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Abstract—The spot instance model is a virtual machine
pricing scheme in which unused resources of cloud providers
are offered to the highest bidder. This leads to the formation of
a spot price, whose fluctuations can determine customers to be
overbid by other users and lose the virtual machine they rented.
In this paper we propose a heuristic to automate the decision
on: (i) which and how many resources to rent in order to run a
cloud application, (ii) how to map the application components
to the rented resources, and (iii) what spot price bids to use
in order to minimize the total bid price while maintaining an
acceptable level of performance. To drive the decision making,
our algorithm combines a multi-class queueing network model
of the application with a Markov model that describes the
stochastic evolution of the spot price and its influence on virtual
machine reliability. We show, using a model developed for a real
enterprise application and historical traces of the Amazon EC2
spot instance prices, that our heuristic finds low cost solutions
that indeed guarantee the required levels of performance. The
performance of our heuristic method is compared to that of
nonlinear programming and shown to markedly accelerate the
finding of low-cost optimal solutions.

Keywords-cloud provisioning; fluid-approximated queueing
networks; spot cloud; resource allocation; random environ-
ment; application mapping; bidding strategy.

I. INTRODUCTION

Cloud computing is a popular paradigm for offering

compute capacity as a service. In particular, the cloud gives

flexibility to decide and modify the speed, the number,

and the lease time of virtual machines (VMs). There are

several pricing strategies for renting VMs, among which are

often mentioned two categories: on-demand pricing and spot
pricing. On-demand pricing guarantees that a resource is

available for a fixed price, which is proportional to the time

the resource is rented. In spot pricing, instead, resources

are offered at a variable price, called the spot price, which

changes with the market condition. Spot pricing requires

users to bid a maximum price they are willing to pay for.

If the bid price is greater than the current spot price, the

virtual machine will be charged at the spot price. However,

if the spot price exceeds the bid price, the VM can be

suddenly reclaimed by the provider and lost. The advantage

of spot instances is that their price tends to be lower than

the on-demand price. However, their maximum price may

temporarily exceed the on-demand price when the cloud

provider has shortage of resources. This makes the decision

of choosing a bid price both difficult and important. While

a number of works have considered this problem in recent

years [28], [30], [9], [16], the problem of deciding bid prices

in light of performance requirements or constraints on the

application architecture is more complex and still poorly

understood.

In this paper, we want to help users to take maximum

advantage from spot instances by supporting the following

decisions:

• What type of virtual resources should be rented for a

given application?

• How to efficiently map the components of an applica-

tion (e.g., web server VMs, a database VMs) to the

rented resources?

• What is the lowest bid price that still allows to fulfill

quality of service requirements?

Specifically, we focus on applications developed accord-

ing to the model-driven engineering approach, in which a

performance model of the application can be automatically

generated through model-to-model transformations. For ex-

ample, queueing networks can be automatically generated

from UML or Palladio Component Model diagrams [21], [3].

The problem of executing the decisions, such as concretely

migrating the virtual resources is out of the scope of this

paper, which focuses on the decision problem.

The main technical innovations of this paper are as

follows:

• a polynomial-time heuristic to jointly solve the bidding

and allocation problem, which are in general NP-hard;

• what is, to our knowledge, the first application in the

area of bidding of extended queueing network models

that include a model of the operational environment.

The latter, which is referred to as random environment
model [6], captures the stochastic nature of the opera-

tional environment, in which VMs can be suddenly lost

as a result of spot price fluctuations.

• the use of advanced fluid analysis techniques to accu-

rately approximate response time percentiles, which are

commonly used to constraint performance in service-

level agreements, but which are usually hard to compute

in queueing networks. Compared to more complex

approximations for accurate percentile assessment, such

as Laplace transforms, this method is fast enough for

run-time application.

2015 International Conference on Cloud and Autonomic Computing

/15 $31.00 © 2015 IEEE

DOI 10.1109/ICCAC.2015.21

57



Our heuristic can quickly find a local optimal solution. We

validate accuracy of this solution by considering the queue-

ing network model of a real enterprise resource planning

(ERP) application and real historical data of Amazon EC2

spot prices. We compare our results with an approach that

uses a nonlinear optimization algorithm and show that our

heuristics provides better results in less time.

The rest of this paper is organized as follows. Sec-

tion II gives a motivating example. Section III discusses

the problem statement and defines the reference model.

Section IV presents our heuristic, that is later evaluated in

Sections V and VI. Section VII surveys related work. Lastly,

Section VIII concludes the paper and outlines possible

extensions.

II. MOTIVATING EXAMPLE

Let us consider a real multi-tier cloud application, such

as the SAP ERP [23]. This application is composed of two

components: an application server and a database server. The

application must also satisfy some quality requirements in

terms of response time in fulfilling requests. The problem

we want to solve is to find the cheapest way to run this

application on a spot cloud system while maintaining the

quality requirements. To help making this decision we

assume to have the following information: (i) a performance

model of the application, which can be represented as a

queueing network as shown in [23]; (ii) current and historical

pricing of the resources that can be rented by the cloud

provider; (iii) a quality requirement in terms of constraints

on the response time.

For example, assume that, after analyzing the performance

model of the application and the expected load, we need

VMs with different computational requirements (expressed

as Amazon Elastic Computing Units, ECUs) for the appli-

cation server and the database server. Then, we have a very

large decision space on how to deploy them in a cloud infras-

tructure if we have multiple types of resources characterized

by different prices and speeds, such as in Amazon EC2.

Figure 1 shows four examples of deployment characterized

by an increasing level of deployment complexity. In the

first deployment, we make the most intuitive decision, that

is to choose the two cheapest resources that can fit the

two VMs of the application. In the second deployment we

can take advantage of cheap large resources by deploying

multiple VMs inside a single large cloud resource. In the

third deployment we can take advantage of cheap small

resources by replicating application VMs into multiple cloud

resources with the help of a load balancer. Finally, in the last

deployment we can choose the cheapest VM of any size by

combining the two previous deployment approaches, thus

obtaining the highest degree of flexibility and cost-saving

potential.

In our approach we consider the most complex case

and also consider that the deployment decision is not only

affected by the size of the cloud resources, as in the

deployment example above, but it should take into account

also additional real-world characteristics that may affect the

overall system performance:

• number of CPUs, since having multiple CPUs does

not always correspond to a proportional increase in the

system throughput;

• load balancing, since balancing the load among multi-

ple VMs does not always correspond to a proportional

increase in the system throughput with respect to using

a single resource of the same type;

• availability, since a spot instance has a possibility to be

lost and become unavailable for some time.

With respect to existing solutions such as [28], [9], [16],

we want to increase the level of accuracy by using fluid-
approximated models based on differential equations to

evaluate the system response time. These systems have been

shown in [21] to be able to scale well with respect to the

system size and to provide information about the distribution

of the response times of the overall system in addition to

the average. Moreover, the fluid-approximated models can

be easily used with tools like LINE [20], [22] to perform

random environment analysis. Random environments are

stochastic models used to describe events occurring in the

environment a system operates in [6]. In our particular

situation we model the random environment around spot

price fluctuations, so to take into account their effect when

computing the mean response time and the response time

distribution.

III. SYSTEM MODEL AND PROBLEM STATEMENT

A. System Model

We begin by considering a model for the system under

consideration. The system model we propose is composed

of the following two parts: application and resources. Our

goal is to determine the rental and allocation policies, which

consist in the amount of computational resources to be

rented from a cloud provider, the mapping of the various

application components to these resources, and finally the

bid price for each resource.

Application: We model the application as a closed queue-

ing network QN of M software servers (representing the

application components), a delay node (representing user

think time), K classes of requests, and a set of constraints on

the response time that we defined as Service Level Objective

(SLO). A detailed list of application parameters is shown in

Figure 2a.

Resources: We consider an environment that has R + 1
available resource types. Type 0 is a special virtual type

used to represent unallocated resources that have zero price

and zero rate. Each resource is characterized by a certain

rate (processing speed) and a certain number of processors.

Moreover, by using historical traces we can also associate
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Figure 1. Different strategies for deploying the application components of the SAP ERP application to cloud resources. Application components are
represented as circles with size proportional to their ECU requirements. Cloud resources are represented as rectangles with size proportional to their ECU
availability. From left to right we show deployment strategies with an increasing level of flexibility and therefore increasing cost-saving potential. The last
deployment is the most complex to decide, since it allows multiple application components to be deployed on multiple resources of different types, but it
also offers the possibility to use a mix of the cheapest cloud resources.

pm1,m2,k Probability for a request of class k to visit node m2 after
completing service at node m1.

μm,k Class service rate. Number of class-k requests completed
at software server m in a time unit.

σk Delay node service rate. Number of class-k requests
completed at the delay node in a time unit.

Nk Total number of users of class k in the system. Each user
represents a request. This parameter specifies the system
workload.

maxMRTk Maximum mean response time for class-k requests.

maxRTPk,u Maximum response time for the class-k requests in the
u-th percentile.

(a) Application parameters.

Y ∈ N Total number of resources that can be rented.

T rental time period.

A minimum percentage of time in which resources are
expected to be available.

λ(r) Nominal service rate of resources of type r. The value of
λ(r) is calculated as the sum of the nominal service rate
of each processor of the resource, and is a measure of the
total computational capacity (e.g., it may be proportional
to Amazon’s ECU [1]).

q(r) Number of processors (CPUs) of resources of type r.

o(r) Minimum bid price for renting a single resource of type
r for a fixed amount of time T , such that the availability
of the resource is at least A. This value can be obtained
from historical traces of resource type r and calculated as
the minimum bid price that results in an average outbid
percentage of at least A for such price.

c(r) Expected price for renting a single resource of type r for
a fixed amount of time T when bidding o(r).

(b) Resource parameters.

Figure 2. System parameters.

to each resource a minimum bid price for obtaining an

acceptable level of availability, and the actual price that we

expect when bidding such bid price. More details on the

application parameters are described in Figure 2b.

B. Decision Variables and Problem Statement

The system monitors periodically the environment, then

it tries to self-adapt the number of cloud resources rented,

and the deployment of the software servers on them to

optimize the prices and still meet the service requirements.

To avoid performance degradation at run-time due to mi-

gration and reallocation of software servers, we assume that

old resources are deallocated only when the new ones are

fully initialized and ready to accept jobs. Based on the

considerations above we define our decision variables as

follows:

• t = [ty], 1 ≤ y ≤ Y . Resource assignment vector: this

is a vector that assigns a resource y to a resource type

ty ∈ N[0,R]. From this parameter we also define:

– λ̂y := λ(ty): rate of the resource y.

– ĉy = c(ty): price of the resource y.

• D = [dm,y], 1 ≤ m ≤ M , 1 ≤ y ≤ Y . Allocation
matrix: where dm,y ∈ R[0,+∞) assigns part of the rate

λ of each resource y to each software server m.

The goal is to decide a resource assignment vector t and

an allocation matrix D that minimize the sum of the prices

of all rented resources. A formalization of the optimization

problem is the following:

min
∑

y=1,...,Y

ĉy

s.t.
∑

m=1,...,M

dm,y ≤ λ̂y, ∀y

MRTk(D) ≤ maxMRTk, ∀k
RTPu,k(D) ≤ maxRTPu,k, ∀u, ∀k
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Figure 3. State diagram showing all the steps of our decision-making
approach. The approach can be seen as an autonomic feedback loop since
it adapts the system at periodic interval by using the most updates prediction
data available for the resource prices and the application load.

The first constraint states that it is not possible to allocate

to a resource a rate that is larger than the rate of its resource

type. The other constraints state that the calculated mean

response time and the response time percentiles should be

lower than their respective maximums, where MRTk(D)
and RTPu,k(D) are nonlinear functions to calculate the

mean response time and the response time percentiles. These

functions have all the decision variables and the system

parameters described in Figure 2 as input, which are omitted

to simplify the notation.

IV. APPROACH

A. General Idea

The general idea of our approach is to decompose the

main problem into simpler subproblems that are solved in

an iterative way. Each subproblem obtains its input from the

solution of the previous subproblem, as shown in Figure 3:

the numbered blocks in the figure represent the subproblems

we solve. Our approach is then repeated at regular intervals

as a method of pro-active self-adaptation, or in response to

unexpected situations that cause a run-time SLO violation

as a method of reactive self-adaptation. A general idea of

each subproblem we address is described as follows, while

details are given in the next subsections.

1. Choosing the minimum computational requirements for
each application component. In this step we decide the

minimum computational requirements in terms of resource

rates (e.g., Amazon’s elastic computing units, or simply

ECUs) that are needed by each application component to

satisfy the quality requirement. At this stage we do not

consider the available resources, but we just determine the

ECU requirements of the application.

2. Choosing the resources to rent. In this step we calculate

the bidding price that guarantees a minimum availability

level for the resources and, based on it, we decide which re-

sources to rent. The sum of the ECUs of the rented resources

should be large enough to fulfill the ECU requirements of

the application decided in the previous step.

3. Choosing the allocation of the application components
to the resources. In this step we decide how to allocate the

different application components into the rented resources

to minimize the negative effects of allocation (e.g., the re-

duction in performance due to load balancing, as it happens

in the third deployment example in Figure 1).

4. Analyzing the overall system and possible scaling-up of
bottlenecks. The performance of the overall deployed system

is analyzed again taking into account the overhead added

by the presence of multiple CPUs and load-balancing. This

is also the step in which we consider the effects of the

random environment in terms of possibility of losing spot

instances in case of overbid of the chosen bid price. If this

analysis shows that the chosen resources and allocation do

not fulfill the quality requirements anymore, the application

ECU requirements of the bottleneck software servers are

increased to compensate, and new resources/allocations are

decided.

B. Finding the optimal rate for each software server

In this step we want to find a first approximation of

the solution of the global problem by assuming that each

software server m is deployed on a dedicated hypothetical

resource that provides the minimum rate μ̂m to process

requests such that the SLO constraints are satisfied. In

this step we do not consider the characteristics of the real

resources (e.g., number of processors, prices, and the random

environments information) since a decision on which one

to rent will be done in the next steps. The goal of this

optimization problem is to decide the minimal rates μ̂m that

fulfill the constraints on the mean response time and on the

response time distribution.

min
∑

m=1,...,M

μ̂m

s.t. MRTk,(μ̂) ≤ maxMRTk, ∀k
RTPu,k(μ̂) ≤ maxRTPu,k, ∀u, ∀k

To solve this subproblem we use a greedy algorithm that

scales down the rates of all the resources as much as it can

until one or more bottleneck resources are found for the class

of jobs that is closest to the boundary of the constraints. At

this point, the rates of the bottleneck resources are fixed, and

the algorithm continues to scale down the remaining rates,

until all of them have been fixed in the same way.

The pseudocode listing of the algorithm is shown in

Figure 4. The function receives as input an initial set of
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1: function FINDOPTIMALRATES(μ̂init, S)

2: μ̂, μ̂min ← 0
3: μ̂max ← μ̂init

4: r = 1, . . . , S.M � Set of undecided rates

5: while r �= Ø do
6: μ̂(r)← (μ̂min(r) + μ̂max(r))/2
7: if SLOsatisfied(μ̂, S) then
8: μ̂max ← μ̂
9: else

10: vc = findV iolatedClasses(μ̂, S)
11: bn← findBottleneckForClasses(r, μ̂, S, vc)
12: μ̂min(bn)← μ̂(bn)
13: end if
14: if max

r
(μ̂max(r)− μ̂min(r)) < ε then

15: vc← findClassClosestToSLO(μ̂, S)
16: bn← findBottleneckForClasses(r, μ̂, S, vc)
17: r ← r − bn
18: end if
19: end while
20: μ̂← maxRates
21: return μ̂
22: end function

Figure 4. Algorithm for finding the minimum rates μ̂ for each software
server.

SLOsatisfied Checks whether the SLO constraints on the
response time are satisfied or not.

findViolatedClasses Finds the set of classes that violate the SLO
constraints.

findBottleneckForClasses Finds the software servers that are bottleneck
for the specified classes.

findClassClosestToSLO Finds the class that is closest to violating
one or more SLO constraints on the response
time.

Figure 5. Auxiliary functions that are based on the results of a queuing
network evaluation.

arbitrarily large feasible rates μ̂init, and the system model

S that contains all the parameters of the application and

the resources described in Section III. It returns the optimal

rates for each software server as vector μ̂. The variable

r is initialized as the set of all available resources that

can be scaled. Then, all resources are scaled down using a

bisection method until the constraints are violated: minimum

rates are increased when the constraints are satisfied and

the maximum rates are decreased when the constraints are

violated. When the minimum and maximum rates are close

enough, the current bottleneck resources are removed from

r and the process continues until r is empty. At this point

the rate calculated so far is returned as our optimal μ̂. The

auxiliary functions used in the algorithm (briefly described

in Figure 5) are directly derived from the evaluation of the

queueing network and simple operational analysis laws.

C. Finding the real resources to rent

In the previous step we calculated the computational needs

in terms of rates of the virtual resources. In this step we

want to decide which real resources to rent to provide

such computational needs at minimal expense. To make this

decision we consider for each real resource y a mean price

equal to ĉy , that can be obtained from historical traces given

a certain level of desired availability. The goal is to minimize

the sum of these costs while ensuring that the rates of all

rented resources are large enough to allocate the rates found

as the solution of the previous problem.

min
∑

y=1,...,Y

ĉy

s.t.
∑

y∈1,...,Y

λ̂y ≥
∑

m∈1,...,M

μ̂m

This subproblem is a classical integer linear-programming

problem (ILP) since the decision variables are integers,

and the constraints and the objective functions are linear.

This is a well-known NP-hard problem in which we can

find an approximate solution using any ILP solver. We

implemented a function findResourcesToRent to interface

with the MATLAB intlinprog solver, which accepts the rates

of the software servers μ̂ and the system parameters S as

inputs, and returns the resource assignment vector t.

D. Finding the allocation of the rate for each software
server to the real resources

In this step we want to find a good allocation of the

rates found so far for each software server to the rented re-

sources. We can combine the allocation of multiple software

servers to a single resource and the replication of a single

resource to multiple software server, as in the last example

of deployment of Figure 1. The allocation decision should

minimize the overhead due to load balancing by minimizing

the number of associations (am,y) between software servers

and resources while still ensuring: (i) that each software

server obtains at least its minimum rate μ̂m, (ii) that each

rented resource y is not providing more than its maximum

rate λ̂y .

min
∑

m=1,...,M

∑
y=1,...,Y

am,y

s.t. am,y =

{
1 if dm,y �= 0

0 if dm,y = 0
, ∀m, ∀y

∑
y∈Y

dm,y ≥ μ̂m, ∀m
∑
m∈M

dm,y ≤ λty , ∀y

To solve this problem we propose an algorithm that finds

an approximate allocation by allocating the rates of the
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1: function FINDRATEALLOCATION(μ̂, λ̂)

2: d← 0
3: while max μ̂ > 0 do
4: mmax ← argmaxm = μ̂(m)
5: ymax ← argmaxy = λ̂(y)

6: transfer← min(μ̂(mmax), λ̂(mmax))
7: d(mmax, ymax)← d(mmax, ymax) + transfer
8: μ̂(mmax)← μ̂(mmax)− transfer
9: λ̂(ymax)← λ̂(ymax)− transfer

10: end while
11: return d
12: end function

Figure 6. Algorithm for finding the allocation of the rates of the software
servers to the real resources.

software servers having the largest non-allocated rate to the

real resources having the largest available capacity in an

iterative process until the rates of all software servers have

been allocated.

A listing of this algorithm is shown in Figure 6 as the

findRateAllocation function. This function takes as input

the rates μ̂ we have previously calculated using the find-
OptimalRates function, and the rented resource rates λ̂y ,

which can be derived from the vector of types ty calculated

using the findResourcesToRent function with the relation

λ̂ = λ(ty). In each iteration of the algorithm we find the

software server with the highest rate mmax and the rented

resource with the highest rate ymax. Then, we allocate the

maximum rate between the rate of mmax and the rate of

ymax by increasing the corresponding value in the allocation

matrix dmmax,ymax . To avoid reallocating previously allocated

rates, we decrement both the rate of mmax and the rate of

ymax by the allocated value. The process is repeated until all

the software servers have zero rate.

E. System analysis and scaling-up of the bottleneck server

In this step we check if the SLO constraints still hold

when considering the system allocated using the resource

assignment vector t and the allocation matrix D found

in the previous steps. In our implementation we use the

LINE tool [20] to evaluate the mean response time and

the response time percentiles, which considers also real

resource parameters such as the number of processors, the

load balancing, and the random environment model that

describes the possibility for a resource to be lost when it

is overbid.

If, after calculating the response times, the SLO con-

straints still hold, we can stop here and return the decision

variables t and D calculated so far. These will be used to

reconfigure the system and apply the resource rental and

allocation decisions.

If the SLO constraints do not hold anymore, it means that

the real resource parameters of the proposed allocation had

1: function FINDBOTTLENECKM(μ̂, S, α)

2: bestSLOcompliance← −∞
3: m∗ = Ø
4: for m ∈ 1, . . . , S.M do
5: μ̂tmp ← μ̂
6: μ̂tmp(m)← μ̂tmp(m)× α
7: t← findResourcesToRent(μ̂tmp, S)

8: λ̂ = S.λ(t)
9: d = findRateAllocation(μ̂tmp, λ̂)

10: SLOcomp← calcSLOcompliance(μ̂tmp, d, S)
11: if SLOcomp > bestSLOcomp then
12: bestSLOcompliance← SLOcomp
13: m∗ = {m}
14: else if SLOcomp = bestSLOcomp then
15: m∗ = m∗ ∪ {m}
16: end if
17: end for
18: return m∗
19: end function

Figure 7. Algorithm for finding the bottleneck software servers.

a negative effect on the performance. This can be corrected

by identifying one bottleneck server m∗ and increasing its

rate by a scaling factor α, which is calculated proportional to

the amount of constraint violation. The bottleneck software

server is identified as one of the servers that, when scaled-up

by α, have the best effect in reducing the constraint violation

of the SLO. To calculate the SLO constraint violation we use

the following method. Given a set of i constraints rewritten

in the form V < 0, where V = [vi], we define the SLO

constraint violation as the maximum value in V . A positive

constraint violation means that at least one SLO constraint

has been violated.

Finally, to actually determine bottleneck software servers

m∗ we propose the findBottleneckM function, which is

shown in Figure 7. This function iterates all the software

servers, trying to scale each one up by α and saving the

information of the software servers m∗ that result in the

best reduction of constraints violation. The algorithm then

simply recalculates the new resource allocations that would

be needed when scaling-up the rate of each software server.

Once the bottleneck software servers have been found, we

just scale their rate up by α and go back to recalculate the

real resources to rent.

F. Convergence of the approach

In this concluding section we give some final remarks on

the convergence of each step of our approach.

The problem of finding the optimal rate (step 1) has a

guaranteed convergence since it uses the bisection method

for fixing the rate of the M resources associated to the

software server. The maximum number of queueing network

evaluations needed is O(M × log2(max(μ̂init))), where M
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is the number of software servers and μ̂init is the vector

containing the initial random feasible rates that are given as

input to the findOptimalRates function.

The problem of finding the real resources to rent (step 2)

is NP-hard and solved using an approximated ILP solver.

The convergence and the complexity of this step therefore

depends on the ILP solver used and its parameters. In this

step no queueing network evaluations are performed.

The problem of finding the allocation (step 3) has a

guaranteed converge since at each iteration some rate is

transferred from the software server with the maximum

unallocated rate to the rented resource with maximum rate

availability. The maximum number of rate transfers happens

when all the M software servers are transferred to all the

Y rented resources, therefore the number of iterations of

this step is O(M × Y ). Similarly to step 2, this step does

not perform any queueing network evaluation during its

iterations.

Finally, in the last step it is possible that the final solution

computed is not feasible (i.e., it violates the constraints). In

this case we need to search for bottleneck servers and scale

them up by a factor α. The algorithm to find the bottlenecks

tries to scale-up all the software servers one by one, thus

resulting in O(M) queueing network evaluations for each

search. Each search guarantees that the bottleneck resources

speed is increased, thus progressively reducing the violation

of the constraints until an optimal solution is found. In some

limit situations it is possible that an increase in the rate

of a bottleneck resource does not reduce the violation of

the constraints, which would prevent the convergence of our

approach. These limit cases happen when the contribution to

the response time added by the load balancing, the multiple

number of processors, and the random environment is too

large to be compensated by an increase in rate. Examples of

these limit situations are cases with very low resource rates

or in which bid prices are characterized by a very low level

of availability. In our experiments based on real data we did

not experience any of such limit cases, which leads us to

think they are contrived examples.

V. EVALUATION SETTING

The purpose of our evaluation is to give an overview

of the behavior of our approach when applied to queueing

network models based on real data. In particular, we use

public application data measurements from a real SAP ERP

study from [23]. For the resources model we use historical

traces of spot prices of Amazon EC2 that can be downloaded

from [10] and cover a 14-month period up to January 2011.

Finally, we instantiate our problem using the generic non-

linear solver provided by MATLAB to compare it with

our approach. The remainder of this section discusses more

in detail the hardware, software, and application models

we used to perform our experiments. The results will be

presented in Section VI.

A. Hardware and Software

We performed our experiments using a 2.5 GHz Intel Core

i7 quad-core processor with 16 GB of RAM running OS X

10.10.3 and MATLAB R2015a. We also used LINE [20]

to predict the response times of our queueing network, and

we implemented all the functions described in Section IV as

MATLAB functions. To allow the evaluation of the effect of

allocating the VM of a software server to multiple resources

(i.e., replicating it), we have implemented a function to split

the nodes of the queueing network according to their appli-

cation to real resources (allocateQN, splitStation); moreover,

we have implemented an alternative solution to the problem

using MATLAB fmincom nonlinear solver configured with

an interior point algorithm, which we refer as the exact
approach. This alternative solution considers exactly the

same model we solve with our heuristic, but without any

particular optimization that can guide the algorithm toward

the proper solution. We have chosen this generic solution

due to the limited availability of existing approaches that

adopt our model formulation.

For the sake of simplicity we omit accurate descriptions

of these functions, but they can be downloaded, with all

the other MATLAB code we have implemented, from [10].

The provided code can be used to repeat our experiments or

to interface it with the run-time monitoring and adaptation

module of a cloud system to perform follow-up research on

the full autonomic adaptation loop.

B. Application Model

We use an application model based on previous measure-

ments of an industrial enterprise resource planning (ERP)

application, SAP ERP. The data of this model and its queue-

ing network representation have been derived from [23]. The

application model is represented as a queueing network with

exponentially distributed service times, M = 2 software

servers (representing respectively the CPU of the application

server and the CPU of the database server), a delay node

representing the user think time, and K = 3 classes of

requests, which are:

• dialog step requests: process and update data on the

client-side through the graphical user interface;

• update requests: higher priority asynchronous update

requests that may be triggered by a dialog step request;

• update2 requests: lower priority asynchronous update

requests that may be triggered by a dialog step request.

The SAP ERP application included additional types of

requests, but in the study we are using as reference they were

ignored because of their negligible effects on the response

times. From the paper we used the information of the service

demands, number of users, and number of transactions at

each software server and for each class. From this infor-

mation, we were able to determine a value for the class

services rates (μm,k) and the routing probabilities (pi,j,k). A
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Application
Server

Database
Server

Delay Station

Figure 8. Queueing network representation of the SAP ERP application.
The delay station models the user think time, and it is represented as a
station with infinite servers. The application server and the database server
are represented as regular queues.

Table I
SAP ERP PARAMETERS

Server/class Service demand [ms] Service rate μm,k [req/ms]

AS dialog step 119.82 0.008346
AS update1 47.92 0.02087
AS update2 32.98 0.03032

DB dialog step 4.541 0.2202
DB update1 1.205 0.8299
DB update2 0.3043 3.286

graphical representation of the queueing network is depicted

in Figure 8. In [23] the authors just give an estimation of

the overall service demands on the database server, without

distinguish the classes of requests. To overcome this problem

we assume that the database CPU demand is distributed

across the different classes proportionally to the number of

users for such classes. The data we have obtained for the

class service rate can be seen in Table I, which is calculated

as the inverse of the service demand. Additional application

parameters are the following:

• Ndia (number of users that issue dialog step requests)

is arbitrary, but Nupd (number of users that issue update

requests) and Nupd2 (number of users that issue update2

requests) are assumed dependent on it, as explained in

Section 3.4.1 of [23]. Therefore we consider Nupd =
0.2652×Ndia and Nupd2 = 0.06657×Ndia.

• σk is 0.0001 for all service classes, since we assume

an average think time of 10 seconds for each class of

users in the system.

C. Resource Model

To determine the resource model we use Amazon EC2

historical spot price traces for each type of resources that

are available as text files in [10]. Each line of each trace

contains the timestamp and the updated market price for
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Figure 9. Example of Amazon EC2 spot instance trace for a Windows
m2.xlarge VM of the EU-west-1 zone. The trace shows the spot price
fluctuations for 100 hours starting on November 30, 2009.

such resource. An example of 100 hours trace is shown in

Figure 9.

We used these trace files to determine the resource param-

eters introduced in Section III. In particular, the minimum

bid such that the expected life of the resource is as follows:

MeanLifeTime =
MeanRecoveryTime×A

1−A
(1)

Where A is the desired availability of the resource, and

MeanRecoveryTime is the average time needed to restart an

outbid resource, that is the actual time the resource is unable

to process requests after being lost. We run our analysis on

some m1 and m2 Windows instances of the west-eu Amazon

EC2 zone. We consider MeanRecoveryTime = 810s, since

it is the typical time to restart a Windows instance, as

reported in previous work [18]. After running the analysis,

we obtained the parameters shown in Table II, which are

the ones we will use in our evaluation. The first column

represents the type of the resource, the second the rate of

the resource, expressed as Elastic Computing Units (ECU),

the third the number of CPUs, which may impact the overall

performance. The other columns show the maximum bids

and the actual prices for different levels of availability ex-

pressed in US dollars. We represent the random environment

of the system as the Continuous-Time Markov Chain in

Figure 10, which expresses the two possible states of each

resource: available (when it is able to process requests) and

unavailable (when it is not able to process requests because

it is being recovered). Our code for generating our resource

model is contained in the class Survival, available in [10].

Since the application model has the rates expressed as

requests/sec using a reference system that is not expressed

in ECU, we have found the conversion rate 1 ECU = 65.1

requests/sec by choosing a rate to the SAP ERP application

such that the response time with 1 ECU is equal to the

response time measured in [23].
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Table II
SPOT PRICES OF AMAZON EC2

Resource Rate
ECU

CPUs Max bid to
have A=90%

Actual prices
when A=90%

Max bid to
have A=95%

Actual prices
when A=95%

Max bid to
have A=99.9%

Actual prices
when A=99.9%

r λr qr or|A = 90% cr|A = 90% or|A = 95% cr|A = 95% or|A = 99.9% cr|A = 99.9%

m1.small 1 1 0.067 0.0653 0.068 0.0659 0.07 0.067
m1.large 4 2 0.266 0.260 0.271 0.2622 0.28 0.2672
m1.xlarge 8 4 0.534 0.5204 0.538 0.5222 0.559 0.5333
m2.xlarge 6.5 2 0.325 0.3139 0.329 0.3164 0.336 0.3203

m2.2xlarge 13 4 0.735 0.7148 0.737 0.7157 0.769 0.7337
m2.4xlarge 26 8 1.468 1.4321 1.47 1.4342 1.54 1.468

Available
Not 

Available

1/MeanLifeTime

1/MeanRecoveryTime

Figure 10. CTMC representing the random environment. In our problem
the random environment models the possibility for a resource to be
unavailable because of an outbid. The rate for becoming unavailable is the
inverse of the resource MeanLifeTime, while the rate for becoming available
again is the inverse of MeanRecoveryTime.

VI. EXPERIMENTS AND RESULTS

We evaluate the real SAP ERP application described in

the previous section under different scenarios characterized

by a variable number of users to analyze the scalability; with

different SLOs, to analyze the behavior in more challenging

situations; and finally with a different level of availability, to

analyze the effects of the random environment. In each sce-

nario we measure the expected hourly price of the resources,

the time needed to compute the solution on our system, and

the number of queueing network evaluations.

A. Varying users

In this experiment we vary the number of dialog users in

the system from 500 to 10.000. We fix a SLO that consists of

a maximum average response time of 100ms and a maximum

80th percentile of the response time distribution equal to

200ms. Finally, we consider a random environment with

availability equal to 95%. By looking at Figure 11 we can

see that both our approach and the exact one tend to have

a price that grows proportionally with the number of users.

The total number of queueing network evaluations tends to

be similar for different number of users: in the case of our

heuristic we have the convergence at around 25 evaluations,

while in the exact approach we often reach the cap of 100

evaluations that has been set to keep the comparison fair.

Interestingly, we can see that the execution time is not

proportional to the number of evaluations. The reason for

this is that the actual time for one queueing network evalu-

ation is proportional to each assignment of software server

to a cloud resource. Our heuristic intentionally reduces the

level of fragmentation of the assignments to the resources

to reduce the overhead due to load balancing, while the

exact approach explores too many alternatives that include

situations with a high level of fragmentation (i.e., software

servers are assigned to a high number of rented resources).

B. Varying SLO

In this set of experiments we show what is the effect of

different SLOs constraints on the total hourly price of the

system. We consider a maximum response time maxMRT
that varies from 70ms to 300ms, a value of maxRTP80 =
2 × maxMRT, 2000 dialog users, and an availability equal

to 95%. The results in Figure 12 show that there is an

increase in price when the SLOs are more challenging for

both algorithms; however, our approach is still better than the

exact one for every different SLO we have considered. From

this experiment we can also notice that when the situation

becomes more difficult (stricter SLO), we have a significant

increase in the number of evaluations and in the time to find

the solution. The explanation is that when the SLO is too

strict our heuristic requires an increasing number of scaling-

up steps.

C. Varying Availability

In this other set of experiments we show the effects

of different availabilities for the resources, which directly

affect the bid price and the probability for a resource to be

lost. We consider the cases varying from 90% to 99.9%,

while keeping 2000 dialog users, maxMRT = 100ms, and

maxRTP80 = 200ms. In Figure 13 we observe that, as we

reach the maximum availability the price increases since

the system is bidding higher. As we reach the minimum

availability we also observe an increase in price since more

resources are needed to compensate the failing ones. The

best situation is a conservative tradeoff such as 95%, which

takes advantage of relatively low spot prices, with a level

of availability that is low enough that it does not affect our

SLO significantly to require replication. Also in this case

our heuristic has a faster converge in terms of time and

number of queueing network evaluations than the competing

approach for the same reasons we have seen in the other

experiments.
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Figure 11. Experiment results when varying the number of users.
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Figure 12. Experiment results when varying SLO. The SLO is a maximum limit on the mean value of the response time calculated for a rental time
period T .

D. Discussion

In this analysis we have seen that our approach is able to

outperform an exact algorithm that is based on the MATLAB

fmincon interior-point solver. The reason for this result is

that our heuristic is able to choose the resources with the best

price/ECU ratio and to allocate the application components

in such a way that they are not fragmented among cloud

resources unless the number of resources is smaller than the

number of components. If the number of resources is small,

such in the case of 500 users, there is minimal difference

between our approach and the exact one. As the number

of users increases, or the SLO becomes more restrictive,

or the availability decreases, we need more cloud resources

to fulfill the SLO. When the number of resources becomes

larger than the number of application VMs, the exact ap-

proach is not able to choose the correct size of the resources

since it tries to resize the partitions of multiple resources,

leading to oscillations and slow convergence. The high

number of partitions also results in a higher time to evaluate

the fluid-approximated queueing network, which ultimately

results in large total execution times. Unfortunately, due to

the limitations of fmincon we could not express a fitness

function that was good enough for the exact approach to

converge in every situation. However, in situations in which

we observed convergence, the computation of the result was

always significantly slower.

VII. RELATED WORK

In the previous sections we have seen that the main

idea of this paper is to combine cost-aware cloud resources

provisioning and application mapping into a synergistic

autonomic solution that takes into account performance

requirements and environmental random factors such as the

prices fluctuation of cloud resources and user load.
The problem of exploiting different cloud pricing meth-

ods such as spot instances has been studied in literature

since Amazon introduced the service in 2009. Some works

(e.g., [12], [30], [13], [29], [27]) focus on understanding

the price dynamics to generate price predictions that can

be used to make cost-effective provisioning decision. Other

works (e.g., [28], [2], [31]) focus on providing bidding

strategies that are specific for spot instances. Our work does

not claim to replace these existing method for forecasting

resource prices and decide what to bid, but to complement

them. In fact in our evaluation we simply assume that bid

prices observed so far tend to repeat in the future; however

the prediction method is not part of our approach, but simply
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Figure 13. Experiment results when varying the availability.

a parameter. That is, in situations when our assumption on

the future bid prices is not true, we can seamlessly benefit

from the alternative methods cited above without the need

to change our approach.

Some different works such as [26], [8], [14] give tools

that encourage the use of spot resources by increasing

their reliability in case of outbid using recovery techniques

based on checkpointing or replication. In our work we

are aware of the system reliability thanks to the use of

random environment for representing the possibility to lose

spot resources; however, the possibility to use reliability-

increasing techniques is also orthogonal to our approach and

a combined one may result in additional savings in the total

price for renting resources.

Finally, research on service placement and load allocation

has been specialized to take into account spot pricing models

and the possibility to lose resources unexpectedly [4], [32],

[15], [33], [17], [16], [9], [5], [11]. With respect to these

works we also solve the allocation problem in such a

way to minimize the costs while maintaining the desired

service level. Our new contribution is that we adopt fluid-

approximated performance models [21], which can calculate

response time distributions quickly enough to be used at

run-time. We also use a random environment model [6]

to represent the effects of external events to the system,

which for now is limited to price fluctuations, but that can

be easily extended to other events expressible as stochastic

models. Finally, in our model we also consider the effects

of having multiple CPUs in cloud resources (as it is the case

for Amazon EC2) and the overhead due to load balancing in

case of placement decisions that require resource replication.

VIII. CONCLUSIONS

In this paper we have presented a cost-aware approach to

support run-time decisions for provisioning cloud resources

and allocating application components among them. The

benefit of our approach is that it is able to approximate a

very complex problem using simple greedy algorithms that

are lightweight enough to be used at run-time to support pro-

active and reactive system adaptation. Moreover, we have

shown that we are able to predict and make decisions also

when we have a representation of random environmental

parameters such as the possibility for spot resources to be

lost. The decisions produced by our approach are designed

to be used to trigger allocation, deallocation, migration, and

replication actions on one or more cloud infrastructures.

In our model we assumed that these actions do not affect

performance since we consider to keep the system running

while they occur; however, this might not be true in every

system.

Some future work we have in mind is to introduce in our

models and heuristics the possibility to take into account

possible overhead in terms of time, performance, and cost

that can arise when actually performing adaptation actions

on a real system. We also intend to investigate how the

approach behaves in presence of different cloud platforms

(e.g., federated clouds [19]), services, and alternative ways

of expressing the SLOs. Finally, another possible follow-

up work is to extend our approach to decentralized cloud

systems to improve the scalability and resistance to dy-

namism, which may contribute to support new emerging

cloud paradigms such as volunteer clouds [25] and edge

clouds [7], [24].
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