
10/11/18	

1	

Midterm	Review	

CS	465-	Fall	2017	
Prof.	Daniel	A.	Menasce	

Department	of	Computer	Science	

1	

QuesGons	

•  What	is	CPI?	
•  Suppose	that	15%	of	the	instrucGons	of	a	
program	take	2	cycles,	25%	take	3	cycles,	and	
60%	take	1	cycle.	What	is	the	CPI	of	the	
program?	

•  Suppose	the	same	program	above	executes	
1,000,000	instrucGons.	How	many	cycles	
would	it	take	to	execute	the	program?	

	
	
	

2	

10/11/18	

2	

Answers	

•  What	is	CPI?	A:	Cycles	per	instrucGon	
•  Suppose	that	15%	of	the	instrucGons	of	a	
program	take	2	cycles,	25%	take	3	cycles,	and	
60%	take	1	cycle.	What	is	the	CPI	of	the	
program?	
– 0.15	*	2	+	0.25	*	3	+	0.6	*	1	=	1.65	

•  Suppose	the	same	program	above	executes	
1,000,000	instrucGons.	How	many	cycles	
would	it	take	to	execute	the	program?	

	
	
	

3	

QuesGon	

•  What	is	CPI?	
•  Suppose	that	15%	of	the	instrucGons	of	a	
program	take	2	cycles,	25%	take	3	cycles,	and	
60%	take	1	cycle.	What	is	the	CPI	of	the	
program?	

•  Suppose	the	same	program	above	executes	
1,000,000	instrucGons.	How	many	cycles	
would	it	take	to	execute	the	program?	

	
	
	

4	

10/11/18	

3	

Answer	

•  What	is	CPI?	
•  Suppose	that	15%	of	the	instrucGons	of	a	
program	take	2	cycles,	25%	take	3	cycles,	and	
60%	take	1	cycle.	What	is	the	CPI	of	the	
program?	

•  Suppose	the	same	program	above	executes	
1,000,000	instrucGons.	How	many	cycles	
would	it	take	to	execute	the	program?	
– 1,000,000	*	1.65	=	1,650,000	cycles	

	
	
	

5	

QuesGon	

•  Suppose	that	the	above	program	runs	on	a	
machine	that	has	a	cycle	Gme	of	200	ps.	What	
is	the	execuGon	Gme	of	the	program	on	this	
machine?	
	

6	

10/11/18	

4	

Answer	

•  Suppose	that	the	above	program	runs	on	a	
machine	that	has	a	cycle	Gme	of	200	ps.	What	
is	the	execuGon	Gme	of	the	program	on	this	
machine?	
– 1,650,000	cycles	*	200	*	10-12	=	3.3	*	10-4	sec	=	
0.33	msec	opGmizaGon	is	used	

	
	

7	

QuesGon	

•  Suppose	that	compiler	opGmizaGon	is	used	to	
compile	the	same	program	as	before.	The	
opGmizaGon	reduces	the	total	number	of	
instrucGons	by	10%	and	now	12%	of	the	
instrucGons	of	the	program	take	2	cycles,	28%	
take	3	cycles,	and	60%	take	1	cycle.	What	is	
the	execuGon	Gme	of	the	program	now?	

	
	
	 8	

10/11/18	

5	

Answer	

•  Suppose	that	compiler	opGmizaGon	is	used	to	
compile	the	same	program	as	before.	The	
opGmizaGon	reduces	the	total	number	of	
instrucGons	by	10%	and	now	12%	of	the	
instrucGons	of	the	program	take	2	cycles,	28%	
take	3	cycles,	and	60%	take	1	cycle.	What	is	
the	execuGon	Gme	of	the	program	now?	
– 0.9	*	1,000,000	*	(0.12	*	2	+	0.28	*	3	+	0.6	*	1)	*	
200	*	10-12			=	3.024	*	10-4	sec	

	
	
	

9	

QuesGon	

•  Consider	that	20%	percent	of	a	program’s	
instrucGons	are	branch	instrucGons	and	that	
the	CPI	for	these	instrucGons	is	2.	The	CPI	for	
the	remaining	instrucGons	is	1.8.	What	would	
be	the	CPI	of	the	program	if	the	hardware	
designers	improved	the	branch	predicGon	
algorithm	so	that	the	CPI	of	branch	
instrucGons	went	down	to	1.2?	

10	

10/11/18	

6	

Answer	

•  Consider	that	20%	percent	of	a	program’s	
instrucGons	are	branch	instrucGons	and	that	
the	CPI	for	these	instrucGons	is	2.	The	CPI	for	
the	remaining	instrucGons	is	1.8.	What	would	
be	the	CPI	of	the	program	if	the	hardware	
designers	improved	the	branch	predicGon	
algorithm	so	that	the	CPI	of	branch	
instrucGons	went	down	to	1.2?	 		
– 0.2	*	1.2	+	0.8	*	1.8	=	1.68	

11	

QuesGon	

•  Which	of	these	elements	can	influence	the	
number	of	instrucGons	executed	by	a		
program?	
– The	algorithm	
–  Its	input	data	
– The	language	in	which	it	is	wri`en	
– The	compiler	
– The	ISA		

12	

10/11/18	

7	

Answer	

•  Which	of	these	elements	can	influence	the	
number	of	instrucGons	executed	by	a		
program?	
– The	algorithm	
–  Its	input	data	
– The	language	in	which	it	is	wri`en	
– The	compiler	
– The	ISA		

Answer:	all	
13	

QuesGon	

•  How	would	you	compute	the	CPU	Gme	of	a	
program	as	a	funcGon	of	the	number	of	
instrucGons,	the	CPI,	and	the	clock	cycle	
duraGon?	

•  What	is	the	moGvaGon	to	design	mulGcore	
computers?	

14	

10/11/18	

8	

Answer	

•  How	would	you	compute	the	CPU	Gme	of	a	
program	as	a	funcGon	of	the	number	of	
instrucGons,	the	CPI,	and	the	clock	cycle	
duraGon?	

CPU	Gme	=	#	instrucGons	*	CPI	*	clock	cycle	
duraGon?	

15	

QuesGon	

•  What	is	the	moGvaGon	to	design	mulGcore	
computers?	

16	

10/11/18	

9	

Answer	

•  What	is	the	moGvaGon	to	design	mulGcore	
computers?	

	The	power	wall.	Processors	are	using	too	
much	power	and	dissipaGng	too	much	heat	at	
current	clock	frequencies	

17	

QuesGon	

•  Is	there	any	instrucGon	in	the	MIPS	ISA	that	
allows	a	number	in	main	memory	to	be	added	
to	a	number	in	a	register?	

•  What	is	the	MIPS	instrucGon	needed	to	load	
element	A[2]	of	array	A	into	register	$t0	
assuming	the	address	of	the	array	is	stored	at	
register	$s0	and	that	each	element	of	the	
array	is	a	4-byte	integer?	

18	

10/11/18	

10	

Answer	

•  Is	there	any	instrucGon	in	the	MIPS	ISA	that	
allows	a	number	in	main	memory	to	be	added	to	
a	number	in	a	register?	

	No.	MIPS	only	operates	on	registers.	
•  What	is	the	MIPS	instrucGon	needed	to	load	
element	A[2]	of	array	A	into	register	$t0	
assuming	the	address	of	the	array	is	stored	at	
register	$s0	and	that	each	element	of	the	array	is	
a	4-byte	integer?	

19	

QuesGon	

•  What	is	the	MIPS	instrucGon	needed	to	load	
element	A[2]	of	array	A	into	register	$t0	
assuming	the	address	of	the	array	is	stored	at	
register	$s0	and	that	each	element	of	the	
array	is	a	4-byte	integer?	

20	

10/11/18	

11	

Answer	

•  What	is	the	MIPS	instrucGon	needed	to	load	
element	A[2]	of	array	A	into	register	$t0	
assuming	the	address	of	the	array	is	stored	at	
register	$s0	and	that	each	element	of	the	
array	is	a	4-byte	integer?	

–  lw	$t0,	8	($s0)	

21	

QuesGons	

•  Why	MIPS	does	not	have	a	subtract	
immediate	instrucGon?	

•  How	are	negaGve	integer	numbers	
represented	in	MIPS	and	in	the	majority	of	
processors?	

•  What	is	the	sign	bit	of	negaGve	integer	
numbers?	

•  How	do	you	negate	a	number?	

22	

10/11/18	

12	

Answers	

•  Why	MIPS	does	not	have	a	subtract	immediate	
instrucGon?	
–  Because	this	can	be	accomplished	by	a	addi	in	which	
one	of	the	operands	is	negaGve	

•  How	are	negaGve	integer	numbers	represented	
in	MIPS	and	in	the	majority	of	processors?	
–  2’s	complement	

•  What	is	the	sign	bit	of	negaGve	integer	numbers?	
•  How	do	you	negate	a	number?	

23	

QuesGons	

•  What	is	the	sign	bit	of	negaGve	integer	
numbers	in	2’s	complement?	

•  How	do	you	negate	a	number?	

24	

10/11/18	

13	

Answers	

•  What	is	the	sign	bit	of	negaGve	integer	
numbers	in	2’s	complement?	
– 1	

•  How	do	you	negate	a	number?	
– Flip	the	bits	and	add	1	

25	

QuesGon	

•  How	would	you	compile	the	statement	into	
MIPS	using	3	instrucGons?	

	
if (i==j) f = g;
else f = h;

where	i,	j,	are	in	$t0,	$t1,	f,	g,	and	h	are	stored	in	
$s0,	$s1,	and	$s2.	
	

26	

10/11/18	

14	

Answer	
•  How	would	you	compile	the	statement	into	MIPS	using	3	

instrucGons?	
	
if (i==j) f = g;
else f = h;

where	i,	j,	are	in	$t0,	$t1,	f,	g,	and	h	are	stored	in	$s0,	$s1,	and	$s2.	
	

	 	add	 	$s0,	$zero,	$s1 	 	#	f	=	g	
	 	beq	 	$t0,$t1,LABEL 	 	#	skip	else	if		i	=	j	

ELSE 	add	 	$s0,	$zero,	$s2 	 	#	f	=	h	
LABEL 	-------	

	
27	

QuesGon	
Consider the instructions

 slt $t0, $s1, $s2
 bne $t0, $zero, L1

L2 ……

 ……

L1

And consider that $s1 = 3 and $s2 = 5.
What is the address branched to by the
bne instruction?

	
28	

10/11/18	

15	

Answer	
Consider the instructions

 slt $t0, $s1, $s2
 bne $t0, $zero, L1

L2 ……
 ……
L1

And consider that $s1 = 3 and $s2 = 5. What
is the address branched to by the bne
instruction?

$t0 is set to 1. Then, branch to L1.

	
29	

QuesGon	

•  What	is	the	purpose	of	the	instrucGon	below	
and	what	it	does?	

 jal Label

	
	

30	

10/11/18	

16	

Answer	

•  What	is	the	purpose	of	the	instrucGon	below	
and	what	it	does?	

 jal Label

	
It	saves	the	address	of	the	instrucGon	following	
the	jal	in	the	$ra	register	and	changes	the	PC	to	
the	address	of	the	instrucGon	that	corresponds	
to	Label	

31	

QuesGon	

	
•  What	is	the	purpose	of	the	instrucGon	below	
and	what	it	does?	

					jr	$ra	
	
	

32	

10/11/18	

17	

Answer	

	
•  What	is	the	purpose	of	the	instrucGon	below	
and	what	it	does?	

					jr	$ra	
	
It	jumps	to	the	address	stored	in	the	register	$ra	
	
	

33	

QuesGon	

•  Consider	the	beq	instrucGon	stored	at	address	
100010.	The	value	of	the	address	field	is	20010.	
What	is	the	address	of	the	next	instrucGon	if	
rs	and	rt	are	equal?	

	
	

op rs rt constant or address
6 bits 5 bits 5 bits 16 bits

34	

10/11/18	

18	

Answer	

•  Consider	the	beq	instrucGon	stored	at	address	
100010.	The	value	of	the	address	field	is	20010.	
What	is	the	address	of	the	next	instrucGon	if	
rs	and	rt	are	equal?	

If	rs=rt,	the	target	address	of	the	branch	is	
(1000+4)	+	200*4	=	180410	
	
	

op rs rt constant or address
6 bits 5 bits 5 bits 16 bits

35	

•  Consider	the	jump	instrucGon	stored	at	
address	A800900416.	The	value	of	the	address	
field	is	80010.	What	is	address	in	binary	of	the	
next	instrucGon	to	be	executed?	

	
	

op address
6 bits 26 bits

QuesGon	

36	

10/11/18	

19	

•  Consider	the	jump	instrucGon	stored	at	address	
A800900416.	The	value	of	the	address	field	is	
80010.	What	is	address	in	binary	of	the	next	
instrucGon	to	be	executed?	

A800900416	+	410	=	A800900816		
=>	A	=	10102;							800*4=320010	=	000	…1100100000002	
Target	address	=	1010:	800*4	=>1010000	…1100100000002	
	

	
	

op address
6 bits 26 bits

Answer	

37	

•  Consider adding the numbers -100 and -64
represented in 2’s complement using 8 bits.
What is the result of the computation?

QuesGon	

38	

10/11/18	

20	

•  Consider adding the numbers -100 and -64 represented
in 2’s complement using 8 bits. What is the result of the
computation?

•  10010 = 011001002 => -10010 = 100111002
•  6410 = 010000002 => - 6410 = 110000002
•  -100-64 = 010111002

•  Adding two negative numbers results in a positive
number => overflow

Answer	

39	

Question
Consider a 2 x 3 matrix stored in memory in column major order,
 i.e., elements are stored column by column. Each element is
4-bytes long. What is the byte offset of element i,j?

2	

40	

10/11/18	

21	

Answer
Consider a 2 x 3 matrix stored in memory in column major order,
 i.e., elements are stored column by column. Each element is
4-bytes long. What is the byte offset of element i,j?

Byte offset of [i,j] =[j * 2 + i] * 4 because before [i,j] there are j full
columns and i elements

2	

41	

Write	a	minimal	set	of	MIPS	assembly	instrucGons	that	does	the	
idenGcal	operaGon	as	the	C	code	below.	Assume	the	base	address	
of	C	is	in	$s1	and	that	A	is	in	$s2.	Use	the	minimum	number	of	
registers.	Do	not	destroy	the	contents	of	$s1	or	$s2.	
	
	
A	=	C[0]	<<	4;	
	

QuesGon	

42	

10/11/18	

22	

Write	a	minimal	set	of	MIPS	assembly	instrucGons	that	does	the	
idenGcal	operaGon	as	the	C	code	below.	Assume	the	base	address	
of	C	is	in	$s1	and	that	A	is	in	$s2.	Use	the	minimum	number	of	
registers.	Do	not	destroy	the	contents	of	$s1	or	$s2.	
	
	
A	=	C[0]	<<	4;	
	

	lw 	 	 	$t1,	0($s1)	 	#	$t1	<-	C[0]	
	sll 	 	 	$t1,	$t1,4 	 	#	$t1	<-	$t1	<<	4	
	sw 	 	 	$t1,	0($s2)	 	#	A	<-	$t1	

	

Answer	

43	

Exercise 2.26.1
Consider	the	following	MIPS	code	with	the	following	iniGal	values:	
$t1	=	10	and	$s2	=	0.	
	
LOOP:	slt					$t2,	$0,	$t1	
												beq			$t2,	$0,	DONE	
												addi			$t1,	$t1,	-1	
												addi			$s2,	$s2,	2	
												j										LOOP	
DONE:	
	
What	is	the	final	value	of	$s2?	

44	

10/11/18	

23	

Solution to Exercise 2.26.1
Consider	the	following	MIPS	code	with	the	following	iniGal	values:	$t1	
=	10	and	$s2	=	0.	
	
LOOP:	slt					$t2,	$0,	$t1											#	if	$t1	>	0	then	$t2	=	1	else	$t2	=	0	
												beq			$t2,	$0,	DONE						#	if	$t2	=	0	(i.e.,	$t1	<=	0)	go	to	DONE	
												addi			$t1,	$t1,	-1										#		$t1	=	$t1	-1	
												addi			$s2,	$s2,	2											#			$s2	=	$s2	+	2	
												j										LOOP																				#	Go	to	LOOP	
DONE:	
	
Number	of	loop	execuGons:	
	$t1	at	top	=	10;	$t1	at	bo`om	=	9	
							…	
	t1	at	top	=		1;		$t1	at	bo`om	=	0	è	10	execuGons	è$s2	=	2x10	=	20	45	

Question
Describe	what	the	following	MIPS	code	does.	
	

	 	addi 	$s2,$0,$0	
	 	addi 	$t1,$0,$0	

LOOP 	lw 	 	$s1,0($s0)	
	 	add 	$s2,$s2,$s1	
	 	addi 	$s0,$s0,4	
	 	addi 	$t1,$t1,1	
	 	slG 	 	$t2,$t1,100	
	 	bne 	$t2,$0,LOOP	

DONE:	
	

46	

10/11/18	

24	

Answer
Describe	what	the	following	MIPS	code	does.	
	

	 	addi 	$s2,$0,$0 	 	#	$s2	=	0	
	 	addi 	$t1,$0,$0 	 	#	$t1	=	0	

LOOP 	lw 	 	$s1,0($s0) 	 	#	$s1	=	Mem[$s0]	
	 	add 	$s2,$s2,$s1 	#	$s2	=	$s2+Mem[$s0]	
	 	addi 	$s0,$s0,4 	 	#	$s0	=	$s0	+	4	
	 	addi 	$t1,$t1,1 	 	#	$t1	=	$t1	+	1		
	 	slG 	 	$t2,$t1,100 	#	$t1	=	1	if	$t1	<	100;	$t1	=	0	otherwise	
	 	bne 	$t2,$0,LOOP 	#	branch	to	LOOP	if	$t2	≠	0	($t1	<	100)	

DONE:	
	

Code	meaning:	store	in	$s2	the	sum	of	all	100	words	stored	starGng	at	address	$s0	

47	

Consider	a	mulGprocessor	with	p	processors.	Assume	that	25%	of	
the	instrucGons	of	a	program	can	be	executed	in	parallel	using	all	p	
processors.	The	remaining	75%	of	the	instrucGons	have	to	be	
executed	sequenGally.	Assume	that	the	Gme		to	execute	the	
program	sequenGally	(i.e.,	using	only	one	processor)	is	Ts.	Give	an	
expression	for	S(p),	the	speedup	obtained	when	using	p	
processors.		
	
	
What	is	the	maximum	possible	speedup?	i.e.(lim	S(p)	when	p	->	∞)	
	

QuesGon	

48	

10/11/18	

25	

Answer
Consider	a	mulGprocessor	with	p	processors.	Assume	that	25%	of	
the	instrucGons	of	a	program	can	be	executed	in	parallel	using	all	p	
processors.	The	remaining	75%	of	the	instrucGons	have	to	be	
executed	sequenGally.	Assume	that	the	Gme		to	execute	the	
program	sequenGally	(i.e.,	using	only	one	processor)	is	Ts.	Give	an	
expression	for	S(p),	the	speedup	obtained	when	using	p	
processors.		
	
S(p)	=	Ts	/	(0.75	Ts	+	0.25	Ts/p)	=	1	/	(0.75	+	0.25/p)	
	
lim	S(p)	when	p	->	∞	=	1	/	0.75	=	4/3	=	1.33	
	

49	

Provide	the	values	of	RegWrite,	AluSrc,	MemRead,	
MemWrite,	MemtoReg,	Branch	for	add	$t1,	$t2,	$t3	

50	

10/11/18	

26	

RegWrite=1,	AluSrc=0,	MemWrite=0,	MemRead=0,	
MemtoReg=0,	Branch=0	for	add	$t1,	$t2,	$t3	

51	

Provide	the	values	of	RegWrite,	AluSrc,	MemRead,	
MemWrite,	MemtoReg,	Branch	for	lw	$t1,	32($t3)	

52	

10/11/18	

27	

RegWrite=1,	AluSrc=1,	MemRead=1,	MemWrite=0,	
MemtoReg=1,	Branch=0	for	lw	$t1,	32($t3)	

53	

Provide	the	values	of	RegWrite,	AluSrc,	MemRead,	
MemWrite,	MemtoReg,	Branch	for	sw	$t1,	32($t3)	

54	

10/11/18	

28	

RegWrite=0,	AluSrc=1,	MemRead=0,	MemWrite=1,	
MemtoReg=*,Branch=0	for	sw	$t1,	32($t3)	

55	

Provide	the	values	of	RegWrite,	AluSrc,	MemRead,	
MemWrite,	MemtoReg,	Branch	for	beq	$t1,$t2,label	

56	

10/11/18	

29	

RegWrite=0,	AluSrc=0,	MemRead=0,	MemWrite=0,	
MemtoReg=	*,	Branch=1	for	beq	$t1,$t2,label	

57	

