the system under
study is LTI and the cost function expressing the desired closed-
loop performance is a quadratic one. In this respect, the literature
on LPV-MPC is relatively recent, see e.g., [36–38].

When it comes to performance evaluation, MPC is a very valu-
able tool for a number of reasons. First of all, provided that the sys-
tem for which a performance analysis is sought after falls within the
assumptions under which MPC can be applied with some guaran-
tees, an MPC controller can be set up and implemented fairly easily,
as it requires little tuning with respect to other approaches. Further-
more, if, e.g., one is interested in assessing optimal performance in
the face of external disturbances, the controller can be implemented
by assuming that the future evolution of the disturbances is exactly
known over the future horizon. Such setting provides the ability
of analysing the optimal performance achievable on the considered
system, but can be also easily adapted to provide a controller which
can be actually implemented in the non ideal case. As an example,
in the considered application, to translate the ideal LPV-MPC con-
troller used for performance evaluation into a regulator which can
be used on the real Web server it is sufficient to design a state es-
timator from input/output data – the MPC controller needs to have
access to the state variables of the dynamical model which are of-
ten not measurable – and to let the controller work with no preview
of the future evolution of the disturbances (or, possibly, with the
evolution estimated by workload predictors, [39]). Of course, the
resulting MPC controller performance will be fully and easily com-
parable with that provided by the ideal case used for performance
evaluation, so that the degree of sub-optimality of the final imple-
mentation can be also investigated at design time.

In the following Section the performance evaluation problem as-
sociated with the Web service system under study will be formu-
lated in terms of a suitable cost function expressing the QoS/Energy
saving trade-off and of a number of constraints further specifying
the control objectives. As a mathematical model for the plant, the
identified LPV model described in Section 3 will be used.

4.2 Optimal Performance Analysis
Let us consider the admission probability Pk and the effective

service time s f ,k as the control variables. The objective is to com-
pute the theoretical optimal performance of a controlled server. To
do so, we work under the following assumptions:

1. The request rate λk and the requests service time sk are con-
sidered as known variables over a given time horizon N.

2. The state variables xk of the system are assumed to accessi-
ble.

3. The LPV system model of the Web server dynamics is as-
sumed to be perfectly fitting the real Web server system.

4. The desired response time Tre f is considered as a known vari-
able over a given time horizon N.

Based on these assumptions, the idea is to minimise an appro-
priate performance index representing either the QoS or the Energy
saving objective while guaranteeing that the constraints on the sys-
tem dynamics, control variables and system performance are ful-
filled. Note that, as discussed in the previous Section, assumptions
1), 2) and 3) are only valid in an ideal setting, whereas assumption
4) is always fulfilled in practice.

To apply the proposed LPV-MPC approach, one has to define the
following:
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1. A cost function to be minimised, representing the trade-off
between the QoS and Energy saving objectives, see Section
4.3.

2. A set of dynamic equality constraints, denoted as Σ(x,λ ,P,s f ),
based on the LPV system model described in Section 3, see
Section 4.4.

3. A set of inequality constraints, denoted as Λ, aimed at guar-
anteeing that the control signals evolve within physical bounds
(input constraints) and that the tracking of the desired re-
sponse time Tre f is achieved (performance constraints), see
Section 4.5.

Once such quantities have been defined, the solution to the prob-
lem is obtained by solving a nonlinear constrained optimisation
problem at each sampling step. The general scheme of the pro-
posed approach is illustrated in Figure 5.

Figure 5: Optimal performance computation scheme.

4.3 Cost function definitions
To model the QoS/Energy saving trade-off, the following cost

function can be introduced

JN(α,k) =αJQoS(k)+(1−α)JES(k) =

=α
k+N−1

∑
k=k

∣

∣

∣

P −Pk

P −P

∣

∣

∣
+(1−α)

k+N−1

∑
k=k

∣

∣

∣

s f − s f ,k

s f − s f

∣

∣

∣
, (7)

where k ∈ N is the current time instant, k and N ∈ N are the
initial time instant and the prediction horizon length over which
the optimisation is carried out, respectively, Pk ∈ [P,P] (resp.
s f ,k ∈ [s f ,s f ]) represents the admission probability (resp. the ef-
fective service time) attributed to the requests, and α ∈ [0,1] is a
design parameter which allows to privilege either QoS or Energy
saving objectives. Recall that Pk and s f ,k are the control inputs to
be computed by the LPV-MPC controller.

The cost function JN(α,k) describes a convex combination of
the performance objectives. More specifically, note that:

• JN(0,k) = ∑
k+N−1
k=k

|
s f −s f ,k

s f −s f
| represents the case where the ob-

jective is to maximise the effective service time associated to
the requests, thus lowering the CPU frequency (Energy sav-
ing objective).

• JN(1,k) = ∑
k+N−1
k=k

P−Pk

P−P
| represents the case where the ob-

jective is to maximise the admission probability, hence to sat-
isfy the largest possible number of requests (QoS objective).

Note that the objective function is given in discrete time, where
the sampling time ∆t ∈ R+ is chosen according to the model de-
scription (here ∆t = 1 min, see Section 3).

4.4 Dynamic Equality Constraints
The dynamic equality constraints of the considered problem are

simply given by the LPV-IA model derived in Section 3. This re-
sults in a set of nonlinear dynamic constraints, denoted by Σ(x,λ ,P,s f ),
namely

xk+1 = Axk +
(

B0 +B1s f ,k +B2s f ,kλk

)

Pk

ξk = Cxk +
(

D0 +D1s f ,k +D2s f ,kλk

)

Pk

Tk = ξk + s f ,k,

(8)

where A∈Rn×n, {B0,B1,B2}∈Rn×nu , C ∈Rny×n and {D0,D1,D2}∈
Rny×nu are known matrices (here n = 2, nu = 1 and ny = 1). Fur-
ther, xk represents the state of the system, and the response time
Tk is the overall system output (see Equation (2)). Finally, λk and
sk, the latter needed to compute s f ,k, will be considered as known

variables (up to time k + N −1), even though, in practice, they are
generally unknown (or only partially known thanks to some work-
load estimators).

4.5 Input and Performance Inequality Con-
straints

Now, let us define Λ as the set describing input and performance
inequality constraints as follows

Λ :















0 ≤ ξk

P ≤ Pk ≤ P

s f ≤ s f ,k ≤ s f

−∆ ≤ Tk −Tre f ≤ ∆

(9)

where Tre f is the desired value of the response time and ∆ defines
the admissible tracking error Tk −Tre f . Both Tre f and ∆ are design
parameters. Note that, for simplicity, the desired value of the re-
sponse time Tre f has been defined as constant. In the same way, the
proposed approach can handle a time-varying set-point trajectory,
i.e., Tre f ,k, which may be useful to handle QoS requirements which
are functions, for example, of the time of day.

4.6 LPV-MPC Optimisation Problem
The considered constrained finite-time optimal control problem

to be solved at each sampling time k is defined as

J∗N(α,k) = min JN(α,k)

subject to



























xk+1
ξk

Tk



 = (8)

k ∈ [k,k +N −1].
Λ = (9)

This problem is iteratively solved using the YALMIP parser and
a standard nonlinear constrained solver via interior point meth-
ods [40, 41]. The Reader should keep in mind that the proposed
optimal performance computation is ideal, as perfect modeling, full
state and disturbances knowledge are assumed. Still, this approach
provides an upper bound on the achievable server performance and
can help both dynamic performance evaluation and controller de-
sign. As mentioned before, in fact, the ideal controller can be easily
adapted to be employed on the real system via state estimation and
assuming no knowledge of the disturbance (or complementing the
system with workload predictors).

In the following, the LPV-MPC controller is used to evaluate
the optimal performance of the considered application, based on
the dynamical model identified in Section 3, both via time domain
simulations and by analysing the performance index (7), which is
representative of the QoS/Energy saving trade-off.
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5. SIMULATION RESULTS
In this Section, simulations are carried out to analyse the influ-

ence of the parameter α in the cost function (7), i.e., the trade-off
between QoS and Energy saving. To perform the analysis we as-
sume that the system is subject to the requests rate shown in Figure
2.

Additionally, in order to quantitatively evaluate both QoS and
Energy saving objectives, the following performance measures will
be employed

PQoS =
Nf

∑
k=1

||Pk −P||2
||P −P||2

PES =
Nf

∑
k=1

||s f ,k − s f ||2
||s f − s f ||2

(10)

where Nf is the final simulation sample. As a consequence:

• PQoS = 1 (resp. 0) indicates that the maximum (resp. the
minimum) number of requests have been served with the de-
sired response time Tre f .

• PES = 1 (resp. 0) indicates that the power consumption of
the server have been minimised (resp. maximised), i.e., the
server CPU frequency has been lowered (resp. increased).

To perform the simulations, the following server configuration is
considered:

• The service time limits are chosen as [s f ,s f ] = [0.5sk,sk].
This choice illustrates the fact that when s f ,k = sk the server
runs at a low frequency, while, when s f ,k = 0.5sk the server
frequency must double, thus consuming more energy. Note
that these bounds can be viewed as a system parameter, as
they depends on the DVS settings of the server in use.

• The admission probability limits are chosen as [P,P] =
[0.5,1]. This configuration implies that the server system is
at least constrained to accept 50% of the incoming requests.
Note that this parameter is a design parameter since it de-
pends on the provider/customer QoS negotiation.

• The reference response time has been set to Tre f = 1 s and

the maximum tracking error to ∆ = 5
100 Tre f .

• The prediction horizon length has been set to N = 20. This
variable modifies the optimization problem by enlarging the
time interval over which the controller has knowledge of the
future disturbance evolution.

We now move to the analysis of the QoS/Energy trade-off. At
first, the performance measures (10) are evaluated for different val-
ues of α . Figure 6 shows the values of PQos and PES in (10) for
different values of α .

By inspecting Figure 6, the trade-off between QoS and energy
saving is apparent. When α is low (see also Equation (7)) energy
saving is a priority. Conversely, increasing α leads to higher energy
consumption but allows a larger number of requests to be admitted
in the system, thus maximising QoS. According to these results, the
following remarks are due.

• When α = 0, PES is maximised, while the PQoS is almost
null, which means that the admission probability is almost
always at its lower bound of P = 0.5.

• When α = 1, the PES is minimised, while PQoS is maximised,
which means that the admission probability is almost always
at its upper bound P = 1 and the effective service time is
low.

Figure 6: Plot of the performance measures PQos and PES as
functions of α for N = 20.

• The maximal and minimal values of the PES curve are not
reached. This is due to the fact that, according to the con-
straints described in the previous section, it is not possible for
the system to guarantee an admission probability of Pk =
P = 0.5 while maximising the effective service time s f ,k.
This should be possible by e.g., reducing the minimal admis-
sion probability or by increasing the desired response time
value Tre f . This highlights the flexibility of the proposed
approach, which allows to analyse the system performance
for different designer choices, thereby providing a valuable
means to evaluate different system settings.

• A reasonable trade-off between QoS and Energy saving is
achieved, in our setting, for α = 0.25.

Finally, to illustrate the proposed LPV-MPC controller perfor-
mance analysis on some representative simulation cases, the fol-
lowing examples are considered:

• Simulation 1: N = 20 and α = 0; Energy saving objective.

• Simulation 2: N = 20 and α = 0.25; Trade-off between En-
ergy saving and QoS.

The optimal control-based server performance is compared with
an open loop configuration (e.g., with no control) where both the
effective service time and the admission probability are fixed as
follows

• The service time is set to s f ,k = 0.75sk, which means that the
server works at a nominal CPU frequency and all requests
have a constant service time. This simplifying assumption
allows to better highlight the advantages of the closed-loop
solution with respect to the one in open loop, by evaluating
the latter in a quite favorable situation.

• The admission probability is set to Pk = P = 1, which is
equivalent to accepting 100% of the incoming requests.

The obtained results are shown in Figures 7 and 8. Specifically,
the top plots of Figures 7 and 8 both confirm that the constraint
on the response time Tk is always fulfilled when the system is con-
trolled. Moreover, these results also show that the uncontrolled
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Figure 7: Simulation study 1. Top plot: response time Tk. Mid-
dle plot: effective service time, s f ,k. Bottom plot: admission
probability Pk. Uncontrolled server (dashed line), Nonlinear
optimal LPV-MPC (solid line).

server provides very poor performance when the number of re-
quests increases, leading to poor QoS. This confirms the need of
using a controller to enhance the system performance.

Further, the middle and bottom plot of Figures 7 and 8 prove that
input and performance constraints are satisfied. Additionally, they
show how the admission probability and effective service time are
adjusted to guarantee a good level of both QoS and energy saving.
More specifically:

• Figure 7 (Simulation 1, Energy saving objective) shows that,
over the whole experiment, the admission probability Pk

(bottom plot) is kept constant at its lower bound, whilst s f ,k
(middle plot) is modulated to maximise energy saving (con-
sistently with the settings of the performed simulation test).
As a matter of fact, over the time interval in which λk is low
(see top plot), the effective service time is increased, mean-
ing that the CPU frequency is lowered, thus yielding energy
saving.

• Figure 8 (Simulation 2, Qos/Energy saving trade-off objec-
tive) shows that, when the number of requests is large, i.e.,
between 9 and 16 h, the admission probability Pk (bottom
plot) is reduced to allow obtaining an effective service time
s f ,k as large as possible (middle plot), in order to save en-
ergy. Conversely, over the time interval in which λk is low
the effective service time is increased, meaning that the CPU
frequency is lowered, thus resulting in reduced energy con-
sumption and the admission probability Pk is at its upper
bound to ensure good QoS. Indeed, since in this simulation

Figure 8: Simulation study 2. Top plot: response time Tk. Mid-
dle plot: s f ,k, effective service time. Bottom plot: Pk, admis-
sion probability. Uncontrolled server (dashed line), Nonlinear
optimal MPC (solid line).

the aim was to ensure a trade-off between QoS and energy
saving, this behaviour is consistent with the objectives.

6. CONCLUDING REMARKS
This paper presented a control theoretic framework for the dy-

namic analysis of QoS/Energy trade-offs in Web service systems.
Specifically, the contribution is twofold: first, an effective identifi-
cation approach for modeling admission control dynamics has been
presented. Secondly, a performance analysis method to evaluate the
achievable server performance has been proposed using a numeri-
cal optimization approach involving the estimated LPV dynamical
model and an iterative optimization procedure. This problem for-
mulation leads to an optimal closed-loop performance analysis il-
lustrating both the QoS/Energy saving trade-off and the interest in
controlling both the service time and the admission rate to improve
performance while guaranteeing a given desired service response
time. Further, the analysis of such an optimal control solution can
be very useful to design an actual LPV-MPC controller, as it al-
lows to analyse its performance against such a benchmark so as to
quantitatively evaluate its degree of sub-optimality at design time.

Future work will address the design of real-time LPV-MPC con-
trollers by complementing the control system with state estimation
and workload prediction capabilities.
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