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Abstract—Overbooking techniques have been proven efficient
to increase overall utilization of cloud datacenters. However,
overbooking may also degrade applications performance as (at
least) some applications need to share physical resources such
as CPU or memory. Consequently, interference may increase
among the virtual machines that share resources, the so called
noisy neighbors effect. We present an affinity-aware scheduler
to reduce the impact of such interference. A fuzzy logic engine
accounts for the uncertainty in these environments and estimates
which CPU cores are currently more suitable for each incoming
application. This helps the scheduler make virtual machine to
physical resource mapping decisions, also known as vcpu pinning.
An experimental evaluation based on a combination of interactive
services and batch applications confirms that our affinity-aware
fuzzy scheduler reduces the interference among applications,
enabling more predictable performance and consequently safer
overbooking.

Keywords—Cloud Computing, Clustering, Fuzzy Logic Pro-
gramming, In-Server Scheduling, Noisy Neighbor, Overbooking

I. INTRODUCTION

Cloud datacenter resources are not being used in an effi-
cient way, mainly due to one of its main features: elasticity
and fast provisioning. These cloud characteristics complicate
capacity management due to uncertainty about future user
resource needs. Therefore, if these needs are overestimated,
the resource utilization of the datacenter becomes low. In
contrast, underestimation of resource requirements can lead to
performance degradation and even crashes. Cloud providers are
commonly conservative and accept poor resource utilization ra-
tios for the sake of safe execution and performance assurance.
In fact, reported utilization ratios are well below half the total
available capacity [1], leading not only to wasted energy but
also to revenue loss at the providers side.

Resource overbooking has been proven as a suitable solu-
tion to increase resource utilization ratios [2], specially when
users overprovision their resource requests and/or datacenters
suffer from the Virtual Machine (VM) sprawl phenomenon.
Resource overbooking is a well known technique, previously
applied e.g., in network bandwidth multiplexing. In a cloud
context, overbooking is mainly based on allocating more VMs
than the actual number of physical resources in a datacenter,
taking advantage of the fact that not all users use all the
capacity they requested and/or they do not use it all the
time [3].

Even in absence of overbooking, VMs in a datacenter share
some resources, such as CPU, memory, or cache hierarchies.

This may lead to VMs affecting or being affected by other
co-located VMs. These interferences between VMs are com-
monly known as the noisy neighbor problem [4]. This effect
is aggravated in overbooked systems as resources are more
exhaustively used, and due to the higher consolidation, more
resources need to be shared among VMs. This in turns leads
to degradation and to unstable applications performance, and
consequently to less predictable overall system behavior.

To alleviate the noisy neighbor problem, the choice of
which VMs should share resources must be taken with care,
including an analysis of the impact VMs have on each other.
This is a multi-dimensional (CPU, memory, cache, etc.) opti-
mization problem commonly solved using heuristics [5] [6].
Due to the complexity of the problem, as well as the un-
certainty about future status of CPU cores and application
needs, we take a fuzzy logic approach. Fuzzy logic is a highly
expressive, natural, and efficient way to deal with uncertainty
and approximate reasoning, and we previously applied this
approach to cloud admission control with good results [7].

To address the challenge of noisy neighbors, we introduce a
fuzzy-logic affinity-aware engine that helps the VM scheduler
to decide in-server scheduling, i.e., deciding which VMs can
share CPU cores without affecting each other significantly.
This fuzzy-logic engine is mainly based on the classification of
both the status of cores (i.e., CPU intensive, memory intensive,
network intensive, or a mix of them) and the expected VM
needs. Then it decides which cores are more suitable to host a
particular VM, i.e., have high affinity. The enabling mechanism
for this in-server scheduling is the KVM core pinning that
limits (but not completely removes) the impact that one VM
may have on others by restricting the specific physical cores
that each VM is allowed to use.

The experimental results show the benefits of using our
proposed fuzzy affinity-aware server scheduler in a mix of
interactive and non-interactive applications, of which some
need to meet certain deadlines while others need to maintain
specific throughputs or response times. The VM interference
is reduced and consequently a more constant utilization ratio
is achieved regardless of the workload mix, as well as more
stable, predictable applications performance. This in turn leads
to safer overbooking decisions, enabling cloud datacenter
operators to increase their revenue by making a more efficient
use of their resources.

The structure of this paper is as follows. In Section II the
background scenario and the related works are presented. In
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Section III the main contributions of this work are detailed.
Next, Section IV presents our experimental results. Finally,
Section V concludes the paper and outlines directions for
further research.

II. BACKGROUND AND RELATED WORK

As reviewed in [3], in addition to elasticity, there are other
factors contributing to poor resource utilization at clouds data-
centers, such as predefined VM sizes [8] or the user tendency
to overestimate their needs [9]. Resource overbooking has
been studied as a solution to mitigate this resource utilization
problem [2]. However, deciding what is the suitable amount of
overbooking, given the current set of applications, is a really
difficult task, and is mostly approached by predictions. Further-
more, these predictions may be wrong or not accurate enough,
leading to either performance degradation (and Service Level
Objective (SLO) violations) or missed opportunities to increase
usage.

There are some works focusing on this overbooking ratio.
For instance, Urgaonkar et al. [10] try to safety overbook
cluster resources, guaranteeing applications performance using
feedback control and assuming that users are capable of pro-
viding information regarding the tolerable overbooking level
of their applications. However, this information is strongly
coupled to the underlying physical infrastructure, as well as
to other co-located applications. In our case, to account for
this uncertainty and possible prediction errors, we presented a
fuzzy admission control [11] that decides whether a new VM
can be accepted without relying on user information about
how tolerable their applications are to overbooking. The steps
performed are: (1) predict the future status of the data center;
(2) evaluate the possible impact of accepting a new VM by
using a fuzzy logic engine that accounts for the uncertainty
about future events [7]; and finally (3) take the admission
decision based on the acceptable level of risk (threshold) of the
datacenter at the current time. The risk thresholds are obtained
through a distributed set of PID controllers that adjusts their
own risk threshold based on current vs. target utilization levels
(for more details see [11]).

There are similar approaches that also change the over-
booking ratios over time in a transparent manner to the users,
such as the works presented in [12] and [13]. However, once
the applications are admitted, they do not provide any mech-
anism to deal with resource shortages due to mispredictions
or incorrect overbooking decisions, which may lead to perfor-
mance degradation, specially for latency-critical applications.
To tackle this problem we allowed our framework to adjust
the target utilization levels (and consequently the overbooking
pressure) based on applications performance input, while at
the same time, some applications can use the brownout ap-
proach [14] to mitigate short-term problems until the system
adapts to the new situation [15].

Once the applications are accepted, the next step is to
decide how to co-locate them in a way that the interferences
among them are minimized. This so called in-server schedul-
ing has a great impact on the performance of the deployed
applications [16], specially in overbooked environments where
(at least) some of the physical resources (e.g., physical cores)
must be shared among different applications. It is of great

importance to limit the impact that noisy neighbors on other
running VMs, specially when the overbooking actions were
not enough accurate.

Our previous framework either relayed either on the KVM
scheduler to perform the physical CPU (pcpu) sharing among
VMs [11], or made use of the KVM pinning functionality to
provide some isolation among VMs, with quality of service
(QoS) differentiation purposes [17]. In the latter, we present
a method to isolate some VMs from others (and consequently
limiting their impact on each other) inside an overbooked
server by efficiently using KVM virtual to physical CPU pin-
ning. As a result, we are able to provide different overbooking
and isolation degrees inside a single server, thus enabling QoS
differentiation for different applications. However, some VMs
could still interfere with each other, specially the ones with
low QoS requirements.

There are also other works that try to ensure certain QoS
through SLAs. For instance, Beloglazov et al. [18], Bobroff
et al. [19], and the Sandpiper engine [20] present different
methods to detect overload situations and trigger migrations
to resolve them. However, once again they are focused on
detecting and resolving the problem rather that avoiding it.
In addition, they do not target the noisy neighbor problem at
the in-server scheduler level. Another work focusing on VM
interference and QoS is presented by Nathuji et al. [21], who
propose to provision underutilized resources to the applications
that require it to meet their QoS needs. However this approach
requires that some capacity is left unused in the servers to
be able to add it later to the applications that suffers from
interferences. By contrast, in our work we are targeting an
overbooked environment where the nominal capacity allocated
already is larger than the real available capacity. Thus, there
is no extra (unassigned) capacity to allocate to VMs if they
have interference problems.

The main focus of this work is therefore focused on
extending the previously presented overbooking framework so
that VMs has a more stable and predictable performance by
limiting the impact that other co-located VMs may have on
them. There are several attempts in the literature to tackle the
VM-interference problem. A multivariate probabilistic model
based on VM (anti)affinity rules with the aim of avoiding
wrong co-location actions was presented by He et al. [22].
Similarly, Meng et al. [23] proposed a joint VM provision-
ing approach based on estimating aggregate VM capacity
requirements, but assuming accurate predictions about future
workload. Mars et al. [16] present the bubble-up approach,
where they propose to predict the performance interference of
co-located applications by both measuring the pressure that
an application generates on the memory subsystems and how
much that application is affected by different levels of pressure.
A similar approach is presented by Delimitrou et al. in [5], who
propose a scheduler that classifies and allocates the incoming
applications based on the profiled and expected interference
with other already running VMs. Although they pursued the
same target – reducing applications interferences – and follow
a similar approach – differentiating applications and isolating
them from their antagonist – they focus on the scheduling
between servers, not inside the servers. Therefore these two
approaches complement our work.

There are works based on detecting performance degra-
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Figure 1: VM deployment overview.

dation due to VM interference and that use migrations to
alleviate the problem when possible. One such workare used by
Zhang et al. [6], where CPI (Cicle Per Instruction) performance
metrics were used to detect anomalous behaviors and then
recursively throttle the VMs that are believed to be the possible
source of the interference problem, i.e., the VM affecting the
other(s). However, this solution does not avoid the problem but
tries to recover once it occurs, and it can impact applications
performance due to the throttling.

Finally, an in-depth analysis of co-location problems lead-
ing to QoS violations is presented by Leverich et al. in [24],
drawing conclusions about why some collocations may have
bigger impacts than others. Based on these conclusions, they
propose to use the Borrowed Virtual Time (BVT) scheduler
instead of the standard Completely Fair Scheduler (CFS) used
by Linux systems. Unlike the work presented in [24], we build
our solution on top of an standard hypervisor, in our case
KVM. This motivates our decision of providing performance
isolation through hypervisor tools, in this case KVM core
pinning. Although simple, KVM pinning can help to avoid
poor performance by limiting the impact that some applications
may have on others. For example, it could avoid that some
VMs use specific physical cores where a latency-critical VM
is running.

III. AFFINITY-AWARE IN-SERVER SCHEDULER

The co-location problem is multi-dimensional (note VMs
are not only using CPU but also memory, and network) and
is usually addressed by using heuristics. In a similar approach
as used in our work on admission control [11], we decide
to tackle the server scheduling and co-location problems with
fuzzy logic.

As depicted in Figure 1, the Affinity-aware Fuzzy logic
assisted Scheduler (AaFS) chooses both the server where the
VM is going to be allocated, and assigns the physical cores
inside the chosen server to the new accepted VMs. These
choices are based on the affinity scores provided by the Fuzzy
Logic Core Classifier & Affinity Estimator module. This fuzzy
engine classifies the cores based on their recent behavior
and estimates the affinity scores between the cores and the

VM to be allocated. With this information, the scheduler can
reduce interferences by co-locating the VMs based on their
affinity values, so that their performance is impacted as little
as possible.

These two components are the main novelty of this work.
As the system is designed to work on overbooked environ-
ments, the main objective is to generate good co-location plans
that reduce the VM(s) noisy neighbor problem by mapping the
VM virtual cores (vcpus) to specific physical cores (pcpus),
so that they are only shared by some selected VMs. To
generate a good mapping, the status of cores is continuously
classified (i.e., clustered) depending on their recent behavior
with respect to CPU, memory, and network usage. Based on
this information, the fuzzy engine identifies the (group of)
cores with higher affinity scores for the incoming VM. Finally
the AaFS assigns the VM to the proposed pcpus and provides
feedback to the fuzzy engine to readjust the affinity scores over
time based on the obtained performance.

A more in-depth explanation about how the AaFS uses the
fuzzy engine and its affinity information is presented next, as
well as how the feedback information is injected into the fuzzy
engine. After that, we detail how the fuzzy logic classification
and affinities are calculated.

A. AaFS Scheduler: Feedback Affinity Loop

The AaFS module is in charge of the scheduling decisions,
i.e., decides where and how the VMs are placed onto physical
servers. This scheduling process is divided in two steps. First,
the server where the VM will be allocated is chosen based on
overbooking ratios of each server – each server can tolerate
a different level of overbooking depending on what VMs it
provisions. The full details of how to calculate the overbooking
factor (based on application performance deviations) is pre-
sented in our previous work [11]. Once the server is decided,
a second step determines how the vcpus are pinned to pcpus,
i.e., determines which specific physical resources the VM can
use inside the selected server.

As depicted in Figure 1, the AaFS Scheduler is assisted
by the above described fuzzy engine to perform this second
step. From this engine, the AsFS gets information about the
affinity between the incoming VM and the pcpus in their
current status. The cores with higher affinity (i.e., affinity
values over a specific threshold) are selected and the VM
vcpus are pinned to the given cores (pcpus) by using the KVM
pinning functionality [25]. Thanks to the pinning, the impact
that a VM may have on others is reduced, as it cannot steal
CPU time for other VMs that are pinned to different pcpus.
Notably, interference problems cannot be fully avoided with
KVM pinning as the memory and some cache levels are still
shared. Furthermore, if the pinning is not performed in an
efficient way, the interference could be even higher as some
antagonist [6] VMs may be co-located and they are not allowed
to use other pcpus even if there exists idle cores. Moreover, due
to the uncertainty about future resource needs, as well as due
to the dynamic nature of cloud environments, the same settings
cannot work properly all the time. Therefore, there is a need
of autonomous adaptation to changing situations. To achieve
this, we have implemented a feedback loop between the AaFS,
in this case the applications performance (Key Performance
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Indicators, KPIs), and the fuzzy engine. By doing this, we
enable the possibility of adjusting the affinity values based on
application performance.

The fuzzy engine offers two knobs to adjust the affin-
ity outputs, named increase and decrease (detailed in
next subsection) that have opposite behaviors. By calling
increase, the output affinity values are increased and in
turns that leads to a higher consolidation of the VMs onto
fewer pcpus. Reversely, if decrease is invoked, the affinity
values are decreased, leading to a more balance distribution of
the VMs over the available pcpus. To make an efficient use
of this steering mechanism we need to dynamically decide
when the VMs consolidation is too high, and hence some
applications have problems to keep their performance. Or by
contrast, if the load is well balanced and the applications are
achieving their KPIs without problems, we could consolidate
all VMs a bit more to allow additional VMs to be provisioned.

Based on these two tuning knobs in the fuzzy engine, we
have designed a controller that decides if the affinity values
need to be increased, decreased, or if the current configuration
is suitable. The final decision about the action to be taken
at each control interval is based on the status of the running
applications, as well as on how balanced the cores usage is,
as outlined in Algorithm 1. In order to obtain the applications
performance, a controller inside the applications computes a
matching value mi, that expresses how the application is
performing for one of its KPIs:

mi = 1− ri/r̄i, (1)

mi = 1− t̄i/ti, (2)

where ri is the maximum response time over the last control
interval and r̄i is the target response time, and ti and t̄i are
the minimum and target throughput for the throughput oriented
applications, respectively. These matching values are positive
if the application maintains the desired KPI and become neg-
ative if application is suffering performance degradation. Note
that these matching values abstract application performance
indicators, such as target response time or throughput, from
the infrastructure.

On the other hand, to measure whether the CPU core usage
is balanced, we have designed a simple heuristic mostly based
on their average usage and standard deviation. Mainly, we
denote the core usage to be unbalanced if one of the following
is true:

• The standard deviation of cores usage is bigger that an
specific threshold, in our case 20 percentage-points.

• There are cores fully utilized (utilization is above a
certain, parameterizable threshold, in our case 80%),
as well as almost idle cores (below a certain, param-
eterizable threshold, in our case 20%).

• More than 20% of the cores have usage ratios that
deviate from the average usage ratio by more than
10 percentage-points. Both these thresholds are also
parameterizable.

The feedback control loop implemented between the server
and the fuzzy engine adjusts the affinity values over time as

Algorithm 1 Affinity Values Controller

Configuration parameters: duration, update interval
w_bad, weight of applications with performance problems
w_veryBad, weight of applications with large performance
problems
t_good, threshold for minimum number of applications with
good performance
t_bad, threshold for allowed number of applications with perfor-
mance problems

1: while true do
2: app_good ← number of applications with good performance
3: app_bad ← number of applications with bad performance
4: app_veryBad ← number of applications with very bad

performance
5: unbalanced ← true if the cores usage is unbalanced
6: if app_good > (w_bad ∗ app_bad + w_veryBad ∗

app_veryBad) and app_good > t_good then
7: INCREASE()
8: else
9: if unbalanced and (app_veryBad or app_bad > t_bad)

then
10: DECREASE()
11: end if
12: end if
13: sleep for duration
14: end while

detailed in Algorithm 1. In the first part of the algorithm in-
formation about application performance and usage balance is
obtained. Then, to decide if the affinity values can be increased,
it is checked whether the number of applications keeping
their performance (i.e., has positive matching values) is much
larger than the number of applications having problems to
maintain it. In that case, and if the amount of applications
with good performance is large enough, the affinity values are
increased in order to achieve a higher consolidation. Otherwise,
no increase actions are required.

On the other hand, as detailed in the last part of Algo-
rithm 1, to decide if the affinity values must be decreased, it
is first checked if the cores usage is unbalanced. Otherwise no
actions are taken as the application problems do not stem from
the consolidation but are due to the system having too many
VMs in overall. By contrast, if the usage is unbalanced, then
it is checked if there is a VM with a really bad performance
(i.e., high negative matching values), or several VMs with
bad performance (i.e., negative matching values). In such a
case affinity values are decreased, that in turn would yield
better performance. Otherwise, if only a few VMs have slight
performance degradation, affinity values are not decreased.

B. Fuzzy Logic Core Classifier & Affinity Estimator

Here, we explain the Fuzzy Logic Core Classifier & Affinity
Estimator engine in more detail. It is implemented by using
the Fuzzy LOgic Programming Environment for Research
FLOPER 1 [26], and a preliminary version is described
in [27]. The fuzzy programs are coded with a variant of the
popular logic language Prolog [28] augmented with expressive
resources inspired by fuzzy logic [29]. For instance, instead of
managing the pair {true, false} of classical logic, here truth

1http://dectau.uclm.es/floper/
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&P(x, y) � x ∗ y |P(x, y) � x+ y − x ∗ y ←P (x, y) � min(1, x/y)

&G(x, y) � min(x, y) |G(x, y) � max{x, y} ←G (x, y) �
{
1 if y ≤ x

x otherwise

&L(x, y) � max(0, x+ y − 1) |L(x, y) � min{x+ y, 1} ←L (x, y) � min{x− y + 1, 1}
Figure 2: Fuzzy conjunction, disjunction and implication connectives from Łukasiewicz (pessimistic), Gödel (optimistic) and
Product (realistic) logics, respectively, defined in the real unit interval.

degrees are real numbers in the unit interval [0, 1], which better
captures the uncertainty of the cloud environment. The engine
also provides several standard connective definitions as pre-
sented in Figure 2, that have different capabilities for modeling
pessimistic, optimistic, and realistic scenarios (respectively
labeled as L, G and P). Other frequently used connectives
are “aver”, “not”, “approx”, and “very”, defined as
aver(x, y) = (x + y)/2, not(x) = 1 − x, approx(x) =

√
x,

and very(x) = x2, respectively, or the more complex operator
“over”. The latter is shown in Figure 3 and explained later
in this text.

The implemented fuzzy engine offers an interface with the
following five operations to the AaFS:

• Initialize is used to configure the fuzzy engine with
the static information of the server hardware details. It
has three input parameters: the number of cores of the
server; the number of previous resource usage values
(CPU, memory, and network) to be considered in the
cores classification calculation (merged by a moving
average); and the hardware server details regarding
distances between each pair of cores. The latter is
needed to force VMs vcpus to be close to each other
when possible.

• Actualize updates the core usage information in the
fuzzy engine. With this new information, the fuzzy
system actualizes its internal database and conse-
quently updates the information about the intensity
in the usage of each resource (CPU, memory, and
network) as well as the usage burstiness for each core.

• Assign returns the group of cores best suitable to
allocate a certain VM, i.e., the group with highest
affinity values. Its input parameters include Vm, the
virtual machine to be allocated; NCoresToAssign, the
number of cores that the VM needs; DiscardedNodes,
an optional parameter to discard a group of cores in
case they are exclusively reserved for other VM(s);
and Threshold, a parameter to enhance the efficiency
of the engine by pruning the solution search tree
of solutions based on a minimum affinity threshold
required.

• Increase and Decrease are both intended to modulate
the truth value of the solutions given by previous func-
tion assign. The increase operation increases affinity
values, i.e., makes the search for suitable cores more
optimistic. Conversely, decrease lowers affinity values
and makes the search for cores more pessimistic.

In addition to that external interfaces used by the AaFS,
there is another internal function to evaluate the distance
between the physical cores. This is needed at the assign call

to better evaluate and find a group of cores where a multi-core
VMs would perform better, not only due to VM interference
but also due to possible communication patterns between VM
vcpus. Thus, the notion of distance of cores is just a measure
of the cost, in terms of time, of communicating between two
cores, and that tries to account for the NUMA (Non Uniform
Memory Access) architecture features of todays’ processors.
We provide this information to the system through the function
distance(Core1, Core2, Distance) based on the
configuration information sent at the system initialization. As
an example, in our testbed, servers have 32 cores, divided in
4 groups of 8 cores. Here we use a distance between cores
of 10 if they are in the same group and 16 otherwise, i.e., we
specify that cost of communication among cores is 60% higher
for cores that are not in the same group.

In order to return the group of cores with higher affinity
with the requested VM (Assign function), the cores need to
be first classified with respect to their behavior over time (by
using the actualize function). We consider both the intensity
and burstiness – i.e., the usage irregularity – in the resource
utilization. To perform the cores status classification, we
make use of several fuzzy predicates: X_Intensive(core) and
X_Bursty(core), where X is the capacity measured, i.e., CPU,
memory, or network. Their returned value (truth degree) is
the extent to which a certain core is intensive in its use of
resource type X (e.g., CPU) or has a bursty behavior in its
use, respectively.

Once the cores status is classified, assign searches and
returns the group of cores that are most suitable for the
incoming VM, as well as the associated affinity value (truth
degree). The process used to determine whether a group of
cores is adequate for a certain VM, i.e., the affinity value
between a VM and a group of cores, is shown in Algorithm 2.
This algorithm calculates the overall affinity between the
accepted VM and a group of cores by taking into account
the cores X_Intensive for each resource X (CPU, memory,
and network). The affinity between a VM and a group, for a
specific capacity dimension (CapX_Intensive_Affinity) is
calculated by using fuzzy connectives, in this case the operator
not, aver, and over, by Equation 3:

CapX_Intensive_Affinity =

Not(Over(X_Intensive(VM), X_Intensive(Gr)))
(3)

and for CapX_Burstiness_Affinity we use Equation 4,
which takes into account the worst-case scenario where usage
spikes in both VM and the group of cores coincide (hence the
combination of X_Intensive and X_Burstiness):

CapX_Burstiness_Affinity =

Not(Over(

Aver(X_Intensive(VM), X_Burstiness(VM)),

Aver(X_Intensive(Gr), X_Burstiness(Gr)))).

(4)
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Algorithm 2 Affinity VM vs. Group of Cores Computation

Configuration parameters: VM , input VM.
Gr, group to evaluate affinity.
Luka, Łukasiewicz fuzzy connective.
Godel, Gödel fuzzy connective.
Product, Product fuzzy connective.
very, very fuzzy connective.

1: for each X in Capacity_dimension{CPU,Mem,Net} do
2: CapX_Intensive_Affinity ← VM vs. Gr Intensive

Affinity for capacity dimension X
3: CapX_Burstiness_Affinity ← VM vs. Gr Burstiness

Affinity for capacity dimension X
4: end for
5: Aggregated_Intensive_Affinity ←

Luka(CapCPU_Intensive_Affinity,
very(CapMem_Intensive_Affinity),
CapNet_Intensive_Affinity)

6: Aggregated_Burstiness_Affinity ←
Godel(CapCPU_Burstiness_Affinity,
very(CapMem_Burstiness_Affinity),
CapNet_Burstiness_Affinity)

7: Final_Affinity ← Product(Aggregated_Intensive_Affinity

,
Aggregated_Burstiness_Affinity)

8: return Final_Affinity

Figure 3: Behavior of connective over according to the expres-
sion x@overy = min{max{0, x+ y − 1}, 1}.

The aggregator over, refers to the possibility of overload.
The expression x@overy, being x and y the extent to which a
VM and a core are using a certain resource, is 0 if the core
has room for the VM. Otherwise, the value of the expression
grows to 1, when the core is at its limits and the VM requests
all of that resource. Figure 3 illustrates this aggregator with
three VMs and three cores.

Note that after obtaining the affinities for each capacity
dimension X , we combine intensive affinities with the pes-
simistic Łukasiewicz conjunction to ensure the stability of the
system. On the other hand, the X_Burstiness values are
combined with the optimistic Gödel conjunction since peaks
are usually not a severe threat to the system unless they
coincide and have long duration. As memory is more critical
than other hardware capacities, we require a higher level of
affinity for this critical resource, so we modulate it with the
very aggregator. Finally, the values from equations 3 and 4 are
merged with the realistic product conjunction (given by the P

operation in the algorithm).

In addition to obtain the most suitable group for a specific
VM, the proposed fuzzy engine enables the output affinity
values to be either increased or decreased based on feed-
back provided by the AaFS. These output affinity values are
modulated through the above described increase and decrease
commands. In essence, the fuzzy engine modulates the truth
degree of the suitability of each group through a weighted
average. Empirically, we set a limit for the weight impact into
the affinity outputs, only allowing a change of 20% from the
base configuration. The calls to increase and decrease simply
increases or decreases these weights so that the system can
evolve to compute higher or lower suitability values.

These feedback functions are introduced into the system
in order to gain accuracy and evolve over time based on the
observed behavior. For instance, in the case that all solutions
provide a very high truth degree, the datacenter can easily end
up with an unbalanced core utilization. In such a case the AaFS
calls decrease, leading to a more balance usage in the future
and a more accurate pruning in the search for good enough
groups for allocating VM.

IV. EVALUATION

In this section we evaluate the proposed affinity-aware
fuzzy assisted scheduler. First, the used testbed and workload
are detailed. Next, a set of experiments are described that mea-
sure and compare the performance of our approach regarding
achieved utilization and applications behavior over time.

A. Testbed and Workload

The tests are conducted on two machines, one hosting
applications and one generating the workload, both in terms
of number of applications (in this case VMs) and incoming
workload (queries) to some of those VMs (the interactive ap-
plications). The servers are connected with a Gigabit Ethernet
link. The first machine is a server consisting of a total of
32 cores (AMD OpteronTM 6272 at 2.1 GHz) and 56 GB of
memory, where the applications are deployed inside VMs. The
second machine is a 4-core (Intel CoreTM i5 processor at 3.4
GHz) desktop with 16 GB of memory.

The workload is generated by mixing different VMs types,
recreating what could be a representative cloud workload [1].
In these experiments, we follow the sand and boulders
scheme [12], where there is a mix of large, long living VMs
(the boulders) and short living, usually smaller VMs (the sand
ones). In our case, for the boulders, we generate two large
VMs (8 core, 14GB RAM each) that each run an interactive
application each for the full duration of the experiment. For this
we used two popular cloud benchmarks: RUBiS and RUBBoS.
RUBiS [30] is an auction website benchmark modeled after
eBay, while RUBBoS [31] is a bulleting board benchmark
modeled after Slashdot.

To generate the incoming workload of these two appli-
cations, the number of queries that they received over time is
recreating the same behavior extracted from the Wikipedia [32]
traces, but scaled to the size of our system. Moreover, we
chose two different (random) days and time-shifted the original
workload 12 hours for RUBiS to create different trends and
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Figure 4: Workloads for interactive applications (long living
VMs).

peaks (see Figure 4). By doing this we generate different daily
usage patterns for each application. All client queries were
generated using the httpmon tool2.

For the smaller sand VMs, we generate a stream of short
lived and non-periodic applications, with an arrival rate pattern
that follows a Poisson distribution with λ = 30 seconds.

We generate different kind of sand VMs to have a more
realistic workload, where the uncertainty about the future
needs is less predictable. To this end, we build VMs running
computational tasks, with highly heterogeneous and time-
varying resource requirements [3]. First, to increase the un-
certainty and burstiness of the system, we generate several
VMs that run different shell scripts, generating burstiness in
the different capacity dimensions (CPU, memory, network).
Secondly, in order to have a measurable performance of the
sand applications, we also create a set of VMs that solves
random sudokus3 and reports the throughput achieved over
time. The sudoku VMs have more predictable performance
than the ones running scripts. The different behaviors for this
type of VMs are:

• SudokuBE: The VMs in this class need to solve a
certain amount of sudokus before a given deadline.
We set the deadline in such a way that the CPU
requirements over time need to be around 80% of
the CPU during the whole execution. As this type of
VM behaves in a best effort manner, it tries to solve
as many sudokus as possible. Therefore, if it runs in
isolation, it uses as much CPU as available until it
solves all the sudokus, with a margin of roughly 20%
to the deadline.

• Sudoku10: unlike the best effort VMs, this VM class
aims to keep a certain throughput (number of solved
sudokus) over time. The set target is to solve 10
sudokus per second. Therefore, if during one time
period this is not achieved, sudokus queue up, and
need to be solved in the next period – in addition to
the ones corresponding to the current period. This type

2https://github.com/cloud-control/httpmon
3http://norvig.com/sudoku.html

of VM maintains an average CPU usage percentage of
roughly 35% when run in isolation.

• Sudoku20: Same as the previous one but with higher
computational requirements. The throughput to be
kept is double compared to the previous one. This type
of VM maintains an average CPU usage of roughly
75% when run in isolation.

These three sudoku VM classes are mixed equally in the
resulting workload. However, we change the fraction of sudoku
VMs to the total amount of sand applications. We perform
tests where this percentage is varied between 1/3, 2/3 and 3/3.
Consequently, as the number of computational intensive tasks
increases, there are fewer bursty VMs, resulting in a more
predictable behavior.

B. Experiment Results

In order to evaluate the performance of the presented
affinity-aware scheduler, we run different experiments with the
workload above explained and compare the next 3 different
techniques:

• The standard KVM scheduler, where by default the
VMs (vcpus) are not pinned to specific cores (pcpus)
and KVM is in charge of dynamically deciding which
vcpu accesses which pcpu over time. This is evalu-
ated both with and without overbooking, labeled as
Over KVM and No-Over KVM in the next figures,
respectively.

• A worst-fit style pinning scheduling algorithm that
performs vcpu to pcpu pinning base on current pcpus
usage, choosing the cores that are the least overbooked
at the moment. This method is labeled as Over-WF
in the following figures.

• Our proposed affinity-aware fuzzy assisted scheduler,
labeled as AaFS in the figures.

We study three performance metrics metrics. First, we
compare the real utilization achieved for each technique. This
measures the actual capacity being used by all the hosted
applications, which is directly related to the revenue that the
cloud provider can achieve, as well as to how efficiently the
hardware resources are used. Although all hardware capacity
dimensions were considered in the performance evaluation, the
utilization in the subsequent figures only refer to CPU usage.
The other considered dimensions, memory and I/O, were also
prevented from overload with admission control techniques, as
explained in [11]. Due to the workload characteristics, memory
and I/O were less stressed than the CPU.

The other two metrics are related to the VMs performance.
First, we measure the average and 95-percentile response
times of the boulder VMs. The main objective is to evaluate
how these interactive applications are affected by other co-
located VMs, and how the proposed scheduler helps to reduce
the interferences within acceptable limits. We pay special
attention to the interactive applications (in our case the boul-
ders) as they are usually more affected by other co-located
applications. They need to maintain a certain performance over
time, unlike computation intensive applications that usually are
not affected by a few seconds of performance interference,
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Figure 5: Performance of RUBiS VM over time.
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Figure 6: Performance of RUBBoS VM over time.

as long as they complete all computations on time. Finally,
as we also want to evaluate how the sand applications are
affected due to the noisy neighbor effect, we measure a number
of metrics related to the performance of the sudoku VMs
(i.e., sudokuBE, sudoku10, and sudoku20). These are based
on the concurrent number of sudoku VMs, as well as on
the average and aggregated throughput of all of them.

First, we compare the performance of the above-mentioned
scheduling techniques with a sand application mixture com-
posed of 2/3 of sudoku VMs and 1/3 scripts. This represent the
median case where stable CPU intensive applications dominate
but there is still quite some burstiness in the workload. Figure 5
shows both response times (both average and 95 percentile) for
the RUBiS service when following the described Wikipedia
workload and the server utilization for the whole workload –
both boulders VMs plus the sands VMs. Figure 5a and 5b
show the result when using the default KVM scheduler,
both without and with overbooking, respectively. Figure 5c
shows the result for the worst fit pinning algorithm, and
finally, Figure 5d shows the results obtained for the presented
affinity-aware fuzzy scheduler approach. As we can see, the
achieved response times for No-Over KVM are very low, but
at the expense of a rather low overall utilization as well.
Utilization also presents large fluctuations based on the VMs
types concurrently running. For the other three scenarios, the
utilization ratio is much higher and stable – around 75%. This
is also depicted in Figure 7, where a box-plot highlights the
similar results obtained for the three overbooked scenarios,
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Figure 7: Utilization (2/3 of sand applications are sudoku VMs.

unlike the one without overbooking, that presents a remarkably
lower utilization, as well as with higher fluctuations. Regarding
response times, they are a bit higher for all overbooked
scenarios too but still well below the target – 1 second. There is
one sudden increase in the response time for Over-WF around
minute 1300, as a result of a wrong co-location decision due
to the burstiness of the co-located VM(s).

In Figure 6 the same information as in Figure 5 is shown,
but for the RUBBoS application. This application presents a
less linear behavior with regards to the number of requests,
making it more exposed to co-location interferences. As a
result, the KVM scheduler (Over KVM) is not able to maintain
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(b) 1/3 sudoku VMs.

Figure 8: Usage comparison with different ratio of sudoku
VMs in the sand applications.

the performance for the RUBBoS VM all the time, and
there is an interval from minute 1100 onwards where the
response time exceeds the 1 second target. By contrast, both
pinning techniques (Over-WF and AaFS) are able to keep
the performance all the time due to limiting the interferences
impact through pinning decisions. Note that both keep response
times below 1 second, but show larger fluctuations than for the
RUBiS application.

We have also compared the performance when the amount
of burstiness in the sand applications is either decreased (100%
sudoku VMs) or increased (1/3 of sudoku VMs). As Figure 8
shows, the utilization is higher when there is more burstiness
in the system, and it decreases otherwise as there is less
opportunities for overbooking with lower burstiness. The Over-
KVM is more affected by this and its utilization ratio is
lower than 70% when all sand applications are sudoku VMs.
On the other hand, Over-WF and AaFS present more stable
performance, with less fluctuations upon changing ratio of
sudoku VMs.

From these set of experiments, we can conclude that the
KVM scheduler is not able to avoid VM interferences and
is more affected by the sand mix. Therefore, in the rest of
the experiments we focus on the other two approaches, Over-
WF and AaFS. First, in Figures 9 and 10 we present the result
obtained for the RUBBoS VM (the interactive application more
affected by interference) when the sand mix made of 100%
and 1/3 sudoku VMs, respectively. As before, both techniques
are able to avoid large interference and keep the RUBBoS
performance during all the experiment, regardless to the sand
VMs mix.

Once we concluded that both Over-WF and AaFS are
able to keep interactive applications (boulders) performance
over time, even under different mix of sand VMs, we study
the performance obtained for the sand applications for these
experiments. To do that, we focus on the performance obtained
by the sudoku VMs under the different sand applications mix.
First, Figure 11 shows the aggregated performance obtained
for the sudoku VMs for both Over-WF and AaFS under the
three different sudoku mix at the sand applications (1, 2/3, and
1/3, respectively). More specifically, it shows the aggregated
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Figure 9: Performance of RUBBoS VMs when all sand appli-
cations are sudoku VMs.
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Figure 10: Performance of RUBBoS VM when 1/3 of sand
applications are sudoku VMs.
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Figure 11: Aggregated performance for sudoku VMs.

number of sudoku solved per second for all the concurrently
running sudoku VMs. This metric gives us a notion of the
overall performance achieved by the sand applications, in
particular for the first case as that includes only sudoku VMs
in the sand mix. As the figure depicts, AaFS outperform Over-
WF in all the cases (average values increase up to 9%), as well
as presents a more stable performance (smaller boxes). This
is most prominent for the 1/3 scenario, when the uncertainty
is higher in the system. In that case, the standard deviation
(sd) is almost 45% lower (i.e., better) for AaFS compared to
Over-WF.
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Figure 12: Average performance per sudoku VMs.

On the other hand, when we compare the average per-
formance achieved per sudoku VM instead of comparing the
aggregated performance, we observe similar results. In Fig-
ure 12, AaFS achieves higher and a more stable performance
per sudoku VM for all the three cases, with average values
being improved around 5%, and standard deviation of the
sudoku VMs performance being reduced between 32 and 45%.
Once again, the most prominent difference is for 1/3 case.
It can be observed that, as the burstiness of the sand VMs
mix increases, the performance obtained by the sudoku VMs
fluctuates more due to the higher uncertainties of the VMs
requirements and less accurate predictions. We observe that
AaFS behaves remarkably better than Over-WF when the
uncertainty of the system is higher (sd reduced by 45%).

In order to demonstrate other improvements that AaFs
presents over Over-WF, we next show a summary of the
performance achieved for the different sudoku VM types
(sudoku10, sudoku20, and sudokuBE). Figure 13, Figure 14,
and Figure 15 show the results obtained for the 3/3, 2/3, and
1/3 sudoku VMs cases, respectively. These figures show a
comparison of the aggregated performance (plots (a) and (b)),
the average performance (plots (c) and (d)), and the number
of concurrently running sudokus (plots (e) and (f)).

As regards to the aggregated performance obtained per
VM, a more stable performance is achieved by AaFS in all
the cases (less variation in the aggregated performance over
time), as well as a more proportional performance between
sudoku10 and sudoku20. Ideally, the total throughput for
sudoku20 should be double that for sudoku10, in absence
of VM interferences and with enough resources. We also
observe a slightly lower aggregated performance for AaFS
with sudoku10 in the 3/3 case. However, this difference comes
from the fact that Over-WF accepts more sudoku10 VMs at
expenses of sudoku20 VMs, as depicted in Figure 13e and 13f.
Due to this fact, we appreciate a remarkable difference in the
aggregated throughput achieved by sudoku20 VMs. Similarly,
when the burstiness of the sand VMs mix increases (1/3 case),
Over-WF penalizes the number of accepted sudokuBE VMs in
favor of accepting smaller VMs due to not consolidating the
VMs when possible as AaFS does. Therefore the aggregated
throughput for this type of VMs is remarkably lower than for
AaFS.

When focusing on the average performance obtained per
VM type, figures 13, 14, and 15 show that both Over-WF

and AaFS keep the performance for sudoku10 and sudoku20
VMs in the three sand VM mix cases. The main difference is
that AaFS present noticeable fewer fluctuations for sudoku20
VMs than Over-WF, which means a more stable, constant
performance over time. The sd is reduced between 21.2 and
44.3% compared to Over-WF. If we focus on sudokuBE, we
observe that AaFS also presents a slightly higher performance
for the first two scenarios (3/3 and 2/3). Moreover, as the
uncertainty of the system increases, (see Figure 15), sudokuBE
are less affected by other VMs’ interference and present a
more stable performance over time, with a large reduction of
sd: 38%.

Finally, the plots with the number of concurrent sudokus
over time clearly present a more balanced behavior for AaFS,
where the number of sudoku VMs of each type is more
balanced than for the Over-WF. It is also clear that as the
percentage of sudoku VMs over the sand applications in-
creases, the number of accepted VMs of each type gets less
balanced. The main reason for this stem from the fact that
as the burstiness in the system decreases, the chances for
finding good co-locations and VMs consolidation decrease too.
Thus, as the smaller VMs (sudoku10) are easier to allocate,
the system prefers them over to other two sudoku VM types.
We see that AaFS clearly outperforms Over-WF in this aspect,
and is less impacted by this problem. Unlike Over-WF, AaFS
presents a well balanced mix of sudoku VM types when the
percentage of sudoku VMs in the sand applications is reduced.
In fact, the average number of concurrent VMs for the three
types of sudoku VMs ranges from 6% (for 2/3 case) to 42%
(for 3/3 case) less for AaFS compared to Over-WF.

To sum up, AaFS provides not only a slightly higher
performance, but also a more predictable and stable perfor-
mance over time. This in turns helps the cloud provider to
perform safer overbooking decisions, therefore providing a
better performance to the users with higher utilization ratio,
and limiting the impact of VM interference.

V. CONCLUSIONS AND FUTURE WORK

Cloud computing enables easy and fast management and
provisioning of capacity, but at the same time complicates the
capacity management due to uncertainty about users needs in
the (near) future. In addition, the use of VM consolidation to
achieve higher utilization makes VM performance more af-
fected by other co-located VMs. Reducing this interference in
case of inaccurate predictions or incorrect co-location actions
is therefore required to provide more stable and predictable
performance. To tackle that problem, it is essential to co-locate
the VMs inside the servers so that the interference among them
is limited. We present a fuzzy affinity-aware engine that helps
the scheduler to decide which VMs can share which resources
(in this case physical CPUs), as well as to limit the impact
that VMs may have on other co-located VMs.

The proposed fuzzy affinity-aware engine is based on
evaluating and classifying the server’s cores depending on
their usage and finding the group of core(s) that presents
the best affinity with the VM to be placed. By using this
information in the scheduler, together with the KVM core
pinning capability, we demonstrate that interference among
VMs can be reduced significantly and application performance
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(a) Over-WF: Aggregated
Performance
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(b) AaFS: Aggregated
Performance
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Figure 13: Summary of sudoku VMs performance with sand VMs consisting of only sudoku VMs (3/3).
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Figure 14: Summary of sudoku VMs performance with sand VMs consisting of 2/3 sudoku VMs.
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Figure 15: Summary of sudoku VMs performance with sand VMs consisting of 1/3 sudoku VMs.
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thus become more stable over time compared to the existing
KVM scheduling algorithm. In addition, thanks to the feedback
loop between the infrastructure and the fuzzy-affinity engine,
the affinity values are readjusted over time based on the
achieved performance. Consequently, the proposed solution
allows cloud operators to better use their infrastructure while
still provisioning application according to their performance
guarantees.

As future work, we plan to extend the current work
by designing a more advanced reinforcement technique that
could allow the fuzzy engine to better readjust the affinity
values based on the performance of the previous co-location
decisions. We are also interested in better categorizing and
modeling the source and type of interference happening under
different VMs co-location mappings, with the objective of
early detecting and reacting to such undesired situations.
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