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Abstract—Resource under-utilization in cloud computing sys-
tems is widespread due to workload fluctuations and drives up
the cost of cloud computing service. Offering service using slack
resources in an opportunistic way improves the utilization of
resources and the economics of cloud service providers. But
Opportunistic service class comes with virtually no service level
objectives (SLO) and thus is of limited use. In a recent study, a
new Economy class was introduced to provide long-term SLOs
using reclaimed cloud computing resources. Analysis based on the
workload collected on six production cloud computing clusters at
Google demonstrated the potential of the Economy class. This
paper presents an analytic study on the optimal pricing and
capacity planning of this new Economy class. We show that
depending on the terms of the service level agreements and the
characteristics of the cloud computing workloads, a cloud service
provider may either choose a penalty averse or penalty preference
strategy when allocating reclaimed computing resources to the
Economy class cloud computing service. We also derive conditions
under which the new Economy class will be profitable.

I. INTRODUCTION

Infrastructure-as-a-Service (IaaS) cloud provides users with
affordable and elastic computing service. Essential to this
affordability and elasticity are virtualization technology and
statistical multiplexing. Virtualization technology enables the
cloud service operators to provision virtual machines (VMs)
instead of physical servers to host different applications. Each
VM is allocated a certain amount of resources and multiple
VMs can be placed on the same physical server. Statistical
multiplexing exploits the reduction of the variability of ag-
gregated workload fluctuations and allows the cloud operator
to provision physical resources that are less than users’ total
requests for resources. Workload statistics collected from six
Google production cloud computing clusters from December
2012 to November 2013 help make this point [1].

The CPU ceiling utilization, which is defined as the ratio of
the user’s actually requested resource limits to the maximum
amount of resources that the cloud provider grants, varies
significantly at user level, with many users having a ceiling
utilization between 30% and 63%. But for 38% users, the CPU
ceiling utilization is no more than 1%, while the CPU ceiling
utilization exceeds 99% for 15% of the users. In contrast, the
CPU ceiling utilization at the cluster level, which is defined
as the sum of the total requested CPU resources over the
sum of all ceilings, was much more stable, varying between
55% and 75% most of the time. Only less than 1% workload

measurements show a cluster level CPU ceiling utilization
lower than 1%, or higher than 81% [1]. Because of this
decrease in workload variability, it is much easier for cloud
operators to use statistical multiplexing and use a server to
host VMs with total allocated capacity exceeding the physical
capacity of the server [2], [3].

While statistical multiplexing allows the cloud operator to
increase resource utilization and thus its profitability, it also
leads to service unavailability when all or a large proportion
of users’ workloads peak at the same time. When this happens,
some VMs would not be able to access resources allocated to
them. The more aggressively a cloud operator applies statistical
multiplexing, the more frequently service unavailability would
occur. To provide a long-term, e.g., monthly, availability at a
level of 99.95% or 99%, as specified in Amazon EC2 service
level agreement (SLA) [4], cloud operators have to maintain
enough physical capacity and limit the extent of statistical
multiplexing and its economic benefits. Consequently, data
center resource utilization rates are typically quite low. For
example, in the Google cloud computing clusters studied in
[1], total resource slack accounts for about 57% of the cloud
computing cluster capacity. This represents a significant waste
of resources and hurts the profitability of cloud operators.

One way to increase resource utilization in data centers
is to offer unused resources to users at a much lower price
but in an opportunistic way [5]. Such opportunistic cloud
service would virtually have no SLO as the resources could
be preempted at any moment to be used for other VMs with
SLOs. One such example of opportunistic cloud service is
Amazon EC2 Spot Instances. Amazon EC2 Spot Instances ask
users to specify the maximum hourly price that the user is
willing to pay for running VMs [6]. Amazon EC2 specifies
a current Spot Price, which changes dynamically to reflect
supply and demand. Whenever the user’s bid price exceeds
the current Spot Price, the user’s VM instances would run;
whenever the Spot Price exceeds the user’s maximum rate,
the VMs would be shut down. Spot instances may provide the
user with tremendous cost savings, which is on average 86% on
Amazon EC2 recently [6]. However, there is clearly no Service
Level Objectives (SLO) for such opportunistic cloud service.
This limits this type of cloud service to only computing tasks
that last a very short amount of time or are very flexible in
response time and can tolerate frequent interruptions.
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In [1], a new type of cloud service class, referred to as the
Economy class, was introduced to provide long-term SLOs
using reclaimed cloud computing resources. The Economy
cloud computing service class, which we will simply refer
to as the Economy class for convenience hereafter, uses
reclaimed resources to provide long-term SLOs that are only
slightly weaker than those of the On-demand/Reserved cloud
computing service classes, e.g., 98.9% vs. 99.95% for a six-
month period. But the price of the Economy class will be
lower than that of the On-demand/Reserved class. When there
are SLO violations, cloud service providers pay a financial
penalty to users as stipulated in the SLA of the Economy
class. The rest of the reclaimed resources are used to offer the
Opportunistic class service at the lowest price with virtually
no SLO.

By constructing prediction confidence intervals for the
total resource slack in a future six-month time period, the
authors in [1] studied via a sensitivity analysis the trade-offs
between aggressively and conservatively using reclaimed cloud
computing resources for the new Economy class. It was shown
using real world Google production cloud computing cluster
data that it was possible to offer the Economy class with
reasonably high six-month SLOs (e.g., 98.9%). This makes
the Economy class service attractive for applications that can
tolerate slightly worse availability SLOs, such as web indexing
and video transcoding [1]. The authors experimented with
different prices for the Economy class and illustrated that
using reclaimed resources to provide the new Economy class
cloud service can significantly increase data center resource
utilization and the profitability of the cloud operator [1].

In this paper, we build on the work of [1] and present
a mathematical and economic analysis of the new Economy
cloud computing service class. Our goal is to answer three
questions that are critical to the success of the Economy class
as a new type of cloud computing service: capacity planning,
pricing, and market profitability.

The rest of the paper is organized as follows. In Section II,
we review related work on resource management in cloud
computing systems. We then describe the problem setting
in Section III and explicitly list the notations that we will
later use in Section IV to develop a mathematical model.
We present our model and solutions to capacity planning and
pricing in Section IV, followed by results on the profitability
of the Economy class in Section V. We conclude the paper in
Section VI.

II. RELATED WORK

Resource management in data centers have been exten-
sively studied with different objectives. Many studies try
to improve the energy efficiency with various virtualization
techniques. Methods such as VM consolidation [7]–[12], VM
migration [13], [14], and dynamic VM provisioning [15], [16]
aim to use as few servers as possible to host VMs. Such a
strategy is supported by past studies that show the fixed part
of energy consumption once the server is on dominates the
part of the energy consumption that varies according to the
workloads [17], [18]. It has been shown that when properly
managed, moving severs offline or putting them to a sleep
state can reduce energy consumption cost without sacrificing

SLOs [19]–[21]. There are also studies that examine other cost
factors in data center operations [22], [23]. All these earlier
works contribute to improving the profitability of a cloud
operator by focusing on reducing data center operations cost.
Compared to these studies, this paper focuses on analyzing
how the additional revenue generated by the new Economy
class can help improve the profitability of IaaS cloud service.

Amazon EC2 Spot Instances provides an industrial product
that makes use of reclaimed cloud computing resources to
improve resource utilization and revenue [6]. Because Spot
instances are shut down when the user’s bid price is lower
than the current Spot Price, which is specified by Amazon EC2
and beyond the control of the user, there is basically no SLO
for Spot instances. To gain better service availability, users
can increase bid prices but that diminishes the cost savings
from using Spot Instances and still provides no SLOs. In
the literature, using reclaimed resources in an opportunistic
way was described in [5], where VMs running on reclaimed
resources can be preempted and thus no SLO is offered
essentially. In [1], the Economy class with long-term SLOs
using reclaimed cloud computing resources was introduced and
this work builds on [1]. We provide a mathematical model to
address key design questions related to the Economy class.

Using reclaimed resources requires one to predict the
fluctuations of workloads in the data centers. In [24]–[26],
time series prediction models are proposed to generate point
forecast values for data center workloads. The forecast time
windows are typically quite small, e.g., a few hours or at most
days. In [1], since the Economy class is envisioned to provide
long-term, e.g., six-month SLOs, time series techniques such
as ARIMA and ETS were employed to forecast long-term
slack resource availability. To help study the tradeoffs between
aggressive and conservative capacity planning strategies for the
Economy class, prediction intervals were constructed using
techniques in [27]. There have also been studies focusing
on workload predictions for specific types of tasks. In [28]–
[30], forecasting techniques for video streaming demands were
proposed and evaluated.

As we shall see in Section IV, our model requires knowl-
edge of workload distributions. Therefore, point forecasts are
not useful in our context. However, the prediction distributions
described in [27], combined with the analysis reported in
[1], provide the tools to generate the required predictions for
our model. But such discussion is beyond the scope of this
paper, which focuses on the development of the mathematical
model and solution to the pricing and capacity planning for
the Economy class.

Also related is the work on the analysis of the workloads
and resource consumption patterns of different tasks. Studies
using Google cloud cluster data traces provide detailed infor-
mation on real world workloads and tasks. In [31], [32], the
authors classified computing tasks based on the durations and
resource consumption patterns. In [33], the heterogeneous and
dynamic nature of cloud resource requests was revealed using
Google cluster data traces, showing substantial variations in
requested resource configurations, e.g., different ratios of pro-
cessors, memory, and storage, as well as variations in physical
server configurations. The heterogeneity in resource requests
and physical server configurations leads to both challenges and
opportunities in research on using reclaimed cloud computing
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resources to provide long-term SLOs via the Economy class.
However, we will pursue such a study in the future and focus
on a pre-defined resource bundle in the current work, as did
in [1].

III. PROBLEM DESCRIPTIONS AND NOTATIONS

We consider a cloud computing resources management
problem in an IaaS cloud service provider. In an IaaS cloud,
users send requests for VMs to cloud service providers to
meet their computing demands. Cloud service providers offer
different configurations designed to satisfy the different de-
mands of users. For instance, Amazon EC2 provides General
Purpose (T2, M3), Compute Optimized (C3, C4), Memory
Optimized (R3), GPU (G2), and Storage Optimized (I2, D2)
configurations [34]. In this paper, we make the simplifying
assumption that there is only one VM configuration offered,
as did in [1].

Users can request up to a maximum number of VM
instances, which is referred to as the ceiling. For example,
Amazon EC2 has a default ceiling of 20 instances for On-
Demand and Reserved Instances and 5 instances for Spot
Instances. Users can send requests to increase their ceilings.
When a user makes a VM request and the total requested
amount of resources is lower than the users’s ceiling, the IaaS
cloud service provider accepts this request, if there is enough
capacity remaining, and allocates resources to host the VM(s).
A cloud operator may also reserve capacity in anticipation of
new VM requests from a user within the users’ ceiling.

An IaaS cloud service provider often offers several service
classes to users with different SLOs and prices to satisfy the
diverse demand for service quality and cost among users. Take
Amazon EC2 for instance. On-Demand Instances and Reserved
Instances come with high SLOs. Amazon promises to make
EC2 available with a monthly uptime percentage of at least
99.95% [4]. If there are SLO violations, Amazon will apply
a service credit to affected users’ monthly bills, i.e., when
the monthly uptime percentage is below 99.0%, there will
be a 30% service credit. The main difference between EC2
On-Demand Instances and Reserved Instances is the Reserved
Instances require long-term commitments but give users a
significant discount (up to 75%) compared to On-Demand
Instance pricing [34]. In this paper, we consider both Reserved
service class and On-Demand service class as one service class
that provides high quality SLOs, and will simply refer to it
as the Reserved service class. The IaaS service may preempt
resources allocated to other service classes when necessary to
avoid SLO violations for Reserved service class users.

The IaaS cloud operator’s resources will not be fully uti-
lized by the Reserved class; otherwise, there must be frequent
SLO violations. In [1], unused resources are classified into
three categories:

• Reservation slack: Reservation slack includes capacity
that has not been reserved and is thus free to be used
to host VM requests from other service classes.

• Allocation slack: Allocation slack refers to capacity
that has been reserved, i.e., in anticipation of future
VM requests from the user, but has not been allocated
to specific running VMs. Allocation slack thus repre-
sents capacity that can be easily reclaimed and used

for other service classes, but is likely to be preempted
and thus becomes unavailable to the Economy or
Opportunistic class service.

• Usage slack: Usage slack is a result of the stochastic
fluctuations in resource consumptions among running
VMs. For example, the users’ VM may be idling and
thus does not consume any physical resource in the
intermission between two computing tasks. This type
of slack is the most difficult to reclaim because not
only it is more likely to be requested again by the
running VM, but it requires special techniques to make
such resources available to other VMs, e.g., balloon
drivers [35].

Our focus is on how the IaaS cloud service provider can
make use of these slack resources to increase resource utiliza-
tion and profitability. We do not study the technology required
to reclaim different types of resource slacks and thus treat them
as the same for our purpose. We assume that the IaaS cloud
service provider currently offers an opportunistic service class
using reclaimed resources but there is no availability SLO for
the opportunistic service class. The lack of SLOs makes this
service class not suitable for many applications.

We want to study the impact of adding a new Economy
service class as explained in [1]. The new Economy class
also uses reclaimed resources but come with strong long-term
SLOs, making it an attractive choice to users that can accept
long-term SLOs slightly weaker than those of the Reserved
class, e.g., 98.9% vs. 99.95% but want a price lower than
that of the Reserved service class. Our analysis attempts to
address three critical questions related to the success of the
new Economy service class:

• What is the optimal proportion of reclaimed resources
to allocate to the new Economy class?

• What is the optimal price for the Economy class?

• Under what conditions will offering the Economy
class increase the profit of the IaaS cloud service
provider?

We assume that the only SLO specified in the SLA is
VM availability. For example, Amazon EC2 SLA defines
“Unavailability” as “when all of your running instances have
no external connectivity” and SLO violation is defined as a
monthly unavailability less than 99.95% for On-Demand and
Reserved instances.

Similar to [1], we make the simplifying assumption that
there is enough demand to consume all resources. We further
assume that none of the SLO violation, if there is any SLO vi-
olation at all, for the Reserved class is caused by the Economy
or Opportunistic classes. This is a reasonable assumption as
the Iaas cloud service provider can avoid such SLO violations
by preempting resources from the Economy and Opportunistic
class instances. Because of this assumption, it is not necessary
to model the penalty for Reserved class SLO violations and we
will assume that there is no such penalty incurred for notational
simplicity. Before we proceed with our mathematical model
and analysis, we first list the notations used in the rest of the
paper in the following. We begin with the list of parameters
that are considered known and fixed in the following. We
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follow the same structure of SLA as in [1] for the Economy
class, which specifies that if there is an SLO violation in a
billing period, the IaaS cloud service provider incurs a penalty
as a percentage of the user’s service bill in that billing period.

• po: the price per unit of allocated resource for the
Opportunistic class;

• Ar: the availability SLO of the Reserved class, e.g.,
99.95%;

• Ae: the availability SLO of the Economic class, e.g.,
98.9%;

• X: the penalty paid to the Economy class user if the
availability SLO is violated, as a discount applied to
the Economy class user’s service bill;

• Vr: marginal valuation of the Reserved class service
with the availability SLO Ar;

• Ve: marginal valuation of the Economy class service
with the availability SLO Ae;

• u ∈ [0, 1]: the resource usage rate for both the
Reserved class and the Economic class during the time
period under consideration;

Below is then a list of decision variables that examines the
pricing of the Reserved class and the Economy class, and the
capacity allocation decision for the Economy class:

• pr: the price per unit of allocated resource for the
Reserved class;

• pe: the price per unit of allocated resource for the
Economic class;

• α: the proportion of the average amount of reclaimed
resources allocated to the Economy class.

The parameters Ae and X are SLA parameters as deter-
mined by the IaaS cloud service provider. The parameters Vr

and Ve in practice will be estimated through marketing research
conducted on the targeted IaaS cloud service user segments.
Following standard price in market segmentation analysis [36],
we assume the customer segments are homogeneous and
thus Vr and Ve are constant for all customers belonging to
the targeted segments. The valuations of the Reserved and
Economy cloud service classes are then given by VrAr and
VeAe [36]. The price of the Opportunistic class po and the
availability SLO for the Reserved class Ar are also assumed
to be given prior to the analysis, i.e., according to the cloud
service provider’s previous marketing research.

We denote the mean of u by μu. We assume that u has a
symmetric probability density function f(·) and a cumulative
distribution function F (·). Notice that the widely used normal
distribution in time series model [27] has a symmetric proba-
bility density function. We further define the mean of resource
slack ū = 1− u as μū. Notice that μū is the average amount
of reclaimed resources in the data center. In practice, f(·) and
F (·) can be obtained from future workload forecast via time
series methods [27].

We normalize both the total capacity of the data center and
the time duration under consideration to one unit for simplicity.
Similar to [1], we will ignore data center operations cost for

two reasons. First, it is difficult to accurately calculate a data
center operator’s cost. Second, there is no evidence to support
the conjecture that operations cost would change for different
SLOs and thus the operations cost for the three different
service classes may be assumed to be about the same. We
can thus focus on maximizing the total revenue generated by
the different service classes for the Iaas cloud service provider.
We now move on to present our models and analysis in the
next section.

IV. MODELS AND SOLUTIONS

We first model the IaaS cloud service provider’s revenue
when there are only Reserved class and Opportunistic class.
The problem to optimize the revenue can be formulated as
follows:

max
pr

πro = pr + po
∫ 1

0
(1− u)f(u)du,

subject to VrAr − pr ≥ 0,
pr ≥ po ≥ 0.

(1)

In the objective function in (1), the first term is the
revenue from the Reserved class. Recall that we normalize
capacity and time duration to one unit. The second term is the
average revenue from offering the Opportunistic class using
the reclaimed resources, which depends on the probability
distribution function of the Reserve class resource usage. The
second constraint specifies that the Reserved class is priced
higher than the Opportunistic class. The first constraint is
known as customer self-selection constraint in the economics
and marketing science literature [36]. The meaning of the
constraint is the utility of the service to the targeted customer
segment, as measured by VrAr, must be larger than or equal
to the perceived value of the service Ar.

It is straightforward to derive that the optimal pr is the
highest price supported by the Reserved class users’ valuation
of the service, which is shown as follows:

p∗r = VrAr. (2)

Therefore, the optimal total revenue of the service provider
can be calculated as

π∗ro = VrAr + poμū. (3)

Notice that resource consumption by the Reserved class is
u as we normalize total system capacity to one unit. Recall
the mean resource slack is μū and the Economy class is
thus allocated αμū resources and utilize αμū of the allocated
resource slack. Therefore, û = 1 − (1 + αμū)u gives the
amount of reclaimed resources left over for the Opportunistic
class after offering the Economy class cloud service using
reclaimed resources. We now consider the problem of max-
imizing the revenue of an IaaS cloud service provider offering
the Reserved, Economy, and Opportunistic service classes. The
optimization problem is formulated as follows:

max
α,pr,pe

πreo = pr + po
∫ 1

1+αμū
0 ûf(u)du

+peαμū (1−XI{Pr [û ≥ 0] < Ae})
subject to VrAr − pr ≥ 0

VeAe − pe ≥ 0
VrAr − pr ≥ VrAe − pe
VeAe − pe ≥ VeAr − pr
pr ≥ pe ≥ po ≥ 0

(4)
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In the new formulation (4), the first term is still the revenue
from the Reserved class. The second term is now the revenue
from the Opportunistic class using the amount of reclaimed
resources left over from the Reserved and Economy class
instances usage. The third term represents the revenue from the
Economy class. Notice that it includes an indicator function
that applies a financial penalty when the IaaS cloud service
provider is not able to avoid Economy class SLO violations
on average:

I{Pr[û ≥ 0] < Ae} =
{

1, if Pr[û ≥ 0] < Ae;
0, if Pr[û ≥ 0] ≥ Ae.

In (4), the last constraint again ensures the right pricing
hierarchy, with the Reserved class priced the highest, the
Economy class in the middle, and the Opportunistic class the
lowest priced. Similar to the constraints in the previous model,
the perceived utility of the service designed for the targeted
user segment must exceed the price for the service, which
is indicated by the first two constraints for the Reserved and
Economy classes.

The other two constraints do not exist in the previous mod-
el. These constraints are introduced to enforce self selection
of services by targeted user segments, as was originally intro-
duced in the literature of customer segmentation [36]. In this
approach, it is assumed that the features of a product/service
are designed such that only the targeted customer segment
finds the product/service attractive. In our context, it means
that the availability SLOs Ar and Ae, and the lack of SLO for
the Opportunistic class, are distinct enough to target different
user segments. However, the targeted user segments also need
to perceive their own service as fairly priced.

For example, in these constraints, VrAr − pr measures the
net utility that a Reserved class user perceives from using
the Reserved service class. When the Reserved class user
checks the SLA terms of the Economy price, the user perceives
a net utility of VrAe − pe. While the Reserved class user
would not choose the Economy class because of the user’s
“hard” requirement of higher availability SLO, the perceived
net utility of the Economy class cloud service should not be
higher than that of the Reserved class cloud service. Otherwise,
Reserved class users would feel the Reserved class is being
unfairly priced and thus would lead to a failure of the market
segmentation approach and the business model.

Similar to model (1), we can obtain the optimal pe and pr,
which are shown as follows:

p∗e = VeAe, (5)

and

p∗r = VrAr − (Vr − Ve)Ae. (6)

Not surprisingly, p∗e and p∗r call for the highest prices
that satisfy all the user self-selection constraints and pricing
hierarchy to maximize the IaaS service provider’s revenue. We
can then plug in p∗e and p∗r to optimize the objective function
only:

max
α

πreo = VrAr − (Vr − Ve)Ae + po
∫ 1

1+αμū
0 ûf(u)du

+VeAeαμū (1−XI{Pr [û ≥ 0] < Ae})

Further analysis to obtain the optimal capacity planning
strategy α requires differentiating two cases corresponding to
how aggressively or conservatively the IaaS service provider
allocates reclaimed resources to the Economy class and trades
off additional revenue with financial penalty. We separate
the discussion into a penalty averse strategy and a penalty
preference strategy.

A. Penalty-averse Strategy

If Pr[û ≥ 0] ≥ Ae, it means that the cloud service provider
is able to meet the availability SLO on average and avoid
paying for the Economy class SLO violation. This is done by
ensuring there is enough spare capacity after allocating α ×
100% of the average amount of reclaimed resources to the
Economy class to cushion resource usage fluctuations. Notice
that this is a probabilistic calculation and does not mean that
the Economy class availability SLO would never be violated
for any user during a billing period. Instead, it means that on
average the IaaS cloud service provider would be able to fulfill
the SLO.

In this case, the problem can be further simplified and the
optimal α can be calculated directly by solving Pr[1 − (1 +
αμū)u ≥ 0] = Ae, which leads to:

α∗1 =
1

F−1(Ae)μū
− 1

μū
. (7)

We refer to such a capacity allocation strategy for the Economy
class as penalty-averse, as the IaaS service provider chooses
to make α not too big to make sure that on average no
financial penalty would be paid. Notice that α∗1 is the largest
such α to also maximize usage of the reclaimed resources by
the Economy class and thus maximize the revenue generated
by the Economy class, which is higher than that of the
Opportunistic class per unit of resources consumed. It is worth
pointing out that while α∗1 appears not to explicitly depend on
important parameters such as Ve and X , as later presented
in (13), whether the cloud service provider should adopt a
penalty-averse strategy (i.e., setting α = α∗1) or penalty-
preference strategy (i.e., setting α = α∗2) depend on these
parameters.

B. Penalty-preference Strategy

If Pr[û ≥ 0] ≤ Ae, which requires α ≥ α∗1, then on
average there is not enough spare capacity after allocating
α × 100% of the average amount of reclaimed resources to
the Economy class to cushion resource usage fluctuations. As
a result, the cloud service provider will pay a financial penalty
to the Economy class users for SLO violation. Again, we want
to emphasize that this does not mean that the cloud service
provider would always pay financial penalty to a user during
any billing period. It is in a probabilistic sense that the cloud
service provider would pay financial penalty.

We now take the first order derivative of πreo with respect
to α, which is given as follows:

dπreo

dα
= peμū(1−X)− poμū

∫ 1
1+αμū

0

uf(u)du, (8)
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and the second order derivative of πreo with respect to α is
given as follows:

d2πreo

dα2
=

poμ
2
ū

(1 + αμū)3
f

(
1

1 + αμū

)
> 0. (9)

If the first order derivative (8) is always negative, then the
revenue decreases as α increases beyond α∗1. Therefore, the
optimal α in this case is also α∗1: the penalty averse strategy.

If the first order derivative (8) is not always negative, there
are then only two possibilities: either (8) is always positive, or
it is first negative, then changes its sign, becomes positive, and
remains positive. This is because the second order derivative
(9) is always positive and thus the first order derivative is
monotonically increasing. In this case, the optimal α will be
1 and we denote it as

α∗2 = 1. (10)

We refer to this as the penalty-preference capacity planning
strategy for the Economy class.

C. The Optimal Capacity Planning Strategy

To determine whether the penalty-averse or the penalty-
preference capacity planning strategy should be adopted for
the Economy class, we need to compare the total revenue
generated using α = α∗1 and α = α∗2.

Under the penalty-averse strategy, the cloud service
provider allocates α = α∗1 percentage of reclaimed resources to
the Economy class and on average the cloud service provider
would not pay financial penalty for the Economy class SLO
violation. We thus obtain the average total revenue, denoted
as π∗reo,1, as follows:

π∗reo,1 = VrAr + VeAe

(
1

F−1(Ae)
− 1

)
+ po

×
(
Ae − 1

F−1(Ae)

∫ F−1(Ae)

0

uf(u)du

)
(11)

Under the penalty-preference strategy, the cloud service
provider allocates all reclaimed resources to the Economy
class, i.e., α = α∗2 = 1, and on average the cloud service
provider would pay financial penalty for the Economy class
SLO violation. The average total revenue in this case, denoted
as π∗reo,2, is as follows:

π∗reo,2 = VrAr − VeAe

(
1 + μū − Vr

Ve
− μūX

)

−po(1 + μū)

∫ 1
1+μū

0

uf(u)du

+poF

(
1

1 + μū

)
. (12)

Therefore, when π∗reo,1 ≥ π∗reo,2, the optimal strategy is
penalty-averse with α = α∗1. Rearranging terms, this leads to

Fig. 1. The impact of the Economy class SLA parameters (Ae, X) on the
Optimal Capacity Planning Strategy for the Economy Class

the following condition:

VeAe

(
1

F−1(Ae)
+ μūX − 1− μū

)

> po

{
F

(
1

1 + μū

)
+

E
[
u|0 ≤ u ≤ F−1(Ae)

]
F−1(Ae)

−Ae

−(1 + μū)E

[
u|0 ≤ u ≤ 1

1 + μū

]}
. (13)

Notice that (13) is a complicated expression involving
multiple parameters. But we see that the valuation Vr and
availability SLO Ar for the Reserve class do not affect the
capacity allocation strategy for the Economy class. To gain
insights into the effects of these parameters on the cloud
service provider’s optimal Economy class capacity planning
strategy, we consider a specific case by setting the distribution
of resource usage rate u to a normal distribution with a mean
of 0.5 and a standard deviation of 0.1, ∼ N(0.5, 0.12), and
letting Ve = 10 and po = 1. We then vary the parameters
of the SLA for the Economy class Ae and X , and plot the
boundary between the penalty-averse and penalty-preference
strategies. The result is shown in Figure 1.

In Figure 1, the horizontal axis is X , the financial penalty
for the Economy class availability SLO violation, as a discount
of the service bill. The range of X is from 0 to 0.7 and
covers the common values used. For example, Amazon EC2
specifies a discount of 30% of the user’s monthly bill, i.e.,
X = 0.3, when the monthly availability of On-Demand or
Reserved Instances is lower than 99%. The left end of the
horizontal axis thus represents very light financial penalty for
the Economy class SLO violations.

The vertical axis in Figure 1 is Ae. We plot reasonable
ranges of Ae for the Economy class to be useful to users, from
95% to 100%. So the upper end of the vertical axis represents
higher availability SLO offered by the cloud service provider
for the Economy class.
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The A2 area in Figure 1 corresponds to ranges of Ae and X
values that lead to a penalty-averse strategy; else, the optimal
α will be 1, corresponding to a penalty-preference strategy
in the A1 area. From Figure 1, we see that for given IaaS
service market conditions in terms of the valuation of the
Economy class Ve, the price of the Opportunistic class po,
and the workload characteristics of the data center in terms of
the distribution function of the resource usage rate u, the SLA
parameters for the Economy class affect the capacity planning
strategy in the following ways:

• For a given Economy class availability SLO Ae, when
the penalty for SLO violation is sufficiently large,
the cloud service provider will adopt a penalty-averse
capacity allocation strategy to maximally offer the
Economy class service without incurring the SLO
violation penalty on average.

• For a given Economy class SLO violation penalty X ,
when the availability SLO Ae is high enough, the
cloud service provider will adopt a penalty-preference
capacity allocation strategy to maximally offer the
Economy class service while incurring the SLO vi-
olation penalty on average.

We see that these observations are very reasonable. When
the SLA sets the SLO too high, the price of a conservative
Economy class capacity allocation strategy would be too high
and decrease the economic benefit of the Economy class. In
that case, it is better off for the cloud service provider to
pay the penalty while encouraging maximum usage of the
Economy class service. On the other side, if the penalty is too
small, the additional revenue from the Economy class would
also encourage the cloud service provider to prefer paying
for SLO violation penalty to maximally realizing the revenue
benefit of the Economy class.

While these qualitative observations are quite intuitive, the
threshold itself is quite complex from the conditions specified
by (13). This demonstrates the value of our model and analysis.
We next proceed to analyze the actual revenue impact of
adding the Economy class to the hierarchy of service classes
offered by a cloud service provider.

V. PROFITABILITY ANALYSIS

In the previous section, we derive the optimal Economy
class capacity planning strategy and pricing. However, it does
not guarantee that adding this Economy class to the offering
of the cloud service provider would lead to revenue increase.
This is because the addition of the Economy class takes at least
some reclaimed resources away from the Opportunistic class,
which generates revenue without the need to pay any financial
penalty for SLO violations. In this section, we compare the
optimal revenue obtained for model (1) without the Economy
class against the optimal revenue obtained for model (4) with
the Economy class to derive conditions that guarantee the
profitability of the Economy class.

First notice that the optimal total revenue of the service
provider when only offering the Reserved and Opportunistic
service classes can be rewritten as

π∗ro = VrAr + po

(
1−

∫ 1

0

uf(u)du

)
. (14)
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When the cloud service provider also offers the Economy
class, we first consider the penalty-averse strategy. In that case,
we have Pr[1 − (1 + αμū)u ≥ 0] ≥ Ae and the optimal total
revenue is π∗reo,1 as given in (11). We thus have the revenue
difference π∗reo,1 − π∗ro after adding the Economy class using
a penalty-averse strategy as

π∗reo,1 − π∗ro = VeAe

(
1

F−1(Ae)
− 1

)

−po
[
1 +

1

F−1(Ae)
μ̃u −Ae − μu

]
,

where μ̃u =
∫ F−1(Ae)

0
uf(u)du ∈ (0, μu). Therefore, if

p∗e = VeAe >

μ̃u

F−1(Ae)
+ 1−Ae − μu

1
F−1(Ae)

− 1
po, (15)

then adding the Economy class will lead to a increase in total
revenue. Let the distribution of resource usage rate u follow a
normal distribution with a mean of 0.5 and a standard deviation
of 0.1, ∼ N(0.5, 0.12), and let V e = 10, and po = 1. In this
case, Ae can vary from 0.767 to 0.977 according to Pr[1−(1+
αμū)u ≥ 0] ≥ Ae and (15). We then plot Ae against π∗reo,1−
π∗ro in Figure 2, which shows that the revenue difference is
monotonically decreasing in Ae.

In the penalty-preference case when Pr[1− (1 + αμū)u ≥
0] < Ae, the optimal α is equal to 1 and its corresponding
optimal total revenue is π∗reo,1 as given in (12). Now the
revenue change after adding the Economy model π∗reo,2− π∗ro
is given by

π∗reo,2 − π∗ro = VeAe

(
1 + μū − Vr

Ve
− μūX

)

−po
[
(1 + μū)ûu + μū − F

(
1

1 + μū

)]
,
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where μ̂u =
∫ 1

1+μū
0 uf(u)du ∈ (0, μu). Therefore, if

p∗e = VeAe >
(1 + μū)ûu + μū − F

(
1

1+μū

)
1 + μū − Vr

Ve
− μūX

po, (16)

then the total revenue with the addition of the Economy class is
larger than without the Economy class. Besides the parameters
set for plotting Figure 3, we set Vr = 12 and X = 0.3
additionally in this case, and Ae can vary from 0.953 to 1
according to Pr[1− (1 +αμū)u < 0] ≥ Ae and (16). We then
plot Ae against π∗reo,2−π∗ro in Figure 3, which shows that the
revenue difference is monotonically increasing in Ae.

The conditions given in (15) and (16) demonstrate the
competition between the Economy class and the Opportunistic
class. In order for the Economy service class to generate
increase in total revenue, the valuation of this service class
must be high enough to support a price p∗e for the Economy
class service that is higher than the price of the Opportunistic
class multiplied by a factor that depends on various parameters
affecting the Economy class.

VI. CONCLUSION

In this paper, we present a mathematical and economic
model to analyze the introduction of a new Economy IaaS
cloud service class using reclaimed cloud computing resources
as proposed in [1]. Current practice of offering Opportunistic
service class using reclaimed resources does not provide any
SLO for the service. In contrast, the Economy class is able
to offer long-term availability SLOs and makes it an attractive
service class for users who need good long-term SLOs for
their applications but also needs to reduce the cost they pay
for cloud computing service.

By analyzing two revenue maximization models subject to
user self-selection constraints, we are able to show that the
optimal capacity allocation strategy for the Economy class
is either penalty-averse or penalty-preference under an SLA
structure used in [1]. While the threshold of the Economy

class SLA parameters between these two strategies is far from
trivial, we are able to clearly observe the qualitative impact
of the Economy class SLA parameters on the cloud service
provider’s capacity planning strategy.

When the Economy class service availability SLO is set
too high or the financial penalty for SLO violation is set too
low, it is optimal for the cloud service provider to adopt a
penalty preference strategy by offering all reclaimed resources
to the Economy class users. While this strategy is optimal
from a total revenue perspective, it leads to frequent SLO
violations and may hurt the valuation of the Economy service
class by users in the long run. In our ongoing research, we are
exploring an alternative SLA design that not only optimizes
the cloud service provider’s total revenue, but maintains a
more appropriate balance between maximizing the usage of
the Economy class and maintaining the actual service quality
of this new cloud computing service class.

We also derive conditions under which the Economy class
will increase the total revenue for the cloud service provider.
While the conditions are quite complex, the message is very
clear. The valuation of the new Economy class must be
sufficiently high to support an optimal Economy class pricing
that can more than offset the Opportunistic class revenue
dilution as a result of directing reclaimed resources from the
Opportunistic class to the Economy class.

In the future, we will study extend the analysis to in-
corporate more realistic scenarios. In this paper, we assume
that there is sufficient demand to consume resources, as was
assumed in [1]. This assumption allows the use of a customer
self-selection model to analyze the economic impact of the
Economy cloud service class. In the future, we will relax
this assumption and adopt a price-demand response approach,
where the actual consumption of resources decreases as the
price increases. In this paper, following [1], we assume there
is only one VM configuration offered by the cloud system. We
will pursue extensions to allow two or more VM configuration
types in the analysis in future work. Another direction of future
work is to empirically evaluate the analysis results using real-
life data center traces.
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