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Abstract—In spite of the indubitable advantages of
elasticity in Cloud infrastructures, some technical and
conceptual limitations are still to be considered. For in-
stance, resource start up time is generally too long to react
to unexpected workload spikes. Also, the billing cycles’
granularity of existing pricing models may incur consumers
to suffer from partial usage waste. We advocate that the
software layer can take part in the elasticity process as
the overhead of software reconfigurations can be usually
considered negligible if compared to infrastructure one.
Thanks to this extra level of elasticity, we are able to define
cloud reconfigurations that enact elasticity in both software
and infrastructure layers so as to meet demand changes
while tackling those limitations. This paper presents an
autonomic approach to manage cloud elasticity in a cross-
layered manner. First, we enhance cloud elasticity with the
software elasticity model. Then, we describe how our au-
tonomic cloud elasticity model relies on dynamic selection
of elasticity tactics. We present an experimental analysis of
a sub-set of those elasticity tactics under different scenarios
in order to provide insights on strategies that could drive
the autonomic selection of the proper tactics to be applied.

Keywords-Cloud Computing; Elasticity; Autonomic
Computing; SLA; QoS

I. Introduction

According to [1], Cloud Elasticity is defined as the
degree to which a system is able to adapt to workload
changes by provisioning and de-provisioning resources in
an autonomic manner, such that at each point in time the
available resources match the current demand as closely
as possible. For example, Software-as-a-Service (SaaS)
providers relying on Infrastructure-as-a-Service (IaaS)
have the capability to quickly cope with highly and
unpredictable demands by finely allocating resources
accordingly and therefore meeting Service Level Agree-
ments (SLAs) previously established with their cus-
tomers.
In such dynamic environments, human interven-

tion is becoming more and more difficult or even
impossible. The management of complex architectures
along with the integration and calibration of all the
parameters and constraints that come with to keep the
system running in an optimized way (e.g., in terms
of QoS and cost), is a very complex and error-prone
task. Moreover, human intervention may be too slow
to react to some situations such as network, hardware
or software failure or sudden workload oscillation.
For those reasons, Autonomic Computing [2] has been
largely adopted to manage elasticity of cloud services.

Currently, Autonomic Cloud Elasticity is mainly
used to scale the infrastructure resources in the IaaS
layer. Nevertheless, although the recent advances in
allowing rapid resource provisioning [3], infrastructure
elasticity has faced technical and conceptual limitations
that prevent infrastructure services to be fully and
rapidly elastic. First, resources are limited, which means
that resources cannot be scaled up infinitely and there
could be times where provisioned resources would
be insufficient for infrastructure services’ customers to
cope with increasing demands. Second, infrastructure
resources initiation time may be too long (ranging from
few seconds to several minutes [4]) and hence not very
reactive. Third, customers are usually charged for using
resources and, depending on the adopted resource
pricing model, they may suffer of phenomenon known
as partial usage waste [5], in which they are charged
for more than what they actually consume. Last but
not least, despite of the recent efforts in conceiving
and managing datacenters in a more energy-efficient
manner, the energy consumption due to Cloud infras-
tructures still remains an issue [6].
We advocate that the software at the SaaS layer

can take part in the elasticity process and overcome
infrastructure elasticity limitations. The reason for this
resides in the fact that the overhead of software recon-
figurations can usually be considered as negligible, if
compared to those of infrastructure services in lower
layers. Hence, software services have a tremendous
potential to be dynamic and elastic so as to fit in
contexts where only the infrastructure elasticity is not
enough. Concretely, Software Elasticity can act as an
extra elasticity capability that goes beyond the infras-
tructure elasticity when resources are scarce. For exam-
ple, one can easily and dynamically replace resource-
consuming software components by less resource-
consuming ones. In the same sense, those less resource-
consuming software components can also be used as
an alternative to absorb peaks of workload instead of
either adding infrastructure resources and releasing it
straight away; or getting the resource way too late due
to long initiation times.
This paper presents an autonomic approach to man-

age cloud elasticity in a cross-layered manner. First
of all, we propose a model for software elasticity
which draws inspiration from the two-dimensional
infrastructure elasticity, that is, the elasticity based on
vertical and horizontal scaling. That results in four di-
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mensions of elasticity, say, software/infrastructure/ver-
tical/horizontal, which provides Cloud providers with
more options that can be used to face the previously
mentioned elasticity limitations. In order to manage
all those dimensions in a proper manner, we propose
the orchestration of both elasticities by composing
basic elasticity actions in a synchronous way, using
parallel and sequence operators. From that composi-
tion, the Cloud Administrator may derive a number
of extra composed actions that can applied upon dif-
ferent events reflecting the need for Cloud resource
reconfiguration. We present an experimental analysis
on the use of a sub-set of those elasticity tactics (i.e.,
event-action pairs) under different scenarios in order
to provide insights on the criteria and the preferences
on them that could drive the autonomic selection of
the proper tactics to be applied. Those experiments
were conducted on OpenStack, an open-source Cloud
Infrastructure Manager, which has been deployed at
Grid’5000, a French national wide grid for experimental
infrastructure testbed.
The rest of the paper is organized as follows. Sec-

tion II discusses with more details the limitations of
infrastructure elasticity. Section III presents the concept
of software elasticity and advantages as infrastructure
complementarity. Section IV presents our proposal of
autonomic approach based on cross-layered elasticity
tactics, whereas Section V presents the analysis on the
performed experiments. Sections VI and VII reviews
the related work and concludes this paper.

II. Infrastructure Elasticity
In this section, we recall some basic definitions be-

fore emphasizing the limitations of the infrastructure
elasticity model.

A. Definitions
Infrastructure Elasticity (IaaS layer): Infrastructure

Elasticity is the ability to rapidly scale infrastructure
resources on demand. Figure 1 illustrates the current
infrastructure resources elasticity model which can be
achieved by horizontal or vertical scaling:

• Infrastructure Horizontal Scaling (HSin f ra): ad-
justs the VM’s pool size by adding (scale out a.k.a.
SOin f ra) or removing (scale in a.k.a. SIin f ra) VM
instances.

• Infrastructure Vertical Scaling (VSin f ra): resizes
existing VM instances by increasing (scale up a.k.a.
SUin f ra) or decreasing (scale down a.k.a. SDin f ra)
resources allocated (e.g., CPU or RAM). This is
usually done by switching from an instance offer-
ing to another (e.g., O f fvm(small) to O f fvm(large)
in the case of SUin f ra).

B. Limitations
1) Resources are limited: For the consumer, the pro-

visioning often appears to be unlimited and available
to be requested in any quantity at any time. How-
ever, in reality, there are several limitations in this

Figure 1. Infrastructure Elasticity: Horizontal and Vertical Scaling

(a) (b)
Figure 2. Resources Elasticity limitations

regard: (i) IaaS providers usually restrict the number
of infrastructure resource instances (e.g., VMs) to be
allocated for each user in order to better manage
their datacenters, but also due to the limitations of
physical resources (e.g., physical machines or energy).
For example, 20 instances (VMs) per zone is the per-
user maximum allowed for Amazon EC2 services; (ii)
in case of failure (e.g., network), resource availability
decreases; (iii) the consumer may find her/himself con-
strained with respect to the amount of resources to be
used due to a predefined budget or design constraints.
Therefore, IaaS resources cannot be provisioned in-

finitely and the maximum resource utilization can be
quickly reached, whether it is imposed by infrastruc-
ture providers (e.g., small private Cloud infrastruc-
tures), by consumers’ restrictions (e.g., budget con-
straint) or by the hardware in the case of VSin f ra
(e.g., maximum RAM reached). The consequences of
these limitations on the customers’ applications can be
harmful, as illustrated in Figure 2(a). When resources
become saturated (orange line) and the demand in-
creases (blue line), it is straightforward that QoS of
demanding SaaS applications such as response time
and availability are compromised, which may result
in end-users dissatisfaction, financial penalties due to
SLA violations (red line) and so forth.

2) Resource initiation time is significant: Although the
resource elasticity capability, which enables resource
provisioning to cope with dynamic environments (e.g.,
whose workloads varies within the same day or hour),
the non-negligible resource initiation time may be way
too long and hence prevent just-in-time provisioning.
For example, although the recent improvements in
virtualized systems, the initiation time of a VM may

82



vary from few seconds to several minutes depending
on several factors like the hypervisor, operating system,
memory size, network configurations, among others. In
general, the larger the VM (in terms of memory) more
time is needed to configure, deploy and launch it [4].
In this context, it might be completely useless having
the required resource too long later if the concerned
application needs to react immediately to cope with a
change.
Figure 2(b) illustrates an example of such a limita-

tion. In order to absorb a couple-of-minutes workload
peak, the SaaS provider requests some resources (e.g.,
VMs). It turns out that, due to the initiation time, the
requested resources are ready to be used only few
minutes later, when the workload is decreasing. To sum
up, the infrastructure resource provisioning was not
reactive enough to cope with the change (workload
increase) and thus compromising the software services’
QoS and SLA fulfilment. Furthermore, by the moment
resources were made available, they were for no use.
Consequences can be even worse in cases of oscillating
scenarios as it may suffer of ”ping-pong effect” in the
request/release of resources [7].
In theory, VSin f ra allows to tackle this responsiveness

limitation by almost instantly increasing (or decreas-
ing) resources of existing instances, as long as the
maximum hardware capacity is respected. However,
in practice, runtime VSin f ra (without service interrup-
tion) is rarely implemented as it imposes a number
of technical constraints in terms of compatibility of
the infrastructure software stack (operating systems,
hypervisor, Cloud management tool) [8]. That is to say
that, most of the times, VSin f ra imposes a service down-
time of existing instances while their capacity (O f fvm)
are being increased (or decreased). For these reasons,
Infrastructure Elasticity is mostly implemented using
the horizontal scaling, as it is easier to implement.

3) Pricing is per instance-hour: Pay as You Go is a
utility computing billing model. The time granularity
of IaaS resource reservation and the implied resource
billing model (e.g., hourly, daily, etc.) may also lead
SaaS providers to either pay more than they actually
consume (e.g., when it requests resource during a
workload peak and releases it right after) or to take into
consideration the reservation duration before deciding
to request more resource. Figure 2(b) also illustrates
the issues related to the billing time granularity. When
a resource allocation becomes useless (e.g., when the
workload starts decreasing), SaaS providers can just
release the resource. In this case, they will suffer from
a phenomenon called partial usage waste [5] in which
they will pay the entire billing cycle even if the usage
duration is inferior to the cycle.
Alternatively, in the hope that this resource will be

of any help during the billing cycle, SaaS providers
may employ a use-as-you-pay policy [9], in which, the
resource will be kept until the end of the associated
billing cycle (with a negative impact on energy con-
sumption). In any case, regardless the usage policy,

consumers are likely to pay more than what they
actually consume.

III. Enhance cloud elasticity with software
elasticity

In order to respond to the limitations of the current
Cloud elasticity model, we advocate that the software
at the SaaS layer can take part in the elasticity process.
First, we define some software elasticity concepts, then
we emphasize the synergy between SaaS and IaaS
elasticities and we give an illustration.

A. Software Elasticity
We propose a definition of software elasticity and

present the underlying concepts by establishing an
analogy with infrastructure elasticity.

Software Elasticity is the capability of a software
to adapt itself (ideally in an autonomic manner) to
meet demand changes and/or infrastructure resources
limitations. By analogy with the infrastructure elastic-
ity where IaaS resources (e.g., VMs) are dynamically
adjusted to fulfil SLA contracts, Software Elasticity pro-
vides means for adjusting SaaS resources (e.g., software
components) in a seamless and instantaneous way to
better achieve SLA expectations. As the same principle
of infrastructure elasticity we distinguish horizontal
and vertical scaling :

• Software Horizontal Scaling (HSso f t): in the same
way as for the HSin f ra, HSso f t can be achieved on
the SaaS layer. Then, we introduce SOso f t and SIso f t,
that respectively refers to add (scale out) or remove
(scale in) software components on the fly.

• Software Vertical Scaling (VSso f t): we draw in-
spiration from Infrastructure Vertical Scaling to
extend the Software elasticity capability by adding
an extra scalability dimension called VSso f t that
refers to change the offering of existing compo-
nent. In this case, the different O f fcomp correspond
to variegate the functionalities or non-functional
aspects (e.g., security or logging). Then, we intro-
duce SUso f t and SDso f t, that respectively refers to
scale up or scale down functionalities and/or non-
functionalities to the existing component.

B. Benefits of IaaS and SaaS elasticities complementarity
There are three main benefits in resulting from this

synergy.
Alleviate the use of infrastructure resources: re-

sources cannot be scaled up infinitely and the max-
imum resource utilization can be attained. Changing
the software offering at runtime (e.g., SDso f t) may help
relieving the resources (e.g., CPU, RAM, etc.) and
may allow to absorb few-minutes workload peaks. As
a consequence the starting of new resources in the
infrastructure layer can be avoided, which could be
long and costly [4].

Improve responsiveness of scaling: in order to deal
with highly dynamic environment (e.g., network fluc-
tuations, unpredictable workload), the system must be
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modular and flexible enough but also provide rapid
reconfiguration capabilities. The later requirement is
compromised due to non-negligible resource initia-
tion times, which may take several minutes. Software
elasticity, on the other hand, can be more reactive,
since, in general, it involves lightweight components
whose deployment and initiation take less time than
infrastructure resource ones.

Improve expression capability of elasticity: Table I
summarizes the four scaling dimensions previously
outlined along with the eight underlying APIs. In this
context, Cloud administrator can create more sophis-
ticated reconfiguration plans by orchestrating actions
of different dimensions and then manage finely and
effectively his/her cloud resources.

C. Illustrative Example

In order to illustrate the concept of Software Elastic-
ity, and more specifically the new VSso f t dimension, we
give an example which consists of a SaaS application
from the domain of internet advertisement. The appli-
cation behaves in an autonomous manner by choosing
the appropriate O f fcomp for the advertising component
in accordance with the current workload, the runtime
context and some constraints on the advertisement
quality, the performance and the energy compliance. In
this example, the advertising component provides four
different offerings which are Video HD, Video, Image
or Text. The Video HD and Video offerings provide a
better Quality of Experience (QoE) to end-users than
Image or Text ones but more computation time to
operate the service.

(a) step 1: all SLO are met (b) step 2: workload increase

(c) step 3: infrastructure scaling (d) step 3’: software scaling
Figure 3. Impact of HSin f ra and VSso f t on the response time

Figure 3 shows the impact of HSin f ra and VSso f t
on the response time metric. We voluntarily fixed the
value of the dimensions HSso f t and VSin f ra for a better
understanding. We can see HSin f ra, with the amount
of resources (e.g., number of VMs), on the horizontal
axis and response time expectations on the vertical axis
for a specific workload and request type. The blue axis
represents the VSso f t with the different O f fcomp for the
advertising component.
We consider a SLA established between the end-

users and the SaaS provider. This SLA contains two
Service Level Objectives (SLO) which describe a com-
mitment to maintain a particular state of the service
in a given period. The first one corresponds to a
SLO Response Time indicating that the service must
respond under 1200 ms (purple area). The second one
formally specifies the O f fcomp usage expected by the
end-user and guaranteed by the SaaS provider. In our
example, it is stated that the advertising component
cannot be provided with the O f fcomp Text (green area).
We can imagine SLOs specifying the percentage of
utilization of each O f fcomp (e.g., 75% Video HD, 20%
Video, 5% Image) for a certain time window (e.g., 1
day).
In Figure 3(a), we consider a given workload and

an initial application configuration (infra: 2 VMs ; soft:
O f fcomp HD) which meets all SLOs. Let’s consider, in a
second step (see Figure 3(b)), an increasing workload
which leads to a response time SLO violation with the
actual configuration. In order to retrieve a suitable con-
figuration (i.e., respecting the SLOs), it becomes neces-
sary to reconfigure the application to absorb the new
demand. If we consider each dimension independently
for simplicity, there are two possible reconfigurations:

• (i) increase the number of VMs by executing a
SOin f ra and then balance the load on more workers
(see Figure 3(c));

• (ii) change the O f fcomp by executing a SDso f t and
then reduce the request computation time (see
Figure 3(d)). In this context, it should be noted that
the execution of SDso f t must be done in accordance
with the SLO in terms of O f fcomp usage.

In this simple example, we have considered only
two scaling dimensions instead of the four usable.
Moreover, the suggested reconfigurations involve only
one or the other dimension. As we will see later, it is
possible to make use of different scaling dimensions
within the same reconfiguration plan and then benefit
from their joint use.

IV. Elasticity Strategies for Autonomic Cloud
Services

In this section, we describe our autonomic cloud
elasticity model which relies on dynamic selection of
elasticity strategies.

A. PaaS Autoscaling Service
Our autonomic cloud elasticity model can be likened

to PaaS which aims to manage the elasticity of re-
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Table I
Cloud Elasticity Scaling actions

Scaling Dimension API Name Description

Infrastructure Horizontal Scaling (HSin f ra)
Scale Out Infrastructure (SOin f ra) Add VM(s) to the pool
Scale In Infrastructure (SIin f ra) Remove VM(s) from the pool

Infrastructure Vertical Scaling (VSin f ra)
Scale Up Infrastructure (SUin f ra) Increase offering (O f fvm) of existing VM(s)
Scale Down Infrastructure (SDin f ra) Decrease offering (O f fvm) of existing VM(s)

Software Horizontal Scaling (HSso f t)
Scale Out Software (SOso f t) Add software component(s) to the application
Scale In Software (SIso f t) Remove software component(s) to the application

Software Vertical Scaling (VSso f t)
Scale Up Software (SUso f t) Increase offering (O f fcomp) of existing component(s)
Scale Down Software (SDso f t) Decrease offering (O f fcomp) of existing component(s)

sources (e.g., software component, virtual machines,
physical infrastructure). This kind of service is usually
called autoscaling service. In the rest of this section, we
call Cloud Administrator (CA for short) the person in
charge of the management of the autoscaling service. In
order to manage the Cloud system, CA needs a way
to monitor and act on both IaaS and SaaS resources.
These resources must provide the necessary interfaces,
that is to say, the APIs enabling the PaaS Autoscaling
Service to interact with them.

B. Autonomic Cloud Elasticity Model overview

The autonomous management of our model results
in an implementation of the MAPE-K loop reference
model [2], as shown in Figure 4.

Figure 4. Cloud Resources Model Overview

The MAPE-K loop is applied to a cloud resources
graph. The autonomic manager, that is to say the MAPE-
K loop, interacts with the managed system through two
interfaces that are the sensors and actuators to supervise
and act on the system respectively.
The loop is fed by the sensors following a push

mode which means that the managed system (i.e. cloud
resources) pushes metrics to the M of the autonomic
manager. Based on the received data, M uses Com-
plex Event Processing (CEP [10]) to aggregate metrics
and generate complex high level events which denote
pertinent information about the health status of the
managed system requiring reconfiguration decision.
Events are triggered by M and send to decision part

of the loop for analyse. The decision, which corre-
sponds to A and P phases in our work, comprises
three steps in the form of consecutive filters that we
will detail later in this section. The decision part will
output a reconfiguration plan which to be applied on
the managed system by the E phase through actuator
calls and then meet the problem represented by the
incoming event.
The K comprises data shared among all MAPE

phases such as current cloud resources graph with
associated metrics values, runtime constraints and pref-
erences expressed on the system. It also contains pre-
defined symptoms and reconfiguration plans in the
form of event patterns and predefined actions respectively.
Last but not least, K includes a mapping between
predefined events and actions that results in a cata-
logue of event-action pair called tactics. As we shall
see later, decision part aims to filter these tactics by
confronting them to monitoring, runtime constraints
and preferences expressed by the Cloud Administrator.

C. Resources Model: managed system
We focus on n-tier web applications and we model

a resource hierarchy as follows: each tier of the appli-
cation is composed of virtual machines (VM for short)
accommodating software components. VMs are hosted
on an infrastructure corresponding to a set of physical
machines (PM for short).
Figure 5 illustrates a simple cloud resources model

instance (i.e. managed system) which is a 2-tiers appli-
cation deployed on a 2 PMs’ infrastructure. Each tier
consists of VMs hosted on PM (dash lines). Each VM
contains the software components associated with its
tier. Thus, one can see an instance of the model as a
resource graph composed of two sub-trees. The left one
represents the physical architecture view of the appli-
cation (considering the PM-VM mapping) whereas the
right one gives the logical architecture view (with the
mapping tier-VM).

D. Monitor: events
In our model, each cloud resource has a set of metrics

reflecting its state of health. The managed system ex-
hibits these metrics through sensors making possible to
capture their values at runtime. The monitor phase can
collect and aggregate multiple sensors values over time
in order to make timely relevant information about the
system health status in the form of event.
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Figure 5. Instance of cloud resources model (managed system)

We distinguish two kinds of events: Basic Event and
Complex Event. Basic Events denote pertinent informa-
tion for one metric of one resource. For example, if CPU
consumption of one VM has exceeded a maximum
threshold, generate a HighCPU vm event. Complex
Events are composite events and may involve one or
few metrics of one or several resources with different
time scales. We rely on CEP [10] to generate new
complex events through aggregation and composition
of basic ones. Then, it becomes possible to detect com-
plex relationships between events overtime by defining
correlation rules also known as Event Patterns.
CA can take advantage of the tree structure of the

cloud resources model to define its events patterns
specifying hierarchical-based relationships. Then, he
could define a CEP rule that looks at some nodes’
states according to the parent node’s state relying on
the father-son relationship as shown in red in Figure
5: if the response times observed on a tier exceeds a
maximum threshold (HighRT tier on Tier1) and the
underlying VM(s) have excessive CPU consumption
(HighCPU vm on VM1). This example shows an event
pattern which could generate new kind of complex
event named HighRT tier Overloaded vms by aggre-
gating basic events. The hierarchical structure also
enables to track the temporal evolution of a symptom
watching the propagation of correlated metrics in the
tree overtime as shown in yellow on the same fig-
ure: a response time problem began on Tier1 at t1,
and then appeared on Tier2 at t2 before impacting
the application itself at t3. This example can also be
designed as event pattern to generate complex events
called HighRT upward. Moreover, hierarchical struc-
ture allows to identify trends (upward or downward)
or causal relationships between symptoms.
Based on his knowledge of the system and the

potential help of test team members who performed
scalability tests, CA can define situations or symptoms
that need to pay attention by specifying some Event
Patterns at design time. These patterns are stored in
the Knowledge and evaluated at runtime.

E. Execute: predefined actions

Cloud resources are associated with a set of actions
that can be operated through actuators, offering recon-
figuration capability to the system. The set of actuators

exhibited by the system constitutes its reconfiguration
API.
As for events, we distinguish two kinds of actions:

Basic Action and Complex Action. Basic actions result
in a single actuator call. The basic actions considered
in our work have been listed and detailed previously
in Table I. With software elasticity, it becomes pos-
sible to benefit from the advantages of the different
scaling dimensions by using their related actions in a
smart and coordinated way. We propose the concept
of Complex Action which denotes an orchestration of
basic actions constituting an executable self-contained
reconfiguration plan.
Figure 6 shows an example of complex action using

the BPMN 2.0 formalism. The example meets a need
for additional resources. It involves two scaling dimen-
sions from two layers (HSin f ra and VSso f t) through 3
different basic actions which are composed in parallel
and sequence.
The goal of this complex action is to absorb the re-

source initiation time when a SOin f ra is called and there-
fore face the reactivity limitation previously mentioned.
Concretely, when a need for additional resources occurs
(e.g., HighRT tier - step 1), we execute in parallel a
SOin f ra (e.g., adding one VM to the pool - step 2) and
a SDso f t (e.g., switching the O f fcomp from Video HD
to Image - step 2’) to relieve infrastructure resources
during the initiation of the VM. We wait for a specific
duration (e.g., timer) or until resources are ready (step
3), then we execute a SUso f t (e.g., switching back to
Video HD - step 4) to retrieve a nominal state.

Figure 6. Complex action example: (SDso f t || SOin f ra) ; SUso f t

Another example of complex action could be the
migrate action allowing migration of stateless VM(s)
from a source PM to a target PM. This means execute a
SOin f ra on target PM and wait until VM is ready, then
execute SIin f ra on source PM.
As for events patterns, CA is able to provide a set

of predefined scaling actions (basic or complex) at
design-time relying on its knowledge of the systems
(e.g., following calibration tests) and possibly with
the assistance of architects (system or software). These
actions are stored in the Knowledge and will be applied
at runtime by the MAPE-K loop. We will discuss later
the manner in which the actions are selected.
It should be noted that the number of predefined

symptoms and actions remains reasonable. CA does
not specify thousands of event patterns or actions. This
is an iterative and incremental approach in which the
CA is able to refine its model by adding/removing
symptoms/actions progressively by relying for example
on calibration tests or the behaviour of the application
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at runtime.

F. Reconfiguration Decision
This section aims to present the decision part of our

autonomic platform. We will detail the three different
steps, which take the form of filters, making the bridge
between the M and E phases of the MAPE-K loop.

1) Tactics Filter – Event-Action Mapping: CA is able
to describe situations requiring reconfiguration of the
system, in the form of event patterns, but also possible
reconfiguration plans that it wants to apply to the
system, in the form of predefined actions. Besides,
he needs to make the link between events patterns
and predefined actions. This link is done through the
concept of Tactics, defining a reconfiguration solution
in response to a provisioning issue.
A tactic is actually an event-action pair defined by

CA and representing a well-known IF-THEN statement
(e.g., if(event) then action). Thereby, the CA is able
to provide the mapping between events and actions
which corresponds to establish a catalogue of tactics
stored in the Knowledge. These tactics will be automat-
ically filtered at runtime depending on the triggered
events. When an event occurs at runtime, the Tactics
Filter takes a look at the event-action mapping stored
in the Knowledge, that is to say select eligible tactics
previously defined as solutions to the problem repre-
sented by the incoming event. Figure 7 illustrates the
event-action mapping. We can see a set of predefined
Events which have been designed in the form of event
patterns and a set of predefined Actions. Each pair
(e, a) ∈ Events × Actions defines a tactic. The tactics
catalogue is the set composed of all (e, a) pairs.

Figure 7. Example of Event-Action Mapping

2) Constraints Filter – Context: The runtime con-
text can induce some constraints that may prevent
to execute eligible tactics. Although the monitoring
phase provides a view of the current context within
the various probes values, the system is also faced
with runtime constraints defined on resources. These
constraints can be numerous and various (e.g., budget
constraint, technical restriction, etc.) and are stored in
the Knowledge to be evaluated at runtime. This is the
purpose of the second filter named Constraints Filter
which takes as input the eligible tactics (provided by
the first filter) and the run-time constraints in order
to identify unsuitable tactics and thus outputting only
applicable tactic(s) (see Figure 4).

An example of constraint could be the maximum
capacity of PM in terms of CPU or RAM. In the same
way, an SLO regarding the use of a O f fcomp can be
considered as constraint (e.g., O f fcomp Text can not be
used from 8:00 p.m. to 11:00 p.m.). Such constraints
may limit the scope for reconfiguration by preventing
to apply certain tactics. For example, in the case of
PM capacity constraint, if the maximum capacity of the
PM is reached, adding a new VM (SOin f ra) on it will
be impossible. With regard to the second constraint,
the SLO may limit the use of VSso f t dimension. This
filtering step may be sufficient to identify the tactic to
execute if only one tactic remains applicable, but if it
is not the case, we need a last filtering step.

3) Preferences Filter – Strategy: By specifying the
event-action mapping, Cloud administrator can give
n possible actions to solve a same problem, which is
formalized by n eligible tactics for an event. When an
event occurs at runtime, after applying the first two
filters, it can remain few applicable tactics. Which one
to choose? Are they equivalent? What is the best from
the provider point of view? And for the customers? In
order to answer these questions and decide among the
remaining tactics, we need a last filter based on CA
preferences.
Although the execution of these tactics provide an

answer to the problem, they are not equivalent. Indeed,
there may be several criteria to take into account, as
follows:

• Cost: the financial impact including the price of
the infrastructure and licensing;

• QoS: the effects in terms of QoS;
• QoE: the impact on VSso f t dimension;
• Elasticity Time: the total time required to execute
the tactic;

• Responsiveness: the ability of the tactic to react
quickly. It differs from the elasticity time that
considers the full execution of the tactic.

The list of criteria is not exhaustive and may be
changed or completed depending on the system, the
kind of application, the type of workload, etc. Relying
on its system knowledge and calibration tests, the CA
will give rates on tactics by assigning values to criteria
in the form of strategies and stores them in the K.
In the next section, we evaluate several tactics by

following the calibration process that could be achieved
by the CA. Then, we analyse and discuss the results
in order to present advantages and disadvantages of
each tactic depending on workload scenario and run-
time context. This approach allows the identification of
criteria for comparing the predefined tactics and setting
preferences in the form of strategies. The objective of
our experiments is to provide insights on the criteria
driving the autonomic selection of elasticity tactics.

V. Experiments

In this section, we present an experimental study on
the impact of different tactics over a cloud application
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in terms of reconfiguration actions and performance
(e.g. response time and availability). The final goal of
this is to show how a cloud administrator can define
the strategy filter among a set of tactics.

A. Experimental testbed and configuration
1) Application configuration: We consider a cloud ap-

plication developed in a SaaS-fashion. The application
is architecturally organized in 2-tiers: the first one is the
load balancing tier (lbt), whereas the second one is the
business tier (bt). For the lbt, we rely on Nginx 1.6.2
to distribute workload across our multiple workers
of the bt. The second tier consists of Java application
and a web server Jetty. The software component that
implements the lbt is equipped with software elasticity
capabilities, meaning that it has several offering levels
(O f fcomp). We implement them by gradually increasing
the degree of CPU intensiveness at each level. Finally,
each component instance (of the lbt or bt) is deployed at
a virtual machine, which is offered by the infrastructure
provider.

2) Infrastructure configuration: The experiments were
conducted on Grid’5000 Nancy, by using 7 physical
machines linked by a 20 Gbit/s Ethernet switch. Each
machine has two 2.8GHz Xeon processors (4 cores per
CPU) and 15GB of RAM, running Linux 2.6 Machines.
The used cloud computing platform is Openstack Griz-
zly 1.0.0, which requires one dedicated physical ma-
chine, the cloud controller, to manage the system. Con-
sequently, 6 physical machines are dedicated to host
virtual machines, which in turn, are pre-configured to
run Ubuntu 12.04.

3) Autonomic Manager: Our autonomic manager pro-
cess is hosted on the cloud controller machine. It
monitors the average response time of received and
processed requests by aggregating the lbt’s Nginx logs
in a given time window (in our case 15 seconds).
According to a comparison of this value with two
threshold values, two event patterns can be issued :

• ”High Response Time” occurs when the monitored
value is higher than an upper threshold. It reflects
an under-provisioned system leading eventually to
a SLA violation;

• ”Low Response Time” occurs when the monitored
value is lower than a lower threshold. It reflects
an over-provisioned system leading eventually to
useless operating costs.

In response to High Response Time, the autonomic
manager may execute either SOin f ra, so as to increase
the system’s capacity in terms compute resources
(VMs); SDso f t, in order to absorb more workload with
the same amount of compute resources; or a parallel
composition of these two basic actions, composed in
sequence with SUso f t. Regarding the event Low Re-
sponse Time, the autonomic manager may execute
either SIin f ra so as to free allocated compute resources
or SUso f t to upgrade the QoE by increasing the O f fcomp
(see Table II). For sake of simplicity we do not consider
the basic actions associated with the VSin f ra and HSso f t.

Table II
Definition of tactics used in the experiment

Event Action

High Response Time
SOin f ra
SDso f t

(SOin f ra || SDso f t); SUso f t

Low Response Time SIin f ra
SUso f t

B. Experimental evaluation
1) Experimental setup: We fixed the upper and lower

threshold firing the High/Low Response Time events to
400ms and 20ms, respectively. In the case of the upper
threshold, that corresponds to a threat threshold small
enough to avoid that the response time reaches 1000ms.
With respect to the lower one, it is big enough to
identify an over-provisioning case.
In our evaluation analysis, we considered three ex-

periments. Each experiment directly applies for each
event pattern, i.e. High Response Time and Low Response
Time a unique action (cf. Table II) over the business tier:

• Experiment 1: SOin f ra and SIin f ra, where SOin f ra
(resp. SIin f ra) action adds (resp. removes) one vir-
tual machine;

• Experiment 2: SUso f t and SDso f t, where SUso f t
(resp. SDso f t) action degrades (resp. upgrades) one
level of O f fcomp for each running component in-
stance/virtual machine in the tier;

• Experiment 3: (SOin f ra || SDso f t); SUso f t and SIin f ra,
where (SDso f t || SOin f ra); SUso f t is a composite action
(see Figure 6) which degrades 4 levels of O f fcomp
for each running component instance/virtual ma-
chine in the tier and waits until the virtual machine
resulting from the SOin f ra starts, then it upgrades
back 4 levels of O f fcomp.

Figure 8 shows, through those experiments, the evo-
lution of the state and performance of the business tier
over the time with a given input workload scenario.
A workload value is a number of requests per second
sent to the application. In all sub-figures, this value is
represented by the black curve of the right y axis. The
considered workload scenario lasts 40 minutes and has
three phases:

• First phase: the workload increases during 10 min-
utes with a medium speed-up (0.4 request/sec2)
and then decreases during 3 minutes up to the
starting point;

• Second phase: the workload increases during 10
minutes with a half speed-up of the first phase (0.2
request/sec2) during 10 minutes and then decreases
during 3 minutes up to the stating point;

• third phase: three peak loads are injected at reg-
ular interval characterizing a high speed-up (1.6
request/sec2) for a short period of time.

These three phases enable us to evaluate the con-
sequences of the different considered tactics over the
application with different speed-up value.
During the experiments, we gather and observed the

following metrics:
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• Infrastructure’s Size: the number of running vir-
tual machines (Figures 8(a), 8(b) and 8(c));

• Software Offering (O f fcomp): the offering of the
application, which have 5 different values. The
higher the value, the higher the QoE (Figures 8(d),
8(e) and 8(f));

• Number of Failed Requests: the number of re-
quests which are not able access to the service in
one second (Figures 8(g), 8(h) and 8(i)). This metric
shows the unavailability of the application;

• Average Response Time: the average response
time of processed requests in one second (figures
8(j), 8(k) and 8(l))

The initial configuration, that is, the system configu-
ration before receiving any request, is one component
instance (which corresponds to one virtual machine)
for each tier and the maximum level of O f fcomp for the
component in the bt.
Finally, the reconfiguration execution time is repre-

sented by a green area in Figure 8. Since this primitive
is costly in terms of reconfiguration time, it is interest-
ing to show the behaviour of the application during
the action execution.

2) Analysis and discussion: We can notice that Exper-
iments 1 and 3 follow the same behaviour in terms of
infrastructure’s size (Figures 8(a) and 8(c)): the number
of VMs increases whenever a High Response Time event
occurs during a workload increase. Indeed, as we can
see in Figures 8(j) and 8(l), the action corresponding
to this event starts its execution whenever the average
response time exceeds the upper threshold. Since Ex-
periment 2 is deprived of action SOin f ra, the number of
VMs remains constant (Figure 8(b)) all the time.
Experiment 1 keeps the same level of O f fcomp (Figure

8(d)) since the SDso f t action is disabled, contrary to
Experiment 3, which decreases the O f fcomp at each
occurrence of event High Response Time (Figure 8(f)).
This difference has an impact over the average response
time and the unavailability of the application. Indeed,
in the first phase of our scenario, there is a huge degra-
dation of performance during the reconfiguration exe-
cution of Experiment 1 (Figures 8(g) and 8(j)), whereas
for Experiment 3, we remark a full availability and an
excellent average response time (Figures 8(i) and 8(l)).
This shows that the parallelization of O f fcomp degra-
dation and the SOin f ra allows to absorb the workload
increasing during the reconfiguration period, which
allows the application to keep a constant full availabil-
ity and thus meet the SLAs. However in the second
phase, as can be noticed in Figures 8(g), 8(i), 8(j) and
8(l), Experiments 1 and 3 do not induce a worsening
of performance. Consequently, in Experiment 3, the
O f fcomp has been uselessly degraded. In the third phase
of our scenario, Figures 8(g), 8(i), 8(j) and 8(l) show
that a SOin f ra is inefficient: the performance is degraded
during the peak load in both experiments. Moreover,
the long reconfiguration period (VM initiation time)
makes the new VM useless since it becomes effective
only after the bursts.

Concerning the Experiment 2, Figure 8(e) shows
that the modification of O f fcomp level induces a short
execution time in comparison with the SOin f ra action.
Nevertheless, we can remark an oscillation period
between two successive values when the workload
increases (especially in the phases 1 and 2) implying
that High Response Time event and Low Response Time
are triggered alternatively. This phenomenon can be
explained thanks to two characteristics of the software
elasticity:

• High Reactivity: the new configuration is quickly
operational implying that workload variation dur-
ing reconfiguration execution has no impact over
performance

• O f fcomp levels are too coarse grained: the dif-
ference of performance between two successive
O f fcomp levels is too large, which makes the au-
tonomic manager oscillates. In other words, upon
a High Response Time, the manager is induced to
degrade the level of O f fcomp. At the degraded level,
the performance is too high so the lower threshold
is exceeded and a Low Response Time is fired. This
behaviour is repeated while the load increases.

Figures 8(h) and 8(k) show that this oscillation is
costly in terms of performance. In the third phase, we
can observe that the performance of Experiment 2 is the
same than the other two: we can notice an unavoidable
period of unavailability and response time increase due
to the sharp increase of load. However, Experiment
2 prevents the overhead of a SOin f ra, i.e., it does not
increase the cost of the infrastructure.
According to our autonomic model and the tactics

defined in this evaluation, for the same High Response
Time event, three actions are possible. This mapping
corresponds to the tactic filter of our autonomic model
(cf. Figure 4). Following the filter scheme, in this exam-
ple, the three actions would also pass the context filter.
This filter could be useful if we had a SLA forbidding
the degradation of O f fcomp: in this case only the SOin f ra
action would be applicable. If still, there are sev-
eral possible eligible actions, the autonomic manager
should pick one to be performed. Our experimental
analysis shows that each action has its advantages and
disadvantages depending on the workload as detailed
below:

• SOin f ra action fosters QoE at the expense of reac-
tivity and infrastructure’s cost. It is interesting to
apply it in the case of slight workload increase
because there is no need for the application to
be reactive. Instead, there is a need to continously
increase the amout of compute resource (VMs).

• SDso f t action fosters infrastructure’s cost and reac-
tivity at the expense of QoE. This action makes
sense in the case of bursting workload where
adding infrastructure resources may take too long
to meet sudden changes.

• (SDso f t || SOin f ra); SUso f t action fosters reactivity at
the expense of infrastructure’s cost and punctually
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(a) Experiment 1: infrastructure’s size
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(b) Experiment 2: infrastructure’s size
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(c) Experiment 3: infrastructure’s size
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(d) Experiment 1: Software offering
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(e) Experiment 2: Software offering
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(f) Experiment 3: Software offering
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(g) Experiment 1: Amount of failed requests
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(h) Experiment 2: Amount of failed requests
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(i) Experiment 3: Amount of failed requests
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(j) Experiment 1: Average response time
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(k) Experiment 2: Average response time
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(l) Experiment 3: Average response time
Figure 8. Experimental results

the QoE. This action should be applied in the case
of a workload that increases moderately because
there is a need for both reactivity and continuous
scaling out of infrastructure resources.

Table III summarizes the three identified criteria:
reactivity, QoE and infrastructure’s cost. In this table
+ and − mean positive and negative influence on
criteria respectively. The value 0 means both positive
and negative influence. In conclusion, the Cloud Ad-
ministrator could define a strategy by specifying its
preferences on the criteria. For instance, (reactivity,

QoE, infrastructure’s cost) for an application whose
workload is similar to the first phase of our scenario.

Table III
(Dis)Advantages of tactics according to criteria

Reactivity QoE Infrast.
Cost

SOin f ra − + −
SDso f t + − +

(SDso f t‖SOin f ra); SUso f t + 0 −
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VI. RelatedWork

A. Cloud Elasticity Management
Cloud computing promises to completely revolu-

tionize the way to manage resources. Thanks to in-
frastructure elasticity, resources can be provisioning
within minutes to satisfy a required level of QoS
formalized by SLAs between different Cloud actors.
This can be achieved in a completely adhoc manner by
dynamically adjusting resources according to a set of
predefined auto-scaling rules. Examples of such a kind
of approach are implemented by industrials such as
Amazon Auto Scaling, Microsoft Azure Auto-scaling
Application Block, but also in research work [11] [12].
However, setting up auto-scaling rules in order to

respect SLAs while minimizing service cost is not a
trivial task since many parameters must be taken into
account. For this purpose, an effective Capacity Plan-
ning may require the combination of several solutions
out of different domains. For example, in order to
model systems’ performance, Queuing Theory [13] [14]
can be applied. Alternatively, Reinforcement Learning
[15] [16] and Game Theory [17] [18] might be used re-
spectively to give a more effective performance profiles
or to deal with economy equilibrium and thus improve
resources requirements estimations. Those techniques
can be combined along with operational research tech-
niques such as Constraint and Linear Programming in
order to find solutions that respect the constraints (e.g.,
imposed by SLAs) or even solution that optimizes a
specific criterion such as QoS or cost.
With respect to these works, most of them focus only

on method accuracy and ignore Cloud technical and
conceptual limitations. Some initiatives are interested
in solving technical limitations, such as [19] and [20],
while conceptual limitations (e.g., economic model) are
not addressed. [21] proposes an approach based on ver-
tical scaling to prevent duplicating time for data-base
tier. However, the vertical scaling is not provided by all
IaaS providers or not as hot scaling, which means the
VM needs to be rebooted with potential downtime and
significant initialization time. [19] presents a predictive
model to absorb the initialization time. The accuracy of
prediction method depends on the input window size
and the prediction interval but the authors do not detail
these values. [20] utilizes fuzzy logic to define more
elastic auto-scaling rules but they only focus on qual-
itative specification of thresholds. Furthermore, most
of the auto-scaling solutions consider only low-level
performance metrics (e.g., CPU utilization at IaaS level)
which is a good indicator for system utilization infor-
mation, but it cannot truly reflect the QoS provided by
SaaS application and neither show if application per-
formances meet user’s requirements [22]. Finally, most
of the existing works only deal with the infrastructure
layer whereas only infrastructure elasticity may not
be enough to meet technical or conceptual limitations.
Our work, instead, advocates that the software layer
must take part in the elasticity process to overcome

infrastructure elasticity limitations.

B. Cross-layer Elasticity Management

According to our knowledge, only few studies have
focused on expanding system’s elasticity capability to
the software layer. [23] is interested in architecture-
based self-adaptation. They developed Rainbow [24], a
framework which is similar to a MAPE-K model [2], us-
ing software architectures and a reusable infrastructure
to support runtime self-adaptation of software systems.
For illustration, they rely on the Znn.com case study
(also known as ZAP.com or Z.com), a web-based system
that serves multimedia news content. The objective is
to serve news contents within a reasonable response
time while keeping the resources’ associated cost under
a predefined threshold. In the case of sudden and
unanticipated workload increase, to prevent service
unavailability due to resource elasticity limitations,
Znn.com opts to serve minimal textual content instead
of a multimedia one. In others words, the adaptation
objective is to maximize the QoS and minimize the
infrastructure cost by changing the offering of the
existing component. The Znn.com system’s adaptation
capability allows to act both on the infrastructure and
the software layers. Similarly, our work relies on au-
tonomic computing but we address more concretely
the domain of Cloud computing. In particular, our
approach goes further since we propose a catalogue
of reconfiguration strategies driven by the Cloud ad-
ministrator preferences.
Similar to our work, [25] introduces a self-adaptation

programming paradigm, called brownout, allowing ap-
plications to robustly face unpredictable runtime vari-
ations without over-provisioning. The paradigm is
based on optional code that can be dynamically deac-
tivated through decisions based on control theory. We
propose a broader approach since we rely on a synergy
between infrastructure elasticity and software elasticity.

VII. Conclusion

In this paper, we highlighted the main shortcomings
of the standard Cloud elasticity model. We claimed that
the software layer (SaaS) can take part in the elasticity
process, which could be evidenced with the help of
different examples that demonstrate the advantages of
using infrastructure and software elasticities together,
in a coordinated way, to overcome the current limita-
tions and improve reconfiguration decisions.
First of all, we propose a model for software elasticity

which draws inspiration from the vertical/horizontal
infrastructure elasticity. It results in four dimensions
of elasticity which allow Cloud providers to finely and
effectively manage their cloud resources.
Based on a set of experiments performed on a real

infrastructure testbed, we provided an experimental
analysis and discussion on the use of three elasticity
tactics (i.e., event-action pairs) under different scenarios
in order to provide insights on criteria and preferences
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that could drive the autonomic selection of the proper
tactic(s) to be applied.
We are currently working on the design of a Do-

main Specific Language (DSL) for Cloud Elasticity.
This language, called Elascript, is a scripting language
(with an associated graphical formalism) which offers
a way to define complex and safe reconfiguration plans
simply and concisely. The expressiveness of DSLs can
offer more guarantees and extensive static analysis than
general languages. In this way, Elascript can detect
unbearable code sequences that have no meaning for a
reconfiguration plan (e.g., trying to execute SUso f t and
SDso f t on the same component in parallel) and then
help the Cloud Administrator in its management task.
In the near future, we plan to extend our experi-

ments to numerous tactics involving the four elasticity
dimensions mentioned above with more complex ar-
chitectures and under various types of workload. We
thus hope to refine the list of criteria leading auto-
nomic selection of tactics and model the underlying
preferences as elasticity strategies reflecting high levels
reconfiguration goals.
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