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Abstract—Continued reliance on human operators for man-
aging data centers is a major impediment for them from
ever reaching extreme dimensions. Large computer systems
in general, and data centers in particular, will ultimately be
managed using predictive computational and executable models
obtained through data-science tools, and at that point, the
intervention of humans will be limited to setting high-level
goals and policies rather than performing low-level operations.
Data-driven autonomics, where management and control are
based on holistic predictive models that are built and updated
using generated data, opens one possible path towards limiting
the role of operators in data centers. In this paper, we present
a data-science study of a public Google dataset collected in a
12K-node cluster with the goal of building and evaluating a
predictive model for node failures. We use BigQuery, the big
data SQL platform from the Google Cloud suite, to process
massive amounts of data and generate a rich feature set
characterizing machine state over time. We describe how an
ensemble classifier can be built out of many Random Forest
classifiers each trained on these features, to predict if machines
will fail in a future 24-hour window. Our evaluation reveals
that if we limit false positive rates to 5%, we can achieve true
positive rates between 27% and 88% with precision varying
between 50% and 72%. We discuss the practicality of including
our predictive model as the central component of a data-driven
autonomic manager and operating it on-line with live data
streams (rather than off-line on data logs). All of the scripts
used for BigQuery and classification analyses are publicly
available from the authors’ website.

Keywords-Data science; predictive analytics; Google cluster
trace; log data analysis; failure prediction; machine learning
classification; ensemble classifier; random forest; BigQuery

I. INTRODUCTION

Modern data centers are the engines of the Internet that

run e-commerce sites, cloud-based services accessed from

mobile devices and power the social networks utilized each

day by hundreds of millions of users. Given the pervasive-

ness of these services in many aspects of our daily lives,

continued availability of data centers is critical. And when

continued availability is not possible, service degradations

and outages need to be foreseen in a timely manner so

as to minimize their impact on users. For the most part,

current automated data center management tools are limited

to low-level infrastructure provisioning, resource allocation,

scheduling or monitoring tasks with no predictive capabili-

ties. This leaves the brunt of the problem in detecting and

resolving undesired behaviors to armies of operators who

continuously monitor streams of data being displayed on

monitors. Even at the highly optimistic rate of 26,000 servers

managed per staffer1, this situation is not sustainable if data

centers are ever to reach exascale dimensions. Applying

traditional autonomic computing techniques to large data

centers is problematic since their complex system character-

istics prohibit building a “cause-effect” system model that is

essential for closing the control loop. Furthermore, current

autonomic computing technologies are reactive and try to

steer the system back to desired states only after undesirable

states are actually entered — they lack predictive capabilities

to anticipate undesirable states in advance so that proactive

actions can be taken to avoid them in the first place.

If data centers are the engines of the Internet, then data is

their fuel and exhaust. Data centers generate and store vast

amounts of data in the form of logs corresponding to various

events and errors in the course of their operation. When

these computing infrastructure logs are augmented with

numerous other internal and external data channels including

power supply, cooling, management actions such as software

updates, server additions/removal, configuration parameter

changes, network topology modifications, or operator actions

to modify electrical wiring or change the physical locations

of racks/server/storage devices, data centers become ripe

to benefit from data science. The grand challenge is to

exploit the toolset of modern data science and develop a new

generation of autonomics that is data-driven, predictive and

proactive based on holistic models that capture a data centre

as an ecosystem including not only the computer system

as such, but also its physical as well as its socio-political

environment.

In this paper we present the results of an initial study

towards building predictive models for node failures in data

centers. The study is based on a recent Google dataset

containing workload and scheduler events emitted by the

Borg cluster management system [1] in a cluster of over

12,000 nodes during a one-month period [2], [3]. We em-

ployed BigQuery [4], a big data tool from the Google Cloud

Platform that allows running SQL-like queries on massive

data, to perform an exploratory feature analysis. This step

generated a large number of features at various levels of

1Delfina Eberly, Director of Data Center Operations at Facebook, speak-
ing on “Operations at Scale” at the 7x24 Exchange 2013 Fall Conference.
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aggregation suitable for use in a machine learning classifier.

The use of BigQuery has allowed us to complete the analysis

for large amounts of data (table sizes up to 12TB containing

over 100 billion rows) in reasonable amounts of time.

For the classification study, we employed an ensemble

that combines the output of multiple Random Forests (RF)

classifiers, which themselves are ensembles of Decision

Trees. RF were employed due to their proven suitability in

situations were the number of features is large [5] and the

classes are “unbalanced” [6] such that one of the classes

consists mainly of “rare events” that occur with very low

frequency. Although individual RF were better than other

classifiers that were considered in our initial tests, they still

exhibited limited performance, which prompted us to pursue

an ensemble approach. While individual trees in RF are

based on subsets of features, we used a combination of

bagging and data subsampling to build the RF ensemble

and tailor the methodology to this particular dataset. Our

ensemble classifier was tested on several days from the trace

data, resulting in very good performance on some days (up

to 88% true positive rate, TPR, and 5% false positive rate,

FPR), and modest performance on other days (minimum of

27% TPR at the same 5% FPR). Precision levels in all cases

remained between 50% and 72%. We should note that these

results are comparable to other failure prediction studies in

the field.

The contributions of our work are severalfold. First, we

advocate that modern data centers can be scaled to extreme

dimensions only by eliminating reliance on human operators

by adopting a new generation of autonomics that is data-

driven and based on holistic predictive models. Towards this

goal, we provide a failure prediction analysis for a dataset

that has been studied extensively in the literature from other

perspectives. The model we develop has very promising

predictive power and has the potential to form the basis of a

data-driven autonomic manager for data centers. Secondly,

we propose an ensemble classification methodology tailored

to this particular problem where subsampling is combined

with bagging and precision-weighted voting to maximize

performance. Thirdly, we provide one of the first exam-

ples of BigQuery usage in the literature with quantitative

evaluation of running times as a function of data size. All

of the scripts used for BigQuery and classification analysis

are publicly available from our website [7] under the GNU

General Public License.

The rest of this paper is organized as follows. The next

section describes the process of building features from the

trace data. Section III describes our classification approach

while our prediction results are presented in Section IV.

Related work is discussed in Section V. In Section VI we

discuss the issues surrounding the construction of a data-

driven autonomic controller based on our predictive model

and argue its practicality. Section VII concludes the paper.

II. BUILDING THE FEATURE SET WITH BIGQUERY

The workload trace published by Google contains several

tables monitoring the status of the machines, jobs and tasks

during a period of approximately 29 days for a cluster

of 12,453 machines. This includes task events (over 100

million records, 17GB uncompressed), which follow the

state evolution for each task, and task usage logs (over

1 billion records, 178GB uncompressed), which report the

amount of resources per task at approximately 5 minute

intervals. We have used the data to compute the overall load

and status of different cluster nodes at 5 minute intervals.

This resulted in a time series for each machine and feature

that spans the entire trace (periods when the machine was

“up”). We then proceeded to obtain several features by

aggregating measures in the original data. Due to the size of

the dataset, this aggregation analysis was performed using

BigQuery on the trace data directly from Google Cloud

Storage. We used the bq command line tool for the entire

analysis, and our scripts are available online through our

Web site [7].

From task events, we obtained several time series for each

machine with a time resolution of 5 minutes. A total of 7

features were extracted, which count the number of tasks

currently running, the number of tasks that have started
in the last 5 minutes and those that have finished with

different exit statuses — evicted, failed, finished normally,

killed or lost. From task usage data, we obtained 5 additional

features (again at 5-minute intervals) measuring the load at

machine level in terms of: CPU, memory, disk time, cycles
per instruction (CPI) and memory accesses per instruction
(MAI). This resulted in a total of 12 basic features that were

extracted. For each feature, at each time step we consider

the previous 6 time windows (corresponding to the machine

status during the last 30 minutes) obtaining 72 features in

total (12 basic features × 6 time windows).

The procedure for obtaining the basic features was ex-

tremely fast on the BigQuery platform. For task counts, we

started with constructing a table of running tasks, where

each row corresponds to one task and includes its start time,

end time, end status and the machine it was running on.

Starting from this table, we could obtain the time series for

each feature for each machine, requiring between 139 and

939 seconds on BigQuery per feature (one separate table

per feature was obtained). The features related to machine

load were computed by summing over all tasks running on

a machine in each time window, requiring between 3585

and 9096 seconds on BigQuery per feature. The increased

execution time is due to the increased table sizes (over

1 billion rows). We then performed a JOIN of all above

tables to combine the basic features into a single table with

104,197,215 rows (occupying 7GB). For this analysis, our

experience allows us to judge BigQuery as being extremely

fast; an equivalent computation would have taken months to
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Aggregation Average, SD, CV Correlation

1h 166 (all features) 45(6.5)
12h 864 (all features) 258.8(89.1)
24h 284.6(86.6) 395.6(78.9)
48h 593.6(399.2) 987.2(590)
72h 726.6(411.5) 1055.47(265.23)
96h 739.4(319.4) 1489.2(805.9)

Table I: Running times required by BigQuery for obtaining

features aggregated over different time windows, for two

aggregation types: computing averages, standard deviation
(SD) and coefficient of variation (CV) versus computing

correlations. For 1h and 12h windows, average, SD and

CV were computed for all features in a single query. For

all other cases, the mean (and standard deviation) of the

required times per feature are shown.

perform on a regular PC.

A second level of aggregation meant looking at features

over longer time windows rather than just the last 5 minutes.

At each time step, 3 different statistics — averages, standard

deviations and coefficients of variation — were computed

for each basic feature obtained at the previous step. This

was motivated by the suspicion that not only feature values

but also their deviation from the mean could be important

in understanding system behavior. Six different running

windows of sizes 1, 12, 24, 48, 72 and 96 hours were used to

capture behavior at various time resolutions. This resulted

in 216 additional features (3 statistics × 12 features × 6

window sizes).

In order to generate these aggregated features, a set of

intermediate tables were used. For each time point, these

tables consisted of the entire set of data points to be

averaged. For instance, for 1-hour averages, the table would

contain a set of 6 values for each feature and for each time

point, showing the evolution of the system over the past

hour. While generating these tables was not time consuming

(requiring between 197 and 960 seconds), their sizes were

quite impressive: ranging from 143 GB (over 1 billion rows)

for 1 hour up to 12.5 TB (over 100 billion rows) in the case

of 96-hour window. Processing these tables to obtain the

aggregated features of interest required significant resources

and would not have been possible without the BigQuery

platform. Even then, direct queries using a single GROUP

BY operation to obtain all 216 features was not possible,

requiring only one basic feature to be handled at a time and

combining the results into a single table at the end. Table I

shows statistics over the time required to obtain one feature

for the different window sizes.

Although independent feature values are important, an-

other criterion that could be important for prediction is

the relations that exist between different measures. Corre-

lation between features is one such measure, with different

correlation values indicating changes in system behavior.

Hence we introduced a third level of aggregation of the

data by computing correlations between a chosen set of

feature pairs, again over various window sizes (1 to 96

hours as before). We chose 7 features to analyze: number of

running, started and failed jobs together with CPU, memory,

disk time and CPI. By computing correlations between all

possible pairings of the 7 features, we obtained a total of 21

correlation values for each window size. This introduces 126

additional features to our dataset. The BigQuery analysis

started from the same intermediate tables as before and

computed correlations for one feature pair at a time. As

can be seen in Table I, this step was more time consuming,

requiring greater time than the previous aggregation step, yet

still remains manageable considering the size of the data.

The amount of data processed for these queries ranged from

49.6GB (per feature pair for 1-hour windows) to 4.33TB

(per feature pair for 96-hour windows), resulting in a higher

processing cost (5 USD per TB processed). Yet again, a

similar analysis would not have been possible without the

BigQuery platform.

The Google trace also reports machine events. These are

scheduler events corresponding to machines being added or

removed from the pool of resources. Of particular interest

are REMOVE events, which can be due to two causes: ma-

chine failures or machine software updates. The goal of this

work is to predict REMOVE events due to machine failures,

so the two causes have to be distinguished. Prompted by our

discussions, publishers of the Google trace investigated the

best way to perform this distinction and suggested to look

at the length of time that machines remain down — the

time from the REMOVE event of interest to the next ADD

event for the same machine. If this “down time” is large,

then we can assume that the REMOVE event was due to a

machine failure, while if it is small, the machine was most

likely removed to perform a software update. To ensure that

an event considered to be a failure is indeed a real failure,

we used a relatively-long “down time” threshold of 2 hours,

which is greater than the time required for a typical software

update. Based on this threshold, out of a total of 8,957

REMOVE events, 2,298 were considered failures, and were

the target of our predictive study. For the rest of the events,

for which we cannot be sure of the cause, the data points

in the preceding 24-hour window were removed completely

from the dataset. An alternative would have been considering

them part of the SAFE class, however this might not be true

for some of the points. Thus, removing them completely

ensures that all data labeled as SAFE are in fact SAFE.

To the above features based mostly on load measures,

we added two new features: the up time for each machine

(time since the last corresponding ADD event) and number

of REMOVE events for the entire cluster within the last hour.

This resulted in a total of 416 features for 104,197,215 data

points (almost 300GB of processed data). Figure 1 displays

the time series for 4 selected features (and the REMOVE

events) at one typical machine.
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Figure 1: Four time series (4 out of 416 features) for one machine in the system. The features shown are: CPU for the last

time window, CPU averages over 12 hours, CPU coefficient of variation for the last 12 hours and correlation between CPU

and number of running jobs in the last 12 hours. Grey vertical lines indicate times of REMOVE events, some followed by

gaps during which the machine was unavailable. The large gap from ∼250 hours to ∼370 hours is an example of a long

machine downtime, following a series of multiple failures (cluster of grey vertical lines around 250 hours). In this case, the

machine probably needed more extensive investigation and repair before being inserted back in the scheduler pool.

III. CLASSIFICATION APPROACH

The features obtained in the previous section were used

for classification with the Random Forest (RF) classifier.

The data points were separated into two classes: SAFE

(negatives) and FAIL (positives). To do this, for each data

point (corresponding to one machine at a certain time

point) we computed time to remove as the time to the next

REMOVE event. Then, all points with time to remove less

than 24 hours were assigned to the class FAIL while all

others were assigned to the class SAFE. We extracted all

the FAIL data points corresponding to real failures (108,365

data points) together with a subset of the SAFE class,

corresponding to 0.5% of the total by random subsampling

(544,985 points after subsampling). We used this procedure

to deal with the fact that the SAFE class is much larger than

the FAIL class and classifiers have difficulty learning patterns

from very imbalanced datasets. Subsampling is one way of

reducing the extent of this imbalance [8]. Even after this

subsampling procedure, negatives are about five times the

number of positives. These 653,350 data points (SAFE plus

FAIL) formed the basis of our predictive study.

Given the large number of features, some might be

more useful than others, hence we explored two types of

feature selection mechanisms. One was principal component
analysis, which uses the original features to build a set of

principal components — additional features that account

for most of the variability in the data. Then one can use

only the top principal components for classification, since

those should contain the most important information. We

trained classifiers with an increasing number of principal

components, however the performance obtained was not

better than using the original features. A second mechanism

was to filter the original features based on their correlation

to the time to the next failure event (time to remove above).

Correlations were in the interval [−0.3, 0.45], and we used

only those features with absolute correlation larger than a

threshold. We found that the best performance was obtained

with a null threshold, which means again using all features.

Hence, our attempts to reduce the feature set did not produce

better results that the RF trained directly on the original

features. One reason for this may be the fact that the RF itself

performs feature selection when training the Decision Trees.

It appears that the RF mechanism performs better in this

case that correlation-based filtering or principal component

analysis.

To evaluate the performance of our approach, we em-

ployed cross validation. Given the procedure we used to

define the two classes, there are multiple data points cor-

responding to the same failure (data over 24 hours with 5

minutes resolution). Since some of these data points are very

similar, choosing the train and test data cannot be done by

selecting random subsets. While random selection may give

extremely good prediction results, it is not realistic since we

would be using test data which is too similar to the training
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Figure 2: Cross validation approach: forward-in-time testing.

Ten days were used for training and one day for testing. A set

of 15 benchmarks (train/test pairs) were obtained by sliding

the train/test window over the 29-day trace.

data. This is why we opted for a time-based separation of

train and test data. We considered basing the training on

data over a 10-day window, followed by testing based on

data over the next day with no overlap with the training

data. Hence, the test day started 24 hours after the last

training data point. The first two days were omitted in order

to decrease the effect on aggregated features. In this manner,

fifteen train/test pairs were obtained and used as benchmarks

to evaluate our analysis (see Figure 2). This forward-in-

time cross validation procedure ensures that classification

performance is realistic and not an artifact of the structure

of the data. Also, it mimics the way failure prediction would

be applied in a live data center, where every day a model

could be trained on past data to predict future failures.

Given that many points from the FAIL class are very

similar, which is not the case for the SAFE class due to

initial subsampling, the information in the SAFE class is still

overwhelmingly large. This prompted us to further subsam-

ple the negative class in order to obtain the training data.

This was performed in such a way that the ratio between

SAFE and FAIL data points is equal to a parameter fsafe. We

varied this parameter with the values {0.25, 0.5, 1, 2, 3, 4}
while using all of the data points from the positive class so

as not to miss any useful information. This applied only for

training data: for testing we always used all data from both

the negative and positive classes (out of the base dataset of

653,350 points). We also used RF of different sizes, with

the number of Decision Trees varying from 2 to 15 with a

step of 1 (resulting in 14 different values).

As we will discuss in the following section, the perfor-

mance of the individual classifiers, while better than random,

was judged to be not satisfactory. This is why we opted

for an ensemble method, which builds a series of classifiers

and then selects and combines them to provide the final

classification. Ensembles can enhance the power of low

performing individual classifiers [5], especially if these are

diverse [9], [10]: if they give false answers on different data

points (independent errors), then combining their knowledge

can improve accuracy. To create diverse classifiers, one can

vary the model parameters but also train them with different

data (known as the bagging method [5]). Bagging matches

very well with subsampling to overcome the rare events

problem, and in fact it has been shown to be effective for

the class-imbalance problem [8]. Hence, we adopt a similar

approach to build our individual classifiers. Every time a

new classifier is trained, a new training dataset is built by

considering all the data points in the positive class and a

random subset of the negative class. As described earlier,

the size of this subset is defined by the fsafe parameter.

By varying the value of fsafe and number of trees in the

RF algorithm, we created diverse classifiers. The following

algorithm details the procedure used to build the individual

classifiers in the ensemble.

Require: train pos, train neg, Shuffle(), Train()
fsafe ← {0.25, 0.5, 1, 2, 3, 4}
tree count ← {2..15}
classifiers ← {}
start ← 0
for all fs ∈ fsafe do

for all tc ∈ tree count do
end ← start + fs ∗ |train pos|
if end ≥ |train neg| then

start ← 0
end ← start + fs ∗ |train pos|
Shuffle(train neg)

end if
train data ← train pos + train neg[start: end]
classifier ← Train(train data, tc)
append(classifiers, classifier)
start ← end

end for
end for

We repeated this procedure 5 times, resulting in 5 classi-

fiers for each combination of the parameters fsafe and RF

size. This resulted in a total of 420 RF in the ensemble (5

repetitions × 6 fsafe values × 14 RF sizes).

Once the pool of classifiers is obtained, a combining

strategy has to be used. Most existing approaches use the

majority vote rule — each classifier votes on the class

and the majority class becomes the final decision [5].

Alternatively, a weighted vote can be used, and we opted

for precision-weighted voting. For most existing methods,

weights correspond to the accuracy of each classifier on

training data [11]. In our case, performance on training

data is close to perfect and accuracy is generally high,

which is why we use precision on a subset of the test

data. Specifically, we divide the test data into two halves:

an individual test data set and an ensemble test data set.

The former is used to evaluate the precision of individual

classifiers and obtain a weight for their vote. The latter

provides the final evaluation of the ensemble. All data

corresponding to the test day was used, with no subsampling.

Table II shows the number of data points used for each

benchmark for training and testing. While the parameter

fsafe controlled the ratio SAFE/FAIL during training, FAIL

instances were much less frequent during testing, varying
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Train Individual Test Ensemble Test
Benchmark FAIL FAIL SAFE FAIL SAFE

1 41485 2055 9609 2055 9610
2 41005 2010 9408 2011 9408
3 41592 1638 9606 1638 9606
4 42347 1770 9597 1770 9598
5 42958 1909 9589 1909 9589
6 42862 1999 9913 2000 9914
7 41984 1787 9821 1787 9822
8 39953 1520 10424 1520 10424
9 37719 1665 10007 1666 10008

10 36818 1582 9462 1583 9463
11 35431 1999 9302 1999 9302
12 35978 3786 10409 3787 10410
13 35862 2114 9575 2114 9575
14 39426 1449 9609 1450 9610
15 40377 1284 9783 1285 9784

Table II: Size of training and testing datasets. For training

data, the number of SAFE data points is the number of FAIL

multiplied by the fsafe parameter at each run.

between 13% and 36% of the number of SAFE instances.

To perform precision-weighted voting, we first applied

each RF i obtained above to the individual test data and

computed their precision pi as the fraction of points labeled

FAIL that were actually failures. In other words, precision
is the probability that an instance labeled as a failure is

actually a real failure, which is why we decided to use this

as a weight. Then we applied each RF to the ensemble test
data. For each data point j in this set, each RF provided

a classification oji (either 0 or 1 corresponding to SAFE or

FAIL, respectively). The classification of the ensemble (the

whole set of RF) was then computed as a continuous score

sj =
∑

i

ojipi (1)

by summing individual answers weighted by their precision.

Finally, these were normalized by the highest score in the

data

s′j =
sj

maxj(sj)
(2)

The resulting score s′j is proportional to the likelihood that

a data point is in the FAIL class — the higher the score,

the more certain we are that we have an actual failure. The

following algorithm outlines the procedure of obtaining the

final ensemble classification scores.

Require: classifiers, individual test, ensemble test
Require: Precision(), Classify()

classification scores ← {}
weights ← {}
for all c ∈ classifiers do

w ← Precision(c, individual test)
weights[c] ← w

end for
for all d ∈ ensemble test do

score ← 0
for all c ∈ classifiers do

score ← score+weights[c]∗Classify(c, d)
end for
append(classification scores, score)

end for
max ← Max(classification scores)
for all s ∈ classification scores do

s ← s/max
end for

It assumes that the set of classifiers is available (classi-
fiers), together with the two test data sets (individual test
and ensemble test) and procedures to compute precision of

a classifier on a dataset (Precision()) and to apply a classifier

to a data point (Classify() which returns 0 for SAFE and 1

for FAIL).

IV. CLASSIFICATION RESULTS

The ensemble classifier was applied to all 15 benchmark

datasets. Training was done on an iMac with 3.06GHz Intel

Core 2 Duo processor and 8GB of 1067MHz DDR3 memory

running OSX 10.9.3. Training of the entire ensemble took

between 7 and 9 hours for each benchmark dataset.

Given that the result of the classification is a continuous

score (Equation 2), and not a discrete label, evaluation was

based on the Receiver Operating Characteristic (ROC) and

Precision-Recall (PR) curves. A class can be obtained for a

data point j from the score s′j by using a threshold s∗. A

data point is considered to be in the FAIL class if s′j ≥ s∗.

The smaller s∗, the more instances are classified as failures.

Thus, by decreasing s∗ the number of true positives grows

but so do the false positives. Similarly, at different threshold

values, a certain precision is obtained. The ROC curve plots

the True Positive Rate (TPR) versus the False Positive Rate

(FPR) of the classifier as the threshold is varied. Similarly,

The PR curve displays the precision versus recall (equal to

TPR or Sensitivity). It is common to evaluate a classifier

by computing the area under ROC (AUROC) and area
under PR (AUPR) curves, which can range from 0 to 1.

Figure 3: AUROC and AUPR on ensemble test data for all

benchmarks.
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(a) Worst case (Benchmark 4)

(b) Best case (Benchmark 14)

Figure 4: ROC and PR curves for worst and best performance across the 15 benchmarks (4 and 14, respectively). The

vertical lines correspond to FPR of 1%, 5% and 10%. Note that parameter fsafe controls the ratio of SAFE to FAIL data in

the training datasets.

AUROC values greater than 0.5 correspond to classifiers that

perform better than random guesses, while AUPR represents

an average classification precision, so, again, the higher the

better. AUROC and AUPR do not depend on the relative

distribution of the two classes, so they are particularly

suitable for class-imbalance problems such as the one at

hand.

Figure 3 shows AUROC and AUPR values obtained for

all datasets, evaluated on the ensemble test data. For all

benchmarks, AUROC values are very good, over 0.75 and up

to 0.97. AUPR ranges between 0.38 and 0.87. Performance

appears to increase, especially in terms of precision, towards

the end of the trace. Lower performance that is observed

for the first two benchmarks could be due to the fact that

some of the aggregated features (those over 3 or 4 days) are

computed with incomplete data at the beginning.

To evaluate the effect of the different parameters and

the ensemble approach, Figure 4 displays the ROC and PR

curves for the benchmarks that result in the worst and best

results (4 and 14, respectively). Performance of the individ-

ual classifiers in the ensemble are also displayed (as points

in the ROC/PR space since their answer is categorical). We

can see that individual classifiers result in very low FPR

which is very important in predicting failures. Yet, in many

cases, the TPR values are also very low. This means that

most test data is classified as SAFE and very few failures

are actually identified.

TPR appears to increase when the fsafe parameter de-
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Figure 5: Representation of the time axis for one machine.

The SAFE and FAIL labels are assigned to time points

based on the time to the next failure. Misclassification has

different impacts depending on its position on the time axis.

In particular, if we misclassify a data point close to the

transition from SAFE to FAIL, the impact is lower than if

we misclassify far from the boundary. The latter situation

would mean flagging a failure even if no failure will appear

for a long time, or marking a machine as SAFE when failure

is imminent.

creases, but at the expense of the FPR and Precision. The

plots show quantitatively the clear dependence between the

three plotted measures and fsafe values. As the amount

of SAFE training data decreases, the classifiers become

less stringent and can identify more failures, which is an

important result for this class-imbalance problem. Also, the

plot shows clearly that individual classifiers obtained with

different values for fsafe are diverse, which is critical for

obtaining good ensemble performance.

In general, the points corresponding to the individual
classifiers are below the ROC and PR curves describing the

performance of the ensemble. This proves that the ensemble

method is better than the individual classifiers for this

problem, which can be also due to their diversity. Some

exceptions do appear (points above the solid lines), however

for very low TPR (under 0.2) so in an area of the ROC/PR

space that is not interesting from our point of view. We are

interested in maximizing the TPR while keeping the FPR at

bay. Specifically, the FPR should never grow beyond 5%,

which means few false alarms. At this threshold, the two

examples from Figure 4 display TPR values of 0.272 (worst

case) and 0.886 (best case), corresponding to precision

values of 0.502 and 0.728 respectively. This is much better

than individual classifiers at this level, both in terms of

precision and TPR. For failure prediction, this means that

between 27.2% and 88.6% of failures are identified as such,

while from all instances labeled as failures, between 50.2%

and 72.8% are actual failures.

In order to analyze the implications of the obtained

results in more detail, the relation between the classifier

label and the exact time until the next REMOVE event was

studied for the data points. This is important because we

originally assigned the label SAFE to all data points that are

more than 24 hours away from a failure. According to this

classification, a machine would be considered to be in SAFE

state whether it fails in 2 weeks or in 2 days. Similarly, it is

considered to be in FAIL state whether it fails in 23 hours or

in 10 minutes. Obviously these are very different situations,

and the impact of misclassification varies depending on the

time to the next failure. Figure 5 displays this graphically.

As the time to the next failure decreases, a SAFE data point

misclassified as FAIL counts less as a misclassification, since

failure is actually approaching. Similarly, a FAIL data point

labeled as SAFE has a higher negative impact when it is

close to the point of failure.

We would like to verify whether our classifier assigns

correct and incorrect labels uniformly within each class,

irrespective of the real time to the next failure. For this,

Figure 6 shows the distribution of the time-to-the-next-

failure, in the form of boxplots, for true positives (TP),

false negatives (FN), true negatives (TN) and false positives

(FP), again for the worst and best cases (benchmarks 4 and

14, respectively). We look at results obtained at 5% FPR

(a) Benchmark 4, Positive class (b) Benchmark 4, Negative class

(c) Benchmark 14, Positive class (d) Benchmark 14, Negative class

Figure 6: Distribution of time to the next machine REMOVE

for data points classified, divided into True Positive (TP),

False Negative (FN), True Negative (TN) and False Positive

(FP). The worst and best performance (benchmarks 4 and 14,

respectively) out of the 15 runs are shown. Actual numbers

of instances in each class are shown in parentheses on the

horizontal axis.
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values. A good result would be if misclassified positives

are further in time from the point of failure compared to

correctly classified failures. And misclassified negatives are

closer to the failure point compared to correctly classified

negatives.

All positive instances, which are data points correspond-

ing to real failures, are shown in the left panels (Figure

6a and 6c). These are divided into TP (failures correctly

identified by the classifier) and FN (failures missed by the

classifier). All data points have a time to the next REMOVE

event between 0 and 24 hours, due to the way the positive

class was defined. If the classifier was independent of the

time to the next failure, the two distributions shown for TP

and FN would be very similar. However, the plots show

that TP have, on average, lower times until the next event,

compared to FN. This means that many of the positive data

points that are misclassified are further in time from the

actual failure moment compared to those correctly identified.

This is good news, because it suggests that although data

points are not recognized as imminent failure situations

when there is still some time left before the actual fail-

ure, correct classification may occur as the failure moment

approaches. In fact, if we compute the fraction of failure

events that are flagged at least once in the preceding 24 hour

window, we obtain values larger than the TPR computed

at the data-point level, especially when prediction power is

lowest (52.5% vs. 27.2% for benchmark 4 and 88.7% vs.

88.6% for benchmark 14).

Negative (SAFE) instances — data points that do not

precede a REMOVE event by less than 24 hours — can be

divided into two classes: those for which there is a REMOVE

due to a real failure before the end of the trace and those

for which there is none. For the latter, we have no means to

estimate the time to the next failure event. So Figures 6b and

6d show the time to the next REMOVE only for the former,

i.e., those machines which will fail before the end of the

trace. This is only a small fraction of the entire SAFE test

data, especially for the benchmark with best performance,

because it is only three days before the trace ends. However

it still provides some indication on the time to the next

failure of the negative class, divided into FP (negatives that

are labeled as failures) and TN (negatives correctly labeled

SAFE). As the figure shows, on average, times to the next

failure are lower for FP compared to TN. This is again a

good result because it means that many times the classifier

gives false alarms when a failure is approaching, even if it

is not strictly in the next 24 hours.

V. RELATED WORK

The publication of the Google trace data has triggered

a flurry of activity within the community including several

with goals that are related to ours. Some of these provide

general characterization and statistics about the workload

and node state for the cluster [12], [13], [14] and identify

high levels of heterogeneity and dynamism in the system,

especially when compared to grid workloads [15]. User

profiles [16] and task usage shapes [17] have also been

characterized for this cluster. Other studies have applied

clustering techniques for workload characterization, either

in terms of jobs and resources [18], [19] or placement

constraints [20], with the aim to synthesize new traces. A

different type of usage is for validation of various workload

management algorithms. Examples are [21] where the trace

is used to evaluate consolidation strategies, [22], [23] where

over-committing (overbooking) is validated, [24] who take

heterogeneity into account to perform provisioning or [25]

investigating checkpointing algorithms.

System modeling and prediction studies using the Google

trace data are far fewer than those performing characteri-

zation or validation. An early attempt at system modeling

based on this trace [26] validates an event-based simulator

using workload parameters extracted from the data, with

good performance in simulating job status and overall sys-

tem load. Host load prediction using a Bayesian classifier

was analyzed in [27]. Using CPU and RAM history, the

mean load in a future time window is predicted, by dividing

possible load levels into 50 discrete states. Here we perform

prediction of machine failures for this cluster, which has not

been attempted to date, to our knowledge.

Failure prediction has been an active topic for many years,

with a comprehensive review presented in [28]. This work

summarizes several methods of failure prediction in single

machines, clusters, application servers, file systems, hard

drives, email servers and clients, etc., dividing them into

failure tracking, symptom monitoring or error reporting. The

method introduced here falls into the symptom monitoring

category, however elements of failure tracking and error

reporting are also present through features like number of

recent failures and job failure events.

More recent studies concentrate on larger scale distributed

systems such as HPC or clouds. For failure tracking meth-

ods, an important resource is the failure trace archive [29],

a repository for failure logs and an associated toolkit that

can enable integrated characterization of failures, such as

distributions of inter-event times. Job failure in a cloud

setting has been analyzed in [30]. The naive Bayes classifier

is used to obtain a probability of failure based on the job

type and host name. This is applied on traces from Amazon

EC2 running several scientific applications. The method

reaches different performances on jobs from three different

application settings, with FNs of 4%, 12% and 16% of total

data points and corresponding FPs of 0%, 4% and 10% of

total data points. This corresponds approximately to FPR of

0%, 5.7% and 16.3%, and TPR of 86.6%, 61.2% and 58.9%.

The performance we obtained with our method is within a

similar range for most benchmarks, although we never reach

their best performance. However, we are predicting machine

and not job failures.
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A comparison of different classification tools for failure

prediction in an IBM Blue Gene/L cluster is given in [31].

In this work, they analyze Reliability, Availability and Ser-

viceability (RAS) events using SVMs, neural networks, rule

based classifiers and a custom nearest neighbor algorithm,

trying to predict whether different event categories will

appear. The custom nearest neighbor algorithm outperforms

the others reaching 50% precision and 80% TPR. A similar

analysis was also performed for a Blue Gene/Q cluster [32].

The best performance was again by the nearest neighbor

classifier (10% FPR, 20% TPR). They never evaluated the

Random Forest or ensemble algorithms.

In [33] an anomaly detection algorithm for cloud com-

puting was introduced. It employs Principal Component

Analysis and selects the most relevant principal components

for each failure type. They find that higher order components

are better correlated with errors. Using threshold on these

principal components, they identify data points outside the

normal range. They study four types of failures: CPU-

related, memory-related, disk-related and network-related

faults, in a controlled in-house system with fault injection

and obtain very high performance, 91.4% TPR at 3.7% FPR.

On a production trace (the same Google trace we are using)

they predict task failures at 81.5% TPR and 27% FPR (at 5%

FPR, TPR is down to about 40%). In our case, we studied

the same trace but looking at machine failures as opposed

to task failures, and obtained TRP values between 27% and

88% at 5% FPR.

All above-mentioned failure prediction studies concentrate

on types of failures or systems different from ours and obtain

variable results. In all cases, our predictions compare well

with prior studies, with our best result being better than

most.

VI. DISCUSSION

Here we consider the possibility of including our predic-

tive model in a data-driven autonomic controller for use in

data centers. In such a scenario, both model building and

model updating would happen on-line on data that is being

streamed from various sources. From a technical point of

view, on-line use would require a few changes to our model

workflow.

To build the model, all features have to be computed on-

line. Log data can be collected in a BigQuery table using the

streaming API. As data is being streamed, features have to be

computed at 5 minute intervals. Both basic and aggregated

features (averages, standard deviations, coefficients of varia-

tion and correlations) have to be computed, but only for the

last time window (previous time windows are already stored

in a dedicated table). Basic features are straightforward to

compute requiring negligible running time since they can

be computed using accumulators as the events come in. For

aggregated features, parallelization can be employed, since

they are all independent. In our experiments, correlation

computation was most time consuming, with an average

time to compute one correlation feature over the longest

time window taking 1489.2 seconds for all values over

the 29 days (Table I). For computing a single value (for

the newly streamed data), the time required should be on

average under 0.2 seconds. This estimate corresponds to a

linear dependence between the number of time windows

and computation time and offers an upper bound for the

time required. If this stage is performed in parallel on

BigQuery, this would also be the average time to compute

all 126 correlation features (each feature can be computed

independently so speedup would be linear).

In terms of dollar costs, we expect figures similar to those

during our tests — about 60 USD per day for storage and

analysis. To this, the streaming costs would have to be added

— currently 1 cent per 200MB. For our system, the original

raw data is about 200GB for all 29 days, so this would

translate to approximately 7GB of data streamed every day

for a system of similar size, leading to a cost of about 35

cents per day. At all times, only the last 12 days of features

need to be stored, which keeps data size relatively low. In

our analysis, for all 29 days, the final feature table requires

295GB of BigQuery storage, so 12 days would amount to

about 122GB of data.

When a new model has to be trained (e.g., once a day),

all necessary features are already computed. One can use

an infrastructure like the Google Compute Engine to train

the model, which would eliminate the need to download the

data and would allow for training of the individual classifiers

of the ensemble in parallel. In our tests, the entire ensemble

took under 9 hours to train, with each RF requiring at most 3

minutes. Again, since each classifier is independent, training

all classifiers in parallel would take under 3 minutes as well

(provided one can use as many CPUs as there are RFs — 420

in our study). Combining the classifiers takes a negligible

amount of time.

All in all, we expect the entire process of updating the

model to take under 5 minutes if full parallelization is used

both for feature computation and training. Application of the

model on new data requires a negligible amount of time once

features are available. This makes the method very practical

for on-line use. Here we have described a cloud computing

scenario, however, given the relatively limited computation

and storage resources that are required, we believe that more

modest clusters can also be used for monitoring, model

updating and prediction.

VII. CONCLUSIONS

We have presented a predictive study for failure of nodes

in a Google cluster based on a published workload trace.

Feature extraction from raw data was performed using

BigQuery, the big data cloud platform from Google which

enables SQL-like queries. A large number of features were

generated and an ensemble classifier was trained on log data
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for 10 days and tested on the following non-overlapping day.

The length of the trace allowed repeating this process 15

times producing 15 benchmark datasets, with the last day in

each dataset being used for testing.

The BigQuery platform was extremely useful for obtain-

ing the features from log data. Although limits were found

for JOIN and GROUP BY statements, these were circumvented

by creating intermediate tables, which sometimes contained

over 12TB of data. Even so, features were obtained with

reduced running times, with overall cost for the entire

analysis processing one month worth of logs, coming in at

under 2000 USD2, resulting in a daily cost of just over 60

USD.

Classification performance varied from one benchmark to

another, with Area-Under-the-ROC curve measure varying

between 0.76 and 0.97 while Area-Under-the-Precision-

Recall curve measure varying between 0.38 and 0.87. This

corresponded to true positive rates in the range 27%-88%

and precision between 50% and 72% at a false positive rate

of 5%. In other words, this means that in the worst case, we

were able to identify 27% of failures, while if a data point

was classified as a failure, we could have 50% confidence

that we were looking at a real failure. For the best case, we

were able to identify almost 90% of failures and 72% of

instances classified as failures corresponded to real failures.

All this, at the cost of having false alarms 5% of the time.

Although not perfect, our predictions achieve good per-

formance levels. Results could be improved by changing the

subsampling procedure. Here, only a subset of the SAFE

data was used due to the large number of data points

in this class, and a random sample was extracted from

this subset when training each classifier in the ensemble.

However, one could subsample every time from the full set.

However, this would require greater computational resources

for training, since a single workstation cannot process 300

GB of data at a time. Training times could be reduced

through parallelization, since the problem is embarrassingly

parallel (each classifier in the ensemble can be trained

independently from the others). These improvements will

be pursued in the future. Introduction of additional features

will also be explored, to take into account in a more explicit

manner the interaction between machines. BigQuery will

be used to obtain interactions between machines from the

data, which will result in networks of nodes. Changes in

the properties of these networks over time could provide

important information on possible future failures.

The method presented here is very suitable for on-line

use. A new model can be trained every day, using the last

12 days of logs. This is the scenario we simulated when we

created the 15 test benchmarks. The model would be trained

from 10 days of data and tested on one non-overlapping day,

exactly like in the benchmarks (Figure 2). Then, it would

2Based on current Google BigQuery pricing.

be applied for one day to predict future failures. The next

day a new model would be obtained from new data. Each

time, only the last 12 days of data would be used, rather

than increasing the amount of training data. This to account

for the fact that the system itself and the workload can

change in time, so old data may not match current system

behavior. This would ensure that the model is up to date

with the current system state. The testing stage is required

for live use for two reasons. First, part of the test data is

used to build the ensemble (prediction-weighted voting).

Secondly, the TPR and precision values on test data can

help system administrators make decisions on the criticality

of the predicted failure.
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