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Abstract

AUTONOMIC COMPUTING THROUGH ANALYTIC PERFORMANCE MOD-
ELS

Mohamed Noureddine Bennani, PhD

George Mason University, 2006

Dissertation Director: Daniel Menascé

Computing environments have gone through radical changes in the last two decades.

There has been widespread production and deployment of elaborate and innovative

systems and technologies. As a result, there has been a huge proliferation of new and

more complex computing devices. Typically, a large number of these heterogeneous

devices are interconnected to make up a large distributed system. Managing, main-

taining, protecting and securing such complex systems is quite challenging even to the

most skilled IT professionals. Moreover, users tend to have even stricter expectations

from today’s computing systems in terms of performance, availability, reliability, and

security. Therefore, it is a vital necessity that current and future computer systems

be built with capabilities of self-management, self-organization, self-protection, and

self-healing. That is exactly the vision of Autonomic Computing. This dissertation

presents a novel and robust approach to autonomic computing through analytic per-

formance models with a greater emphasis on the self-managing and self-configuring

aspects. It starts by introducing a generic architecture for a controller system that

allows for self-management and self-organization and that takes into account several



design considerations for the controller including the use of workload forecasting,

frequency of control, and robustness of the controller. The disseration shows how our

approach to autonomic computing achieves the expected results for three instances

of autonomic computing systems, namely a multi-threaded server, an Internet data

center, and a virtualized server.



Chapter 1: Introduction

1.1 Motivation and Problem Statement

Computing environments have gone through radical changes in the last two decades.

There has been widespread production and deployment of elaborate and innovative

systems and technologies. As a result, there has been a huge proliferation of new

and more complex computing devices. These devices differ from each other in a

variety of ways: processing power, bandwidth requirements, component reliability,

battery life, and mode of connectivity (wired or wireless). Typically, a large number

of these heterogeneous devices are interconnected to make up a large distributed sys-

tem. Managing such a complex system is quite challenging even to the most skilled IT

professionals. Moreover, the costs of managing these complex systems increases in a

non-trivial manner with the system complexity. There are several reasons for the diffi-

culty of managing these complex systems. First, there is a significant unpredictability

in current systems workloads. This is particularly the case for e-commerce systems

and Web-based applications. In fact, it has been shown that, for these systems, the

peak to average load ratio is very high in general [39]. Second, the architectures

themselves of these systems are commonly quite complex. Usually, these architec-

tures are multilayered or multi-tiered where the components at each layer or tier are

devoted to perform different dedicated tasks. Moreover, in the context of Service

Oriented Architectures (SOAs), components can be discovered at run-time. In SOAs,

1
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components that comprise an application are designed to provide some services to

other components and applications. As new services are added to or removed from

the application, new components are started or stopped. Because of this dynamic

change in the structure of such applications, workload characterization becomes even

more difficult. Third, the emergence of new computing models such as Grid com-

puting and Peer-to-Peer (P2P) has added to the complexity of current computer

systems. In these computing models, a large number of geographically distributed

heterogeneous computing elements (processors, disks, networks, etc.) make up for the

resources required by massively distributed applications. Managing such computer

systems is quite difficult since the number of operating computing elements may vary

dynamically in relatively short periods of time.

The important technological advancements made in these last two decades in

data communications and networking have contributed to the emergence of new IT

based businesses. Examples include Internet Service Providers (ISPs), Data Storage

Providers (DSPs), and Internet Data Centers. These businesses provide IT services

to their customers usually with some guarantees on the service levels. Typically, the

Service Level Agreements (SLAs) signed by both the businesses and their customers

specify the quality of service (QoS) that businesses promise to provide to their cus-

tomers. In general, the QoS is representative of metrics that are of utmost interest to

customers. Examples of such metrics are performance-related metrics (e.g., response

time and throughput), availability, reliability, and security levels. Other popular met-

rics focus on the business value of the services provided. Examples of such metrics

include the revenue throughput and utility functions. SLAs usually stipulate the
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amount of compensation that customers are entitled to in the case the hosting busi-

ness cannot provide services at the levels specified by the agreement. Therefore, it is

crucially important for businesses to be able to adequately manage and re-organize

their computing infrastructure so that they meet the QoS levels that are desired by

their customers. However, managing the QoS is often not a straightforward task as

some metrics may conflict with each other (e.g., response time vs. security or response

time vs. availability [47]). SLAs are more important in situations where businesses

outsource the management and operation of their applications—a growing trend since

it allows businesses to focus more on other aspects of their core business activities

rather than on their IT infrastructure.

Another factor that makes the efficient management of computer systems such

a critical issue is the tendency of reducing IT budgets in most organizations. With

restricted IT budgets, organizations are expected to achieve more with even less re-

sources. Thus, under-utilized resources need to be identified and shifted to where

there is a higher computing demand. This is exactly the goal, for example, of server

consolidation. With restrained IT expenditures, over-sizing the required capacity of

computer systems in order to be able to offer services at acceptable levels at peak

loads is not an option anymore. Finally, there is a human factor that contributes

to the importance of appropriate management and re-organization of computer sys-

tems. The continuing increase in complexity of computer systems and shortage of

skilled IT systems administrators makes the issue of computer system management

and re-organization even more crucial. A promising way to address the obstacles to

efficient management and re-organization of computer systems relies on the automa-

tion of these tasks. Therefore, it is a vital necessity that current and future computer
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systems be built with capabilities for self-management and self-organization. Self-

managing and self-organizing computer systems, in fact, are capable of dynamically

re-configuring and re-arranging themselves in a prompt manner in response to sudden

changes in the internal or external computing environments. No human supervision

is needed at all. Also, because modern computer systems are made of a large number

of components, the failure of some components is more likely to happen. Therefore,

systems need to be able to react efficiently to failures so that they are able to maintain

acceptable service levels. Systems should also be able to resume operating normally

after recovering from failures. Therefore, systems should also possess a self-healing

property. As far as computer system security is concerned, the increased complexity

in current computer systems adds to system vulnerability to attacks. Averting se-

curity threats that can take advantage of the lack of protection of some components

is increasingly difficult for a human being. Hence, future secure computer systems

are also expected to have a self-protecting capability. In summary, and in the light

of all the reasons presented above, computer systems need to be able to dynamically

manage, re-organize, heal, and protect themselves. In other words, they should be

self-managing, self-organizing, self-healing, and self-protecting. In short, they should

possess the self-* properties [7].

IBM was the first to coin the term ”autonomic” to describe such systems [27].

IBM’s view of autonomic computing is summarized in their landmark paper [32]. In

this dissertation, we also use that term. Several other major IT companies developed

their own initiatives for promoting self-adaptable systems. Examples include the

Adaptive Enterprise initiative by HP [24] and the Dynamic Systems initiative by

Microsoft [57]. Other large IT companies are working on autonomic computing at
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a smaller scale [22]. For example, Intel is working on several projects where self-

adaptable systems are being developed. A representative project from Intel is the

Autonomic Platform Research [29]. In its turn, Oracle, is working on an Automatic

Workload Repository (AWR) for database self-management [60].

Several challenges need to be faced long before the vision of autonomic computing

fully concretizes. These challenges span a wide range of technical, scientific, engi-

neering, and architectural aspects of self-adaptable systems [33]. This dissertation

constitutes an effort to face some of the challenges of autonomic systems.

1.2 Research Problem

The research problem addressed in this dissertation is that of designing and eval-

uating a robust and general approach to model-based controllers for self-managing

computer systems and demonstrating the effectiveness of these controllers in various

types of environments, namely: autonomic multithreaded servers, autonomic Internet

data centers, and autonomic virtualized environments. The controllers should be able

to continually determine, in a dynamic and automatic manner, the values of configu-

ration parameters that optimize a pre-defined QoS function or a utility function for

the autonomic system. Analytic performance models need to be used to guide heuris-

tic search techniques in their exploration of the space of possible configuration values.

The next section provides an overview of the contributions of this dissertation and

gives directions for future work.
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1.3 Contributions

This dissertation focuses on one essential aspect of autonomic computer systems,

which is self-management. More precisely, it demonstrates how analytic performance

models can be beneficial for self-managing systems. The benefits are achieved through

1) an improved overall system performance and 2) a better utilization of system re-

sources. In fact, the core concept revolves around the idea of building mechanisms

into systems that allow for their dynamic reconfiguration based on the variations

of the workload. To achieve this goal a computer system needs to regularly check

whether it needs to re-configure itself. In this dissertation, we show how this goal

can be attained through a combined use of analytic performance models that guide

heuristic combinatorial search techniques in their exploration of the space of possible

configurations. The performance model is in charge of evaluating and predicting, at

any configuration point, the performance of the system for a given configuration point.

Therefore, the dissertation starts by evaluating the impact of the particular search

techniques on the performance of the system for the case of a self-managing web server

and a simulated multithreaded server. In the context of a self-managing simulated

multithreaded server, an assessment of the robustness of analytic performance models

is conducted as well. Later, we show how the efficiency of self-managing computer

systems could be further improved through the use of a combination of workload fore-

casting and a dynamic adjustment of the time period between consecutive triggering

of the search heuristic. Another contribution relevant to the case of a self-managing

multithreaded server deals with the more general case of multiple classes of customer

requests. For this case, a multiclass analytic performance model is developed and
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used by a self-managing multiclass multithreaded server.

This dissertation also illustrates how analytic performance models can be helpful

for autonomic data centers. Here, we show how superior performance and improved

resource utilization can be obtained for both the cases of a simulated data center

and a realistic data center prototype. In this context, we also show how analytic

performance models can efficiently cope with situations where server failures can

occur.

Autonomic virtualized environments offer an additional area than can greatly

benefit from analytic performance models to achieve self-management. In this disser-

tation, we show how an autonomic virtual server hosting multiple virtual machines

can allocate the CPU intelligently to the virtual machines in a manner that maximizes

its overall performance.

1.4 Organization of the Dissertation

This dissertation is organized as follows. Chapter two provides some background

information and reviews basic concepts relative to queuing networks, performance

metrics, workload forecasting, and heuristic search techniques. It also discusses some

of the representative related work found in the literature. Chapter three presents a

detailed description of our suggested mechanisms that should be built into systems

to enable self-management. The chapter also provides a handy set of common perfor-

mance model patterns for autonomic computing systems. Chapter four is concerned

with illustrating the soundness of the proposed techniques for self-management for

the case of multithreaded servers. It deals with both a simulated and a real multi-

threaded server. For the case, of a real multithreaded server we use a modified version
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of Apache web server. In chapter five, we demonstrate the efficiency of analytic per-

formance models for the case of autonomic data centers. Here again, we conduct

the study for both the cases of a simulated data center as well as for the case of a

realistic self-managing data center prototype. Chapter six demonstrates how analytic

performance models can greatly improve the performance of a simulated autonomic

virtual server. Chapter seven provides concluding remarks and directions for future

research.



Chapter 2: Background and Related Work

This chapter starts by providing some background and definitions regarding combina-

torial search techniques, forecasting techniques, and queueing networks. In particular,

it reviews the definitions of the most common performance metrics such as response

time, throughput, probability of rejection, and availability. The last section of the

chapter discusses some work related to autonomic computing.

2.1 Background and Definitions

This section provide some background information and definitions that relate to com-

binatorial search techniques, queuing networks, and workload forecasting.

2.1.1 Combinatorial Search Techniques

Search is a well-known problem-solving paradigm. In fact, many real world problems

are modeled and transformed to searching scenarios. The cornerstone of a search

technique is to formulate the problem as that of finding a sequence of possible moves

that take us from an initial state to a final one, often referred to as a goal state. This

exploration of the set of all possible states, called the domain space, often takes the

form of a graph traversal, mostly that of a tree traversal. Many search techniques have

been studied. They are evaluated based on four criteria: completeness, optimality,

time, and space complexities [75]. Completeness refers to the fact that a solution

9
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is guaranteed to be found, if it exists. Optimality, on the other hand, reflects the

quality of the returned solution, and space and time complexity measure the amount

of resources that need to be mobilized to find the solution. Time and space complexity

depend, most of the time, on the depth of the search tree and on its branching factor

(i.e., the fanout of the tree). All search techniques fall into two broad categories.

The first is the so-called uninformed or blind search techniques. These techniques do

not use any outside knowledge, besides the one contained in the problem definition

itself, to make decisions regarding which states (or nodes) are worth exploring first.

Examples are the well-known Breadth-First Search (BFS) and Depth-First Search

(DFS). The second category of search techniques is the family of heuristically informed

techniques. These techniques use some extra knowledge, called heuristics, which

makes finding a good solution with less effort, more likely to happen. The most

famous ones are Hill-Climbing, Beam Search, and Best-First Search. A relatively

newer method, called Tabu Search, belongs to this group, too. In this dissertation,

we will be using hill-climbing and beam search as our heuristics of choice. Like DFS,

hill climbing dives into the search tree, exploring one branch at a time. At each depth

level one node is selected and pursued until no further improvements can be made or

the search has reached its maximum depth limit. Hill-climbing, however, is known

to suffer from some known problems, namely foothills, plains, and ridges. That is,

if the domain space presents some foothills, plains, or ridges, the technique will stop

progressing, move in an aimless manner, or get stuck at a local optimum, respectively.

Unlike hill-climbing, beam search expands several partial paths at the same time,

as does BFS. Beam search avoids carrying out an exhaustive search by purging the

remaining paths at each level. In fact, the beam factor, m, represents the number of
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nodes that are explored at each level. Obviously, they ought to be the best m nodes

at that depth. Other nodes, at that level, are simply ignored. Besides the beam

size m, there is another parameter for the search, k, which specifies the maximum

depth from the root of the tree to the nodes being explored. Hence, we refer to the

technique as an (m, k) Beam Search.

2.1.2 Queueing Networks (performance metrics, availability)

In this subsection, we review the definitions of queueing networks and their most

commonly used performance metrics as reported in the literature [30, 41].

Basically, a queuing network is a set of interconnected queues where each queue

represents a physical resource that services customers requests. Typically, a resource

is made of a server and a waiting line for customers requests. Upon the arrival of a

request to a resource, it starts receiving service immediately if the server is available

or it joins the waiting line otherwise. The time that a request spends receiving service

at the server is referred to as the service time while the waiting time denotes the time

a request spends in the line waiting to start receiving service. On the other hand,

the requests inter-arrival time represents the time that elapses between consecutive

arrivals of requests. Typically, a request pays several visits to the same resource

before it departs from the queuing network. The total service time spent by a request

at a resource over all the visits is referred to as the service demand. Usually, requests

that have similar service demands are considered to be coming from the same class

of customer requests. In fact, the workload imposed by a class of requests on a

given system is generally characterized in terms of requests service demand and the

requests arrival rate. The sum of a request’s waiting time and service demand is
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referred to as the request’s response time. The response time is one of the main

performance metrics that are of interest for a queuing networks. Other measures

of interest include the throughput, the resources queue lengths, and the resources

utilizations. The throughput represents the amount of requests serviced per time

unit while the queue lengths represent the average number of requests in a queue at

any time. The resource utilization, on the other hand, denotes the fraction of time

that a resource is busy servicing customer requests. A queuing network is said to

be open if there is an infinite population of customers that send requests for service,

otherwise the queuing network is considered closed.

The service discipline for a queue determines the order in which the requests that

arrive to the queue are serviced. Typical service disciplines include First Come First

Served (FCFS), Last Come First Served (LCFS), Preemptive Priority (PP), Round

Robin (RR), and Processor Sharing (PS).

Besides response time and throughput, computer systems are also evaluated by their

availability, defined as the fraction of time that a system is operational. Typical

values for availability are 99.9%, 99.99%, and are referred to as 3-nine availability

and 4-nine availability, respectively.

2.1.3 Forecasting Techniques

Forecasting techniques are quite essential for autonomic computing. In fact, auto-

nomic elements become more effective once empowered with forecasting abilities. The

reason is that these elements are faster at noticing any changes in the trend of the

system workload. They are able then to proactively position the system in a setting

that would be more adequate for the coming load. Forecasting can be achieved by
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applying many techniques [40]. However, no particular technique gives good forecast-

ing results for all kind of data. There are cases when some techniques outperform

others. We describe here three forecasting techniques that are very popular: weighted

moving averages, exponential smoothing, and, polynomial regression [40].

• Moving Average: A simple and widely used forecasting method is the simple

moving average (SMA). SMA makes the value to be forecast for the next period

equal to the average of a number of previous observations. It is worth noticing

that with this technique, only one value can be forecast at a time. A popu-

lar special case of this technique, is the weighted moving averages. Weighted

moving averages is an appropriate technique for situations where the response

variable (i.e., value to be forecasted) maintains an almost constant value for

quite a while before changing significantly. The forecasted value is computed

as a weighted average of a given number of the most recent observations. The

weights are chosen in a manner that reflects the relative importance of the

newest/oldest observations.

• Exponential Smoothing: This is another popular and simple forecasting tech-

nique known to be good for making predictions from time series data that

exhibit upwards and/or downwards trends. Exponential smoothing computes a

prediction as follows:

PredictedValue = α× PreviousActualValue + (1−α)× PreviousPredictedValue.

α is used to gauge the relative importance that is associated with the previous

prediction as opposed to the previous observation. For example, more weight

is given to observed values rather than to predicted ones if α is close to 1. A
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value of α close to 0, on the other hand, gives more importance to predicted

values as opposed to observed ones.

• Polynomial Regression: Polynomial regression is widely used as a forecasting

technique due to the fact that polynomials have the nice ability of approximating

fairly well any continuous function. The higher the degree of the polynomial the

better is the fitting. However, in order not to introduce a severe overhead on the

autonomic elements when computing the regression model, only a moderately

high value for polynomial degrees should be used.

The question becomes then how to tell whether a given forecasting technique explains

well the observed data. It should be noted that the overall goal is to minimize the

forecasting errors (i.e., the gaps between the observed and forecasted values). Least-

square methods are usually applied to properly fit the curves. As a matter of fact,

a popular indicator of the goodness of the fit, called coefficient of determination and

denoted by R2, is computed based on the method of least squares [36]. R2 takes

values in the interval [0, 1]. The higher R2 the better is the forecasting model. How-

ever, it is worth mentioning that one has to be quite careful with the least squares

method. Indeed, the presence of outliers (points that do not fit the trend very well)

has a significant impact on the results obtained by methods like least-squares, some-

times rendering them useless. The statistical community has recognized the need to

develop robust regression methods that can generate good predictions in the presence

of outliers (see for example [17, 8]). Some of these methods are already incorporated

in commercial tools such as S-PLUS [65]. While the identification of real outliers is a

desirable feature, the detection of “false” outliers could be very misleading. For this
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reason, methods to detect unusual movements of temporal data have been proposed

recently [59]. These methods are able to successfully differentiate between outliers

and “plateau” changes (i.e., cases in which a new level of activity has been reached).

2.2 Related Work

The problem of designing systems that meet the performance expectations of their

users and administrators has been dealt with in a variety of ways. The most repre-

sentative work is the one that relates to the context of web enabled applications and

e-commerce systems. For instance, the workload of information providing web sites

has been extensively studied in [1, 5, 2, 12, 9, 62]. A comprehensive analysis of the

workload seen by e-commerce sites is presented in [45, 43] where it was shown that

these workloads tend to vary very dynamically and exhibit short-term fluctuations.

Therefore, the main challenge for e-commerce sites is how to make best usage of their

existing resources in order to cope with short-term fluctuations in the workload so

as to maintain the QoS at its desired levels. To this end, several approaches were

suggested to address this problem.

A session-admission control approach is proposed in [15]. In this technique, requests

may be classified into high, medium, or low priority based on the configured pol-

icy. Priority levels are used to determine admission priority and performance-level.

When the site cannot provide the desired QoS, new sessions are rejected so that the

current ones can continue to experience good performance. These techniques were

later incorporated into commercial products like WebQoS from HP [72]. While this

approach works well for sessions in progress, it does not deal with an important QoS

metric, namely the probability that a request is rejected.
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Another approach to QoS control is the one incorporated in Peakstone’s eAssurance

product, which uses statistical models, including Bayesian and stochastic modeling to

model site behavior [23, 61]. These statistical models are constantly updated based

on observations of changes in applications, infrastructure, or traffic. The approach

used by eAssurance suffers, however, from the following:

1. They only consider requests’ response time as the sole performance metric of

interest. Therefore, they do not take into account other important and poten-

tially conflicting metrics such as throughput and the probability of rejection of

requests.

2. The simple statistical models used are not robust enough to cope with the

non-linear behavior of computer systems. Response time is an example of a

performance metric that does not vary linearly with system workload.

Policy-based resource management is the approach adopted in [44]. The authors

propose a family of resource management policies that dynamically assign priorities

to customers. This approach is aimed at using the site’s existing resources to opti-

mize business metrics such as revenue throughput but does not provide guarantees

in terms of QoS. So this approach does not take much into account users perceived

performance.

Control theory is another approach that appears in the literature and is used for dy-

namic systems management. In [18], the authors present a technique for dynamically

controlling the utilization of the CPU and memory of an Apache Web server. In their

work, elements from control theory are used to tune the length of a session and the
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maximum number of connections in order to regulate the interrelated CPU and mem-

ory utilization. This work is mainly based on the use of linear models given the fact

that the metrics to control are linear. It is not known, however, how these techniques

could be extended to control notoriously non-linear metrics such as response time,

throughput, and the probability that requests are rejected. Moreover, no direction

was given as to whether these techniques would perform well in a typical three-tier

e-commerce site in which the configurable parameters at the various layers affect the

site’s overall QoS.

Other representative work that relate to autonomic computing in the recent years

include [71, 6, 14, 13, 19, 48]. In [48], analytic performance models are used to con-

trol the QoS of an e-commerce system. It is the first work to apply queuing models

for short-term systems performance optimization. Traditionally, queuing models are

used in capacity planning for medium to long term provisioning of resources (in the

order of few months, at least). While this work constitues a solid proof of concept, it

did not deal with other control issues like the robustness of the self-managing systems,

use of workload forecasting, sensitivity of the controller, or the frequency of control.

We address these points in chapter 4 of this dissertation.

In [71] Walsh et. al. addressed the problem of resource allocation in an autonomic

data center. In this context, a data center hosts several Application Environments

(AEs) and has a fixed number of servers that are dynamically allocated to the various

AEs in a way that maximizes a certain utility function, as defined in [71]. The utility

functions used in [71] depended in some cases on performance metrics (e.g., response

time) for different workload intensity levels and different number of servers allocated
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to an AE. The authors of [71] used a table-driven approach that stores response time

values obtained from experiments for different values of the workload intensity and

different number of servers. Interpolation was used to obtain values not recorded in

the table. As pointed out in [71], this approach has some limitations:

• It is not scalable with respect to the number of transaction classes in an appli-

cation environment,

• It is not scalable with respect to the number of AEs, and

• It does not scale well with the number of resources and resource types. More-

over, building a table from experimental data is time consuming and has to

be repeated if resources are replaced within the data center (e.g., servers are

upgraded).

A solution that overcomes these shortcomings is presented in chapter 5 of this disser-

tation.

The problem of dynamic CPU allocation in virtualized environments has been

dealt with by HP through their Worklaod Manager product [26]. Workload Manager

is a software solution that constitutes the goal-based policy engine in the HP Virtual

Server Environment (VSE) [25]. Workload Manager ensures that the different virtual

machines hosted by the VSE get adequate CPU instances (in the case of multiproces-

sor servers) and/or CPU shares so that either usage goals or performance goals are

met. Each virtual machine specifies a range for acceptable usage or performance goals

and is assigned a priority based on its relative importance. The Workload Manager

regularly goes through all the hosted virtual machines in the descending order of their

priorities and in incremental units of allocations either assign more units or remove
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them from the virtual machine (in the case of extra capacity) until its usage or per-

formance goals are in the desired range. However, this trial and measure approach

suffers from the fact that it may take a few allocation cycles before a virtual machine

finally reaches its required resource level. In chapter 6 we provide a solution to the

problem of dynamic CPU allocation that does not have this shortcoming. In fact the

solution we present makes usage of analytic performance models to determine, at any

time, the required resouce levels for each virtual machine based on their workloads.

Our technique aims at maximizing the overall utility or quality of service for the entire

virtual server and not only for individual virtual machines. Moreover, our solution

also allows for a dynamic change of the priorities of the virtual machines hosted by

the autonomic virtual server.



Chapter 3: The General Control Approach

In this chapter we present the general control approach. Particularly, we describe the

control architecture we propose for autonomic systems in the first section. We describe

the components of the architecture and their interactions to reach better control

decisions. QoS functions and their interpretations are presented as well. Some control

decisions regarding workload forecasting, frequency of control, and distributed control

are also discussed in this section. The second section of this chapter presents the most

common performance patterns that are found in common autonomic systems.

3.1 Controller Approach

This section presents details of the proposed control approach. It starts by explaining

the system architecture, its components, and how they interact. Then, it formally

defines the QoS functions used and justifies their motivations. The end of the section

also discusses some control considerations that should be taken into account when

designing/deploying a control system.

3.1.1 System Architecture

Our controller approach is based on the notion that a computer system is enhanced

with a QoS controller that:

1. monitors system performance,

20
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2. monitors the resource utilization of the various resources of the system, and

3. executes, at regular intervals, called controller intervals (CI), a controller algo-

rithm to determine the best configuration for the system (see Fig. 3.1).

As a result of running the controller algorithm, reconfiguration commands are gener-

ated to instruct the system to change its configuration.

i-th controller interval
 (i+1)-th controller interval


requests
 requests


Execution of the controller algorithm


Reconfiguration commands


Figure 3.1: Controller intervals.

The architecture of the QoS controller is best described with the help of Fig. 3.2.

The QoS controller has four main components: Service Demand Computation (2),

Workload Analyzer (3), QoS Controller Algorithm (5), and Performance Model Solver

(4). The Service Demand Computation (2) component collects utilization data (1) on

all system resources (e.g., CPU and disks) as well as the count of completed requests

(7), which allows the component to compute the throughput. The service demand

of a request, i.e., the total average service time of a request at a resource, can be

computed as the ratio between the resource utilization and the system throughput
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according to the Service Demand Law [41]. The service demands computed by this

component (8) are used as input parameters to a Queuing Network (QN) model of

the computer system solved by the Performance Model Solver component (4).

Computer System
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Figure 3.2: Architecture of the QoS Controller.

The Workload Analyzer (3) component analyzes the stream of arriving requests

(6), computes statistics for the workload intensity, such as average arrival rate, and

uses statistical techniques [3] to forecast the intensity of the workload in the next

controller interval. The current or predicted workload intensity values (9) computed

by this component are also used as input parameters of the Queuing Network model
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solved by the Performance Model Solver component (4). This component receives re-

quests (10) from the QoS Controller Algorithm to solve the QN model corresponding

to a specific configuration of the system. This Performance Model Solver component

takes as input parameters to the QN model the configuration parameter values (10),

service demand values (8), and workload intensity values (9). The output of the QN

model is the resulting QoS value (11) for the configuration used as input by the QoS

Controller algorithm. At the beginning of each controller interval (see Fig. 3.1), the

QoS Controller Algorithm (5) component runs the controller algorithm. This algo-

rithm takes into account the desired QoS goals, the arrival and departure processes,

and performs a combinatorial search (e.g., beam search or hill-climbing) [63] of the

state space of possible configuration points in order to find a close-to-optimal configu-

ration. The cost function associated to each point in the space of configuration points

is the QoS value of the configuration described in section 3.1.2. This QoS value has

to be computed by the Performance Model Solver for each point in the space of con-

figuration points examined by the QoS controller algorithm. Once the QoS controller

determines the best configuration for the workload intensity levels provided by the

Workload Analyzer, it sends reconfiguration commands (12) to the computer system.

It is worth mentioning that for some design and performance considerations, not all

controller components need to reside in the same machine. In case the components

are distributed across several machines, fast communication mechanisms supported

by the underlying local area network (LAN) could be taken advantage of for efficient

inter-component communication.
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3.1.2 QoS Functions

The QoS controller attempts, at each controller interval, to optimize a QoS function or

a utility function that depends on QoS metrics such as response time and throughput.

This section discusses these functions in details. The QoS function considered here is

a modified version of the one used in [48]. It still combines relative deviations of the

average response time, average throughput, and probability of rejection, with respect

to their desired goals. However, all the relative deviations are normalized in our case

and as a result they only take values in the interval (-1, 1).

More specifically, the relative deviation ∆QoSR of the average response time for

configuration vector ~C and workload vector ~W is defined as

∆QoSR( ~C, ~W ) =
Rmax − R( ~C, ~W )

max(Rmax, R( ~C, ~W ))
(3.1)

where Rmax is the maximum average response time tolerated and R( ~C, ~W ) is the

response time for configuration ~C and workload vector ~W , either measured during

the controller interval or predicted through the use of performance models. The

definition of Eq. (3.1) has the following properties:

• ∆QoSR = 0 if the response time exactly meets its SLA (i.e., R( ~C, ~W ) = Rmax).

• ∆QoSR > 0 if the response time exceeds its SLA (i.e., R( ~C, ~W ) < Rmax). Given

that the measured response time is at least equal to the sum
∑K

i=1 Di of the

service demands Di for all K resources (see [41]), then, using Eq. (3.1), it

follows that ∆QoSR ≤ 1− (
∑k

i=1 Di)/Rmax < 1.
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• ∆QoSR < 0 if the response time does not meet its SLA (i.e., R( ~C, ~W ) > Rmax).

Then, from Eq. (3.1) it follows that −1 < −(1−Rmax/R( ~C, ~W )) ≤ ∆QoSR

An intuitive interpretation of the definition in Eq. (3.1) is that of a relative gain

(or loss) with respect to the SLA (or to the response time for a given configuration

and workload). For example, if the measured response time is 3 seconds and the

maximum response time is 4 seconds, then ∆QoSR = (4-3)/4= 0.25. So, there is a

gain in response time of 25% relative to its SLA. If the maximum response time is 3

seconds and the measured response time is 4 seconds, then ∆QoSR = (3-4)/4= - 0.25.

So, there is a 25% loss (i.e., a negative gain) with respect to the measured response

time. In other words, it would be necessary to cut down 25% of the measured response

time to meet the SLA.

The relative deviation ∆QoSP of the probability of rejection for configuration

vector ~C and workload vector ~W is defined similarly to ∆QoSR. Namely,

∆QoSP ( ~C, ~W ) =
Pmax − P ( ~C, ~W )

max(Pmax, P ( ~C, ~W ))
(3.2)

where Pmax is the maximum probability of rejection tolerated and P ( ~C, ~W ) is the

probability of rejection for configuration ~C and workload vector ~W , either measured

or predicted by a performance model. The definition of Eq. (3.2) has the following

properties:

• ∆QoSP = 0 if the probability of rejection exactly meets its SLA (i.e., P ( ~C, ~W ) =

Pmax).

• 0 < ∆QoSP ≤ 1 if the probability of rejection exceeds its SLA (i.e., P ( ~C, ~W ) <
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Pmax).

• −1 ≤ ∆QoSP < 0 if the probability of rejection does not meet its SLA (i.e.,

P ( ~C, ~W ) > Pmax).

The relative deviation ∆QoSX for configuration vector ~C and workload vector ~W

is defined as

∆QoSX( ~C, ~W ) =
X( ~C, ~W )−X∗

min

max(X( ~C, ~W ), X∗
min)

(3.3)

where X∗
min = min(λ, Xmin) is the minimum value between the average arrival rate

λ and the minimum required throughput Xmin and X( ~C, ~W ) is the throughput for

configuration ~C and workload vector ~W , either measured or predicted by a perfor-

mance model. X∗
min is used as the Service Level Agreement (SLA) instead of Xmin in

Eq. (3.3) because it would not make sense to expect a system to meet a given mini-

mum throughput requirement if the workload intensity is not large enough to drive

the system to that throughput level. The definition of Eq. (3.3) has the following

properties:

• ∆QoSX = 0 if the throughput meets its SLA (i.e., X( ~C, ~W ) = X∗
min).

• 0 < ∆QoSP ≤ 1 if the throughput exceeds its SLA (i.e., X( ~C, ~W ) > X∗
min).

• −1 ≤ ∆QoSP < 0 if the throughput does not meet its SLA (i.e., X( ~C, ~W ) <

X∗
min).

We can now define a single metric as a weighted sum of the three QoS deviations

defined above. Thus, QoS( ~C, ~W ) = wR × ∆QoSR( ~C, ~W ) + wX × ∆QoSX( ~C, ~W ) +
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wP ×∆QoSP ( ~C, ~W ), where wR, wX , and wP are the relative weights, in the interval

[0, 1], determined by management, to indicate the relative importance of response

time, throughput, and probability of rejection. Note that the value of QoS is a

dimensionless number between −1 and 1. If all three metrics meet or exceed their

SLAs, QoS ≥ 0. If QoS < 0, then at least one of the metrics does not meet its SLA.

3.1.3 Control Considerations

To complement the control approach, it is recommended to take some additional

considerations into account when designing and deploying the controller. These con-

siderations have a significant impact on the efficiency of the controller and on the

performance of the entire system.

• Workload Forecasting:

An adequate choice of forecasting techniques to be used by the workload pre-

dictor component would result in a higher system performance. In fact, the

use of effective forecasting algorithms enables the controller to acquire a more

proactive behavior. By that we mean that the controller can make better con-

figuration decisions to accomodate the future workload. Possible techniques

that could be used for workload forecasting are reviewed in Chapter 2.

• Frequency of Control:

By enabling the controller to dynamically regulate the frequency of its invoka-

tion, the overall system performance and stability could be improved. In the

case of a sudden surge in the workload, an adaptive controller algorithm is

able to respond quite early to such a change in the external environment. This
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results in the controller being able to position the system in a more conve-

nient configuration before performance seriously degrades. Also, in cases when

the workload becomes more stationary, there is less need to keep running the

controller algorithm very frequently. This may contribute to a higher overall

stability of the entire system.

• Thin/Fat Local/Global controllers:

In the case of a quite complex autonomic system, control decisions may be

made in a distributed manner. In this scheme, there will be a hierarchy of con-

trol where local (small) controllers run their own control algorithms. A global

(super) controller could simply approve or disapprove the decisions made by

the local controllers depending on whether some global performance criteria are

met or not. The question becomes then about how much authority to grant to

the local and global controllers. This is absolutely an important design issue

that greatly impacts the overall system performance and therefore much atten-

tion should be devoted to this matter before an autonomic system is actually

deployed.

3.2 Common Performance Patterns for Autonomic

Computing Systems

In this section, we review some of the analytic performance models that could be

used for several instances of autonomic systems. These analytic performance models

are taken in most cases from the existing literature on the subject and are discussed

here for convenience.
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3.2.1 A Single Class Single Threaded Online Server with an

Infinite Queue

In this system, there is an infinite population of customers that send requests to the

server. All requests join the same queue at the server. The server’s thread picks the

request at the front of the queue, services it before it departs. The queue is infinite and

therefore there is no rejection of requests. The inter-arrival and service times of the

requests are typically drawn from either an exponential or a general distribution. For

the case of exponentially distributed inter-arrival and service times, the performance

model to use is an M/M/1 model. The solution for the M/M/1 model can be found

in [41, 30]. If the inter-arrival time is exponentially distributed while the service time

is arbitrarily distributed, the performance model to use is the M/G/1 model. The

solution for the M/G/1 model can be found in [41, 30]. In the case of arbitrarily

distributed inter-arrival and service times, the performance model to use is the G/G/1

model. The solution for the G/G/1 model can be found in [41, 30].

3.2.2 A Single Class Multi-threaded Batch Server

In this system, there is only a finite number of customers in the system at any time.

All customers send requests of the same type to the server. The number of threads

in the server is equal to the number of customers. Therefore, customers requests

do not wait for available threads to start receiving service. As soon as a request

completes its service it is immediately replaced by a new request of the same type.

This fixed number of requests in the system is referred to as the server’s concurrency

level. Single class Mean Value Analysis (MVA) is an algorithm that is usually used

for solving for the performance metrics of this system. The exact description of the
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MVA algorithm can be found in [41, 30].

3.2.3 A Single Class Single Threaded Online Server with a

Finite Queue

In this system, there is an infinite population of customers that send requests to

the server. All requests join the same queue at the server. The server’s thread

picks the request at the front of the queue, services it before it departs. The queue,

however, has a finite capacity, K. Therefore, requests that arrive to the server and

find no room in the waiting queue are simply rejected. As a result, the probabililty

of requests rejection is an additional important performance metric for this kind

of systems. Based on whether the inter-arrival and service times of requests are

either exponentially or arbitrarily distributed, the performance model to use for these

systems can be either M/M/1/K, M/G/1/K, or G/G/1/K. The solutions for these

models can be found in [41, 42].

3.2.4 A Single Class Multi-threaded Online Server with an

Infinite Queue

In this system, there is an infinite population of customers that send requests to the

server. All requests join the same queue at the server and are of the same type.

The queue of requests is infinite and the server has a finite number of threads, J ,

that service the requests. Any available thread can pick the request at the front

of the queue, service it before it departs. The threads compete for accessing the

server’s shared resouces like the CPU, disks, etc. Therefore, customer requests are

subject to two kinds of contention in this type of systems. First, there is a contention
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for the software resources (i.e., an available server’s thread), then there is a hardware

contention for the system’s physical resources. The performance model for this system

is based on a death-birth process in a Markov Chain where the birth rate is equal to

the average arrival rate of requests, λ, and the death rate is equal to the throughput

of the system. Note that the death rate becomes constant as soon as there are at

least J requests in the system since the server would have reached its capacity limit.

Details of the solution of this performance model can be found in [38].

3.2.5 A Single Class Multi-threaded Online Server with a

Finite Queue

This system is quite similar to the model described previously (section 3.2.4) with

the only exception that the server queue has a finite capacity, K, this time. Therefore

requests that arrive to the server and find no room in the waiting queue are rejected.

As a result, the probability of requests rejection is an important performance metric

in a such system. The exact performance model solution for this system can be found

in [48].

3.2.6 A Multiple Class Multi-threaded Online Server with

an Infinite Queue

This system is very similar to the model described previously in section 3.2.4 with

the main difference being that it supports multiple classes of customer requests. Each

class of requests has its own arrival rate and service demands at the various physical

resources in the system. A server’s thread can service any class of requests. The per-

formance model needs to provide performance metrics on a per class basis. It makes
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use of performance models for batch systems with multiple classes of requests which

are typically solved using an Approximate Mean Value Analysis (aMVA) algorithm.

Details of the exact performance model solution for this system can be found in [37].

3.2.7 A Multiple Class Multi-threaded Online Server with a

Finite Queue

This system is very similar to the model described previously in section 3.2.6 with

the main difference being that the server’s queue has a finite capacity. Therefore a

request that arrives to the system and does not find room in the waiting queue is

rejected. The exact performance model solution for this system is an adaptation of

the algorithm found in [37] and is presented in details in Chapter 4.

3.2.8 A Multiple Class Multi-threaded Batch Server

This system is quite similar to the model described previously in section 3.2.2 with the

main difference being that it supports multiple classes of requests. The concurrency

level per class represents the number of requests of a class that are concurrently

running in the system. Once a request finishes receiving service it is immediately

replaced by a new request of the same class. The performance model to solve this

system needs to provide performance metrics on a per class basis. An exact multiclass

Mean Value Analysis (eMVA) can be used for solving such performance models for

the case of small number of customer classes. For scalability issues, an Approximate

multiclass Mean Value Analysis (aMVA) is used for providing approximate solutions

for systems with large number of customer classes. Details of the eMVA and aMVA

algorithms can be found in [41].
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3.2.9 Other Performance Patterns Found in Common Sys-

tems Architectures

In many of today’s commercial application servers, like WebShpere from IBM for ex-

ample [73], the system has a dynamic pool of threads that service customer requests.

Therefore, the system can either create additional threads or send some working

threads back to the pool based on the observed workload. As a result, the service

demands of requests in such systems are not fixed anymore. Rather, they depend on

the actual load on the system. Therefore, performance models that take into account

that requests service demands are load dependent should be used for such systems.

Load dependent Mean Value Analysis is generally used for solving these performance

models. Details of the load dependent MVA algorithm can be found in [42].



Chapter 4: Autonomic Multithreaded Servers

This chapter investigates the efficiency of the proposed control approach on a par-

ticular instance of autonomic systems, namely a multithreaded server. The choice of

this system is motivated by the fact that this architecture is adopted in most of the

available commercial servers in the market (web servers, application servers, database

servers, etc.). The first section of this chapter considers the case of a single class of

requests while the second section deals with the more general case of multiple classes

of requests. In each case, analytic performance models are presented and evaluated

in experimental settings and results are reported. The chapter also looks at issues

like the robustness of the controller, its sensitivity to SLAs, and other controller ar-

chitecture considerations such as the inclusion of a workload forecasting module and

the regulation of the control frequency. Some of the work presented in this chapter

appears in the following publications: [10], [46], and [47].

4.1 The Single Class Multithreaded Server Case

We describe in this section an example of a computer system that we will use to

illustrate the ideas described in previous sections.

4.1.1 System Description

The computer system shown in Fig. 4.1 consists of a multithreaded server that receives

requests at a rate of λ requests/sec. All requests are considered to belong to the same

34
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class (i.e., they have similar service demands). The system has m threads and the

maximum number of requests that can be in the system either waiting for a thread or

using a thread is equal to n (n ≥ m). Thus, requests that arrive and find n requests

in the system are rejected. When a thread is executing a request, it is either using

or waiting to use physical resources such as the CPU and disk. So, the response time

of a request can be broken down into the following components: waiting for a thread

(i.e., software contention), waiting for a physical resource (e.g., CPU or disk), and

using a physical resource. Once a request is accepted in the system, it joins the thread

waiting queue, in the event all threads are busy, and stays there until it is assigned

to an available thread. Once a request completes, it leaves the system.

4.1.2 Identification of Configurable Knobs

The configurable knobs are the number of threads in the server, m, and the size of

the requests queue, n. m and n are chosen because of their greatest impact on the

performance of the server as also shown in [48]. In fact, it is worth noting that

these two configurable parameters do not affect the performance of the system in a

monotonic manner. In other words, setting the number of threads, m, to its maximum

or minimum does not guarantee that system performance will be at its maximum or

minimum level.

The same could be said about the requests queue size. For the case of the number

of threads, m, setting it to the lowest possible value implies that requests will suffer

a large delay. Also, setting m to the largest possible value might cause the requests

to be serviced at a very slow rate due to the increased contention for the physical

resources in addition to the possibility of a trashing behaviour of the system [41].
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Figure 4.1: Software and hardware queues.

This phenomenon is depicted in Fig. 4.2 that also appears in [40].

Figure 4.2 shows the variation of the response time of a request as a function of

m for four different arrival rate (L) values: 1 req/sec, 2 req/sec, 3 req/sec, and 3.5

req/sec. The curves of this figure were obtained by solving an analytic performance

model that is explained in details in [40]. The figure shows that:

1. As the arrival rate increases, the response time increases as well.

2. There is an interplay of software contention (i.e., waiting for a software thread)

and physical contention (i.e., waiting for a processor or disk). As m increases,
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Figure 4.2: Response time vs. Number of Threads for a Multithreaded Server for

Various Workload Intensity Levels (in requests/sec).

the waiting time for a software thread tends to decrease. However, at the same

time, contention for physical resources increases. Therefore, depending on which

factor dominates, the response time decreases or increases as a function of m.

Thus, for each workload level, there is an optimal number of threads.

As for the case of requests queue size, n, setting it to the lowest possible value

entails a higher probability of request rejection. On the other hand, setting n to its

largest possible value could result in a very large response time due to a quite high

waiting time. For these reasons, a dynamic adjustement of these two configurable

parameters is the only possible option left in order to maintain system performance

at acceptable levels.
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4.1.3 The Single Class Performance Model

The single class analytic model used to obtain the average response time, R, average

throughput, X, and probability that requests are rejected, Prej , is described here.

The model consists of a combination of a Markov Chain [35] and a queuing network

(QN) model. The Markov Chain is used to model the waiting queue for threads and

the set of m execution threads. The QN model is used to obtain the rate at which

threads complete their execution. Let X(k), k = 1, ..., m be the rate at which a

thread completes its execution when there are k requests in execution. This rate can

be obtained by solving the QN model for the hardware subsystem composed of the

CPU and disk when there are k concurrent threads in execution. The solution of this

queuing network can be obtained through Mean Value Analysis (MVA) [40, 39, 41].

The Markov chain model of Fig. 4.3 has n + 1 states. A state k, for (k = 0, ..., n),

represents the number of requests in the system (waiting for a thread or using a

thread). The arrival rate in the diagram is the arrival rate of requests, λ, and the

completion rate is the completion rate of threads. Note that since there can be at

most m threads in execution, the departure rate is constant and equal to X(m) for

any state k > m.

m+1
0
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 m
 m+1
 n


X(0)
 X(1)
 X(m)
 X(m)
 X(m)
 X(m)


. . .
 . . .


Figure 4.3: Markov Chain for the thread system.
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The solution of this Markov Chain, i.e., the values of the probabilities Pk, for

k = (0, ..., n), of finding k requests in the system, can be obtained using the methods

in [35, 40]. The solution is given below.

Pk =

{

P0λ
k/β(k) for k = 1,..., m

P0ρ
kX(m)m/β(m) for k = m + 1,..., n

(4.1)

where:

• β(k) = X(1)×X(2)× ...×X(k),

• ρ = λ/X(m), and

• P0 = [1 +
∑m

k=1
λk

β(k)
+ ρ×λm×(1−ρn−m)

β(m)×(1−ρ)
]−1

The metrics of interest can be easily computed from the state probabilities and from

Little’s Law [35] as follows.

• Prej = Pn

• X = λ× (1− Prej) =
∑n

k=1 X(k)× Pk

• R =
Pn

k=1 k×Pk

X

4.1.4 Case of a Simulated Multithreaded Server

The simulated multithreaded server used for the experiments reported in this sec-

tion has the same functional features as in the case of the real multithreaded server

described in 4.1.1.
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4.1.4.1 The Experimental Setting

In order to analyze the effectiveness of the controller described above, we developed

a simulation program of the multithreaded server in C and C++ using the CSIM

library [16]. The simulation program also implements the controller code exactly as

the controller would operate in an actual system. The controller implemented in this

experiment uses two different types of combinatorial search techniques: hill-climbing

and beam search [?]. The use of hill-climbing to guide the analytic performance

model in exploring the search space has been presented in [48]. However, because of

the shortcomings of hill-climbing, as discussed in Chapter 2, we decided to add beam

search as an additional heuristic for the controller. Our intention is to see whether

these two search techniques have a significantly different impact on the performance

of the controller. The two configuration parameters to be changed by the controller

are the values of n and m. Thus, a configuration point is the pair (n, m) as defined

previously. Hill-climbing is a very simple search technique that works as follows.

Starting from the current configuration C0 = (n0, m0): examine all “neighbor” con-

figurations to C0 and move to the one with the highest value of QoS, computed by

the Performance Model solver. A “neighbor” configuration is defined as one in which

one of the configuration parameter values is changed by +1 or −1. So, the neighbor

configurations of C0 are (n0 +1, m0), (n0−1, m0), (n0, m0−1), and (n0, m0 +1). The

search is repeated at each new point visited until either i) the value of the QoS does

not improve or ii) a threshold on the number of points traversed has been exceeded.

One of the drawbacks of hill-climbing is that the search can be prematurely stopped

at a local optimum. An illustration of this method is shown in Fig. 4.4, which shows



41

various points in the space of possible configurations. A circle represents each config-

uration. The number within each circle indicates the QoS value of the configuration.

Assume that configuration A in Fig. 4.4 is the initial configuration. The neighbors of

A are B, C, D, and E. Neighbor E is the one with the highest QoS. So, the next point

visited is E, which has F as the neighbor with the highest QoS value. F becomes then

the next point to be visited and so on.
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Figure 4.4: Hill Climbing.

Beam search is a combinatorial search procedure that works as follows. Starting

from the initial configuration, the QoS value for all the neighbors are computed and

the points with the k highest values are used to continue the search. The value

of k is called the beam. Then, the neighbors of each of the k selected points are

evaluated and, again, the k highest values among all these points are kept for further

consideration. This process repeats itself until a given number of levels is reached.

Then, the overall highest value is returned. Figure 4.5 illustrates how beam search
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with k = 2 operates starting from the point at level 1. Four neighbors are evaluated

but only the two with highest QoS values (15 and 18) are kept. The four neighbors

of these two points are evaluated and they constitute level 2 of the tree. The two

points with the highest QoS among the eight (22 and 25) are kept. Their neighbors

are evaluated and configurations with QoS values 40 and 39 are selected as the two

with the two highest values. In this example, the search is limited to four levels.
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Figure 4.5: Beam Search.

Our simulation experiments consider the system of Fig. 4.1 with one CPU and one

disk. The service demands at the CPU and disk are 0.03 sec and 0.05 sec, respectively.

The SLAs and respective weights are:

• R ≤ 1.2 seconds and wR = 0.25,

• X ≥ 5 requests/sec and wX = 0.30,

• Prej ≤ 0.05 and wP = 0.45.
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Figure 4.6: Evolution of the workload intensity.

4.1.4.2 Results

During each experiment, the arrival rate of requests started at a low value of 5 re-

quests/sec and was increased to a peak value of 19 requests/sec and was reduced to

14 requests/sec during a period of one hour, which was divided into 30 controller

intervals, as illustrated in Fig. 4.6. At the maximum value of 19 requests/sec the

utilization of the bottleneck resource (i.e., the disk) is close to 100%. Therefore, we

did not increase the arrival rate any further, otherwise the probability of rejection

would be too high.

The controller interval duration is equal to 120 seconds. During that interval, 2280

requests arrive on average during the peak load of 19 requests/sec. Figure 4.7 illus-

trates the variation of the QoS metric defined in previous sections during the duration
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of the experiment. The x-axis is labeled with the values of the average arrival rates

observed at each controller interval. There are four curves in Figure 4.7: two of them

use the two search heuristics (beam search and hill-climbing) described before, an-

other curve corresponds to the case in which the controller is disabled, and the last

one corresponds to the optimal QoS values obtained through an exhaustive search.

This value is computed off-line at the end of the simulation run by examining all 9,801

possible configurations at each controller interval and determining the best one. It

should be noted that for each point, the performance model has to be solved in order

to compute the QoS value for that point. The two considered heuristics evaluated no

more than 120 points per controller interval, i.e., 1.2% of the total number of points.

In Fig. 4.7, the optimal QoS curve shows the best QoS for the next controller interval

assuming that the arrival rate for that interval is the same as in the current one. The

other curves show what was actually measured from the system at the beginning of

each interval. These measurements are expected to be lower than the optimal values

provided that the arrival rate does not change. Since the arrival rates change from

interval to interval, small variations will be observed.

The following observations can be drawn from Fig. 4.7:

• At low loads, the controlled and uncontrolled cases provide almost the same

value for the QoS.

• As the arrival rate increases, the controlled system manages to keep the QoS

very close to its maximum value, while the QoS for the uncontrolled system

falls precipitously to almost zero.

• Both beam search and hill-climbing provide almost the same value for the QoS
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Figure 4.7: QoS values for beam search, hill-climbing, no control, and exhaustive

search.

as the optimal value. In fact, the relative error between any of the two heuristics

and the exhaustive search does not exceed 0.7%.

Figure 4.8 shows the utilization of the bottleneck device as a function of the arrival

rate of requests. As shown in the figure, when the controller is enabled, the utilization

of the disk is always higher than when the controller is turned off. In fact, as the

arrival rate reaches its peak value of 19 requests/sec, the disk utilization reaches 97%

for the controller case and only 77% for the uncontrolled case. The reason is that when

the controller is disabled, a significant number of requests are rejected, as illustrated

in Fig. 4.9. At the peak load, 21% of the incoming requests are rejected because the

system is not properly configured. Figure 4.8 illustrates a very interesting feature of
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the QoS controller: existing system resources can be better utilized while providing

better QoS to requests.
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Figure 4.8: Disk utilization vs. arrival rate of requests.

Figure 4.9 shows that the controlled system adjusts itself to avoid rejecting any

requests, even at high loads. The uncontrolled case violates the SLA of 0.05 for the

probability of rejection as soon as the arrival rate exceeds 12 requests/sec.

Figure 4.10 shows the variation of the average response time vs. the average

arrival rate of requests. As it can be seen, as the workload intensity reaches its peak,

the controlled system moves towards its response time SLA of 1.2 seconds and even

violates it for a very short time interval. The response time of the uncontrolled system

is lower than the one for the controlled system because more than 20% of the requests

are rejected at high loads and are kept out of the system. Thus, the controlled system
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Figure 4.9: Probability of rejection vs. arrival rate of requests.

adjusts itself to meet, as close as possible, the response time SLA while minimizing

the probability of rejection. This in turn provides a higher throughput as seen in

Fig. 4.11.

Figure 4.11 shows that the controlled and uncontrolled systems satisfy the through-

put SLA of at least 5 request/sec. However, at peak loads, the controlled system is

able to process 19 requests/sec while the uncontrolled system can only process 15.5

requests/sec due to the rejected requests.

In order to complement the above experiments, we deemed it is necessary to

provide an assessement of the overhead induced by the controller on the multithreaded

server. Therefore, we conducted an additional set of four experiments that correspond

to three different configurations for the beam search plus an experiment where an
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Figure 4.10: Response time vs. arrival rate of requests.

exhaustive search is used. For the three configurations of the beam search we used

the same depth value (K = 40), but different values for the fanout; 2, 3, and 4,

respectively. For each experiment, we recorded the number of points explored by the

search technique as well as the time (in seconds) for the search technique to complete

and return the best configuration vector to the multithreaded server.

In Table 4.1 , we report the average values obtained during the entire length of

experiments (i.e., 30 controller intervals). These values were obtained for a controller

running on an Intel Pentium III 800 MHz CPU. As the table shows, the average

number of explored configuration vectors increases with respect to the fanout and

so does the average time for the completion of the search technique. Even for a

value of the fanout, m, as high as 4, we see that the average number of configuration
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Figure 4.11: Throughput and arrival rate vs. controller interval.

vectors that are explored by the beam search is less than 2.5% of the total number

of possible configuration vectors. The average time taken by a beam search with a

fanout m = 4 is as well less than 2.5% of the average time required for an exhaustive

search. Therefore, we conclude that a controller that uses an efficient heuristic search

technique, like beam search for instance, is able to result into a very performant

controlled system yet only with a very minimal overhead.

4.1.5 Case of a Real Web Server

4.1.5.1 The Experimental Setting

In this section we show the results of applying the techniques described above to the

QoS control of an actual Web server. The HTTP server is Apache 1.3.12, which was
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Table 4.1: Quantification of the Controller Overhead

Controller Overhead
Beam Search Exhaustive Search

K 40
m 2 3 4
Visited Points 144 188 228 9801
Search Time (sec) 0.025 0.038 0.049 2.15

modified to allow for a dynamic change of the number of active threads (m) and

the maximum number of requests in the system (n). These parameters, m and n,

are the controlled parameters. The workload used to drive the server is generated

by SURGE, a workload generator for Web servers [9], using two client machines

sending requests to a third machine that runs the Web server. A fourth machine

runs the QoS controller. All four machines are Intel-based and run either Windows

2000 Professional or Windows XP Professional. All machines are connected through

a 100-Mbps LAN switch.

SURGE was selected as the workload generator because it was demonstrated in [9]

that, unlike other Web server benchmarks, it exercises servers in a manner that is

consistent with actual empirical distributions observed in Web traffic. In fact, SURGE

is capable of generating references in a manner that matches empirical measurements

regarding file size distributions, relative file popularity, embedded file references, and

temporal locality of references.

In this experiment again, the primary responses are the response time of an HTTP

request (R), the throughput of the HTTP server (X0), and the probability that a

request is rejected (Prej). The goal function is the same QoS value defined in the

previous section. The SLAs and respective weights for the experiment described here



51

are: R ≤ 0.3 seconds, wR = 0.5, X0 ≥ 50 requests/sec, wX = 0.2, Prej ≤ 0.05, and

wP = 0.3.

4.1.5.2 Results

Figure 4.12 shows the variation of the QoS during the experiment. The x-axis is a

time axis labeled in units of control intervals. The workload intensity started at 5

requests/sec and climbed to 19 requests/sec at CI = 19. Then, the workload intensity

was reduced to 14 requests/sec. The experiment in question lasted 30 CIs and each

CI is equal to two minutes. Results are shown for two types of combinatorial search

techniques: hill climbing and beam search (see top two curves). As it can be seen, the

QoS for the uncontrolled Web server (bottom curve) becomes negative when the load

reaches its peak value, indicating that at least one of the three metrics is not meeting

its SLA. On the other hand, the QoS for the controlled Web server always remains in

positive territory for both hill-climbing and beam search. We noticed in the various

experiments we carried out that beam search tends to provide slightly better results

than hill-climbing. This is probably due to the fact that the latter combinatorial

search technique may at times be trapped at local optima. However, the difference

between the two techniques was never significant.

4.1.6 Robustness of the Controller

Many real workloads exhibit some sort of high variability in their intensity and/or

service demands at the different resources. Therefore, it is very important to inves-

tigate the behavior of the proposed technique for self-managing computer systems

in such environments. The goal is to provide an assessment of the efficiency of the
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Figure 4.12: A controlled Web server

controller when the workload deviates from the underlying assumption made by the

performance model of an exponentially distributed inter-arrival time and service time

for the requests. To this end, we conducted a set of experiments to study the impact

of the variability in the request inter-arrival and service times distributions at both

system resources (i.e., cpu and disk). The variability of these distributions is repre-

sented by their respective coefficients of variation (COV) (i.e., the standard deviation

divided by the mean): Ca and Cs. We used the values 0.5, 1.0, 2.0, and 4.0 for Ca

and Cs for a total of 16 combinations of the values of these two coefficients of vari-

ation. We do not consider values for Ca and Cs larger than 4.0 as we are interested

only in values that represent a deviation from Ca = Cs = 1. Moreover, a value for

the squared coefficient of variation (COV 2) as large as 10 is typically considered to

provide a moderately high enough variability [20].



53

4.1.6.1 Generating Distributions with Varying Coefficients of Variation

To generate distributions with the desired values for the coefficient of variation, we

used phase-type distributions. For instance, to synthesize a distribution with a given

mean µ and a COV = 0.5, we used a 4-stage Erlang distribution, where each stage has

an exponentially distributed time with an average equal to µ/4 [35]. For a distribution

with a COV = 1, we used the exponential distribution (the only distribution that has

a COV = 1). For values of the COV greater than 1, we used a 2-stage Coxian

distribution [35], where each stage is exponentially distributed with an average equal

to µi for i = 1, 2 (see Fig. 4.13). As shown in the figure, one moves from stage 1 to 2

with probability (1 - q). One can exit the server right from stage 1 with probability

q (0 < q < 1). The average time spent in this server is equal to

µ = µ1 + (1− q)µ2. (4.2)

The variance is given by

σ2 = µ2
1 + (1− q2)µ2

2. (4.3)

Therefore, the COV is given by:

COV =
σ

µ
=

√

µ2
1 + (1− q2)µ2

2

µ1 + (1− q)µ2
. (4.4)

The question becomes, then, how to choose µ1, µ2, and q to obtain a distribution with

given values µ and COV for the mean and the coefficient of variation. First, we start

by using Eq. (4.2) to write µ1 in terms of µ2 and q as follows: µ1 = µ− (1− q)× µ2.

Second, by replacing this expression for µ1 in Eq. (4.4) one obtains the following

quadratic equation on the unknown µ2:

2(1− q)µ2
2 − 2µ(1− q)µ2 + (1− COV 2)µ2 = 0. (4.5)
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Figure 4.13: Two-phase Coxian distribution.

We can now solve Eq. (4.5) for q varying from 0.1 to 0.95 in increments of 0.05 and

choose one of the values of q that results in a positive value for µ1 and µ2.

4.1.6.2 Experimental Setting

The experimental setting used in this section is very similar to that used in the

simulated multhithreaded server section. The only difference worth mentioning is

that, now, the inter-arrival time and service time distributions have coefficients of

variation, Ca and Cs, respectively. The values used for Ca and Cs are: 0.5, 1, 2, and

4.

The SLA values and their corresponding weights are:

• Rmax = 1.2 seconds, wR = 0.35,

• Xmin = 5 requests/sec, wX = 0.25, and

• Pmax = 0.05, and wP = 0.4.

The initial values for n and m are n = 7 and m = 2.
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4.1.6.3 Results

Figure 4.14 depicts the variation of the workload intensity, measured in requests/sec,

as a function of time, measured in controller interval units for the experiments related

to the variability of the inter-arrival and service time of requests. The duration of

each experiment was 30 CIs (i.e., 60 minutes since each CI was set to 2 minutes). The

mean service demands at the cpu and the disk were 0.03 seconds and 0.05 seconds,

respectively. Thus, the maximum theoretical arrival rate supported by the system is

20 req/sec (i.e., 1 / max [0.03, 0.05]) [41]. The average arrival rate starts at a low value
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Figure 4.14: Workload intensity variation for the high variability experiments.

of 5 req/sec and reaches a peak of 19 req/sec, close to the theoretical maximum, at CI

= 19. The workload intensity stays at this value for three consecutive CIs and then

starts to decrease towards 14 req/sec. Ten experiments were run for each combination
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of Ca and Cs and 95% confidence intervals for the average of the QoS value were

computed at the end of each CI. Results were obtained for three scenarios: one in

which the controller is disabled and two others with the QoS controller active. The

two results in which the controller is active differ in the combinatorial optimization

technique used by the controller: beam search and hill-climbing.
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(a) Ca = 0.5 and Cs = 0.5 (b) Ca = 0.5 and Cs = 1.0
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(c) Ca = 0.5 and Cs = 2.0 (d) Ca = 0.5 and Cs = 4.0

Figure 4.15: QoS Controller Performance vs. Ca and Cs (Ca = 0.5).

Figures 4.15, 4.16, 4.17, and 4.18 show the results for all the scenarios de-

scribed above. First, it should be noted that the controlled system always behaves
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(a) Ca = 1.0 and Cs = 0.5 (b) Ca = 1.0 and Cs = 1.0

-0.1


0


0.1


0.2


0.3


0.4


0.5


0.6


0.7


0.8


0.9


1
 3
 5
 7
 9
 11



13



15



17



19



21



23



25



27



29



Controller Interval


A
ve

ra
g

e 
Q

o
S




No Controller
 Beam Search
 Hill Climbing


-0.2


0


0.2


0.4


0.6


0.8


1


1
 3
 5
 7
 9
 11



13



15



17



19



21



23



25



27



29



Controller Interval


A
ve

ra
g

e 
Q

o
S




No Controller
 Beam Search
 Hill Climbing


(c) Ca = 1.0 and Cs = 2.0 (d) Ca = 1.0 and Cs = 4.0

Figure 4.16: QoS Controller Performance vs. Ca and Cs (Ca = 1.0).
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better, i.e., produces higher QoS values than the non-controlled (NC) system. Also,

as expected, confidence intervals become wider as either or both COV increase. But,

confidence intervals for the controlled system tend to be wider than those for the

non-controlled system (NC) because the system itself is varying due to dynamic ad-

justment of parameters. Another clear observation is that as the variability increases,

the performance of the NC system starts to deviate from that of the controlled sys-

tems at an earlier stage. For example, when Ca = 0.5 and Cs = 0.5 (Fig. 4.15 (a)),

the difference in QoS starts at CI = 13 (λ = 14) req/sec. As Cs increases for the

same value of Ca, the difference between the two cases becomes apparent at CI = 10,

CI = 5, and CI = 3 (see Figs. 4.15 (b)-(d)).

Let us now examine the effect of the variation of Cs for a fixed value of Ca. For

Ca = 0.5 and Cs = 0.5 and Cs = 1.0 (Figs. 4.15 (b)-(d)), the controlled system keeps

the QoS value close to 0.9 throughout the experiments while the NC system exhibits

a marked drop in QoS (to about 0.1 when Cs = 1.0) when λ reaches its peak value.

For these two values of Cs the QoS for the NC case is still positive. When Cs in-

creases to 2.0 (Fig. 4.15 (c)), the QoS for the controlled case drops to about 0.5 at the

peak value of λ and the QoS for the non-controlled case goes to zero for most of the

experiment (13 < CI < 27). For Cs = 4.0 (Fig. 4.15 (d)), a high value of the service

time COV, the NC case exhibits a negative QoS for most of the experiment while the

controlled system only approaches zero (the average is above zero but the confidence

interval includes zero) at peak load and then recovers. The NC system remains in

negative territory. We now examine the variation of the QoS as Ca varies for a fixed

value of Cs. For Cs = 0.5 and Ca = 0.5, 1.0 and 2.0 (Figs. 4.15 (a), 4.16 (a), and

4.17 (a)), the NC system exhibits marked drops in the QoS value as soon as λ starts
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(a) Ca = 2.0 and Cs = 0.5 (b) Ca = 2.0 and Cs = 1.0
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(c) Ca = 2.0 and Cs = 2.0 (d) Ca = 2.0 and Cs = 4.0

Figure 4.17: QoS Controller Performance vs. Ca and Cs (Ca = 2.0).
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(a) Ca = 4.0 and Cs = 0.5 (b) Ca = 4.0 and Cs = 1.0
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(c) Ca = 4.0 and Cs = 2.0 (d) Ca = 4.0 and Cs = 4.0

Figure 4.18: QoS Controller Performance vs. Ca and Cs (Ca = 4.0).
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to increase but still remains in positive territory. The controlled system maintains

a high QoS value at peak load even for Ca = 2.0. For example, in this case, the

average QoS value at peak load is 0.6 for the controlled system while it is around 0.1

for the NC system. When Cs = 0.5 and Ca = 4.0 (Fig. 4.18 (a)), the NC system

displays a negative QoS throughout most of the experiment (from CI = 7 onward).

The controlled system reaches a small (i.e., 0.1) but positive value of the QoS at peak

load. At extreme cases, where both Ca and Cs are very high (i.e., equal to 4.0 as

shown in (Fig. 4.18 (d)), the NC system has a negative QoS value throughout the

entire experiment. The controlled system reaches some negative points at peak load

but recovers when the load decreases.

To complement the observations presented above, we deemed it was necessary to

show some additional results that compare the deviation of the QoS with respect

to the optimal QoS (obtained from an exhaustive search performed off-line) as Ca

and Cs vary. We also stress tested the multithreaded server by elongating the phase

of the peak load (19 req/sec) from 3 to 10 controller intervals. Thus, the length of

these experiments are 74 minutes (i.e., 37 controller intervals). Figure 4.19 shows

the QoS deviation for the case of non-controller, beam search and hill climbing based

controllers for Ca = 1 and Cs = 1, 2, and 4. In Fig. 4.20, we show results that

correspond to the cases of (Ca = Cs = 2) and (Ca = Cs = 4).

It is worth mentioning that in all these experiments on the robustness of the

controller, the initial configuration was chosen in such a manner that it is equally

suitable for the controlled and non-controlled systems for the very first controller

intervals (i.e., the initial workload). This is reflected in Fig. 4.19-(a) as it shows
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(a) Ca = 1.0 and Cs = 1.0
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(b) Ca = 1.0 and Cs = 2.0
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(c) Ca = 4.0 and Cs = 4.0

Figure 4.19: Deviation of QoS Controller Performance from Optimal vs. Ca and Cs

(Ca = 1.0).
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(a) Ca = 2.0 and Cs = 2.0
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(b) Ca = 4.0 and Cs = 4.0

Figure 4.20: Deviation of QoS Controller Performance from Optimal for (Ca = Cs =

2) and (Ca = Cs = 4).
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that there is virtually no difference between the controller and no-controller case for

the first four controller intervals. This same figure also shows that the QoS deviation

from the optimal value for the no-controller case gets higher as the workload intensity

increases. On the other hand, the QoS deviation is almost null for both the cases of

beam search and hill climbing. However, as Cs increases, the QoS deviation for the no-

controller case gets higher for most of the workload intensity except for the peak load

where the QoS deviation gets smaller (see Fig. 4.19-(b)-(c)). When (Ca = 1, Cs = 4),

the QoS deviation is similar to that of the controller (for both beam search and hill

climbing) at peak load (19 req/sec for 10 controller intervals). The reason for that is

that the initial configuration happens to be suitable for the peak load phase. The QoS

deviation for both beam search and hill climbing gets higher as the workload intensity

and Cs increase, but remains very close to the X-axis (the 95% confidence intervals

include 0 all the time). These same observations can be made about the case of

(Ca = Cs = 2) as illustrated in Fig. 4.20-(a). For the extreme case of (Ca = Cs = 4)

(Fig. 4.20-(b)), the QoS deviation gets even wider for both the no-controller and

controller cases. However, here again, the QoS deviation is much higher for the non-

controlled system except at the peak load where all three systems have similar QoS

deviation values.

4.1.7 Sensitivity Analysis

In order to explore the sensitivity of the controller to the space of SLA values, we

ran experiments for Ca = Cs = 2.0 for stricter and more relaxed SLA values than the

ones used in Fig. 4.17 (c). Figure 4.21 illustrates the relative variation ϕ of the QoS

with respect to the base value QoSbase shown in Fig. 4.17 (c). The value of ϕ was
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defined as

ϕ =
QoS −QoSbase

| QoSbase |
. (4.6)

The values for the more relaxed and stricter SLAs are: Rmax = 1.5 seconds, Xmin = 4
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Figure 4.21: Effect of stricter and more relaxed SLAs on the controller performance.

requests/sec, Pmax = 0.1; and Rmax = 1.0 seconds, Xmin = 7 requests/sec, Pmax =

0.03, respectively. As the figure indicates, the controlled system is much less sensitive

to variations in the SLA values than the NC system.

4.1.8 Workload Forecasting

In the self-managing computer systems that we proposed in the previous section and

in [46], the QoS optimizer module uses the average arrival rate of requests obtained
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in the previous controller interval, CI, as an estimate of the expected workload inten-

sity for the next CI. This value is then used by the performance model to compute

the QoS value for a given set of configuration parameters. The drawback of such

an approach is that it overlooks any increase or decrease tendency in the workload

for the past CI. This could result, consequently, in a very inaccurate estimate of the

next expected arrival rate and an inappropriate choice of configuration values. To

overcome this shortcoming, we added a module responsible for short-term workload

forecasting. This module keeps a sliding window of N values for the last average

arrival rates observed for the last N small sub-intervals. Each of these sub-intervals

is of length ∆ seconds. N and ∆ are chosen so that N×∆ does not exceed the length

of a controller interval (2 minutes in our case). Many techniques can be used for

short-term forecasting. However, no particular technique gives good forecasting re-

sults for any kind of data. Therefore, the forecasting module uses the three techniques

presented in Chapter 2, namely: exponential smoothing, weighted moving averages,

and polynomial regression [40]. The choice of these particular forecasting techniques

is motivated by the nice properties that they have and that are discussed in section

2.1.3. Exponential smoothing computes a prediction as follows: PredictedValue =

α× PreviousActualValue + (1−α)× PreviousPredictedValue. In our experiments we

used α = 0.6. For weighted moving averages is an appropriate technique for these sit-

uations. In our experiments, we compute the forecast value based on the three most

recent average arrival rates in the sliding window. The chosen weights give more im-

portance to the newest values. Hence, the forecast value is given by: ForecastValue =

(0.45 × LatestEntryInSlidingWindow + 0.35 × SecondLatestEntryInSlidingWindow

+ 0.20 × ThirdLatestEntryInSlidingWindow). For polynomial regression, we used a
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moderately high value for polynomial degree: six. All three models are rebuilt each

time a new average arrival rate entry is inserted into the sliding window. At this time,

we compute what would be the forecast value according to each of the three models.

We also compute the R2 value, based on the method of the least squares errors, for

each of these models to assess the quality of the fits. At this stage, the forecasting

module returns the forecast value provided by the model with the highest R2 value.

There is an exception to this rule, however. In the case of a downward trend in the

workload intensity, the polynomial regression model may forecast a negative value

for the expected arrival rate. In such a case, even though the polynomial regression

model might produce the highest R2 value, the forecasting module returns the fore-

cast value that comes from the model with the second highest R2 value, instead.

Clearly, our design for the workload forecasting module makes it easily extendable to

include additional forecasting techniques that are suitable for on-line analysis.

4.1.8.1 Experimental Setting

The experimental setting used in this section is very similar to that used in the

previous section with the following modifications:

• The inter-arrival time and service time are exponentially distributed (i.e., Ca =

Cs = 1).

• Beam search is the only heuristic search technique used since the results of the

previous section show that there is no statistically significant difference at the

95% level between beam search and hill climbing.

• The IMSL library [28] is used for the polynomial regression models needed by
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the forecasting module.

• Since this section uses a different workload than that of the previous section,

different initial configurations are needed (so as not to purposefully disadvantage

the non controlled system). Thus, in this experiment the initial values for n

and m are 30 and 10, respectively.

The SLA values and their corresponding weights are still the same:

• Rmax = 1.2 seconds, wR = 0.35,

• Xmin = 5 requests/sec, wX = 0.25, and

• Pmax = 0.05, and wP = 0.4.

4.1.8.2 Results

Figure 4.22 compares the expected arrival rate at every controller interval, when the

forecasting module was enabled/disabled, to the actual measured arrival rate. Note

that in this figure we start from the 2nd controller interval as it is only at this time

that data is available in the sliding window so that forecasting can be carried out.

The actual workload has two peaks: 30 req/sec at CI = 8 and CI = 24. The curve for

the expected arrival rate when forecasting is not used is simply a one-time unit shift

to the right of the curve of the measured arrival rate. When the forecasting module

is enabled, the system succeeded in finding quite close estimates of the arrival rate

when that was possible at all. The largest gaps between the forecast and the measured

arrival rates happened at the 10-th and 11-th controller intervals. At these points, the

forecast values were 41.27 req/sec and 43.28 req/sec, whereas the measured workload
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intensities were 30 req/sec and 26.03 req/sec, respectively. However, since for both of

these cases, the measured arrival rates for the immediate previous controller intervals

(9 and 10) were 30 req/sec, these gaps did not significantly impact the QoS. This is

due to the fact that 30 req/sec exceeds by far the system’s maximum throughput (20

req/sec). Therefore, the system configuration was already set at its minimum size.
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Figure 4.22: Workload intensity variation for the workload forecasting experiments.

Figure 4.23 shows the results of the average QoS obtained for 10 runs of the

simulation when the forecasting module was enabled and when it was disabled along

with the 95% confidence intervals for the average QoS. We can see from this figure

that the average QoS obtained when forecasting is enabled is statistically slightly

better for exactly 8 out the 30 controller intervals. For the other controller intervals

the 95% confidence intervals overlap and therefore no conclusion can be made. These

eight controller intervals are: CI = 6 (λ = 25 req/sec), CI = 7 (λ = 26 req/sec), CI =
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Figure 4.23: Impact of workload forecasting.

8 (λ = 30 req/sec), CI = 12 (λ = 20 req/sec), CI = 20 (λ = 24.92 req/sec), CI = 21

(λ = 25.2 req/sec), CI = 22 (λ = 29.74 req/sec), and CI = 26 (λ = 20 req/sec). For

most of these controller intervals, the QoS is negative. However, when forecasting is

enabled, the QoS values are significantly higher than otherwise. For example, at the

6-th controller interval, the average QoS when forecasting is not used is -0.36 whereas

it is only -0.20 if forecasting is used. This is an improvement of about 44%. The

forecasting module was able to notice that λ went up from 14.91 req/sec at CI =

4 to 19.12 req/sec at CI =5 and therefore predicted a value of 26.66 req/sec for CI

= 6. The actual measured value of λ was 25 req/sec. Another scenario that shows

the importance of the added forecasting module is the measured QoS at the 26-th

controller interval (λ = 20 req/sec). The measured QoS is 0.27 when forecasting is

enabled and only 0.16 when it is disabled. This is an improvement of about 69%.
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The forecasting module noticed that λ went down from 30 req/sec at CI = 24 to

26 req/sec at CI =25 and predicted a value of 20 req/sec for CI = 26. The actual

measured value for λ for CI = 26 is exactly 20 req/sec.

It is worth mentioning, however, that significantly higher improvements are attained

only when workload forecasting is used in combination with a dynamic frequency of

control as shown in the next section.

4.1.9 Frequency of Control

In this section we investigate the impact of the frequency of control on the overall

performance of the controller in terms of the measured QoS. Before we present an

adaptive controller algorithm that is used to dynamically regulate the frequency at

which the controller is invoked, we make the following remark. For reasons of clarity,

we introduce a new term: monitoring interval. The term controller interval keeps its

same meaning as in the previous sections. Controller interval still refers to the elapsed

time between two consecutive executions of the controller algorithm. Monitoring

intervals, on the other hand, refers to the time interval used for aggregating the

different measured performance metrics. Monitoring intervals have a fixed size during

the entire experiment (2 minutes in our case). In previous sections, all controller

intervals also had a fixed size (2 minutes) and hence were equivalent to monitoring

intervals. In this section, however, controller intervals are of an arbitrary size that

is dynamically determined by the following proposed algorithm. Figure 4.24 shows

an algorithm that can be used to dynamically vary the length of the control interval.

This algorithm sets the length of the CI as a multiple, K, of the smallest possible

control interval CImin. When the currently measured value of the QoS, QoScurr, is
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less than or equal to a minimum value QoSmin, the controller interval is set to its

minimum value CImin. Otherwise, the controller interval is set to a multiple of CImin

according to the relative error ε between the QoS value, QoSprev, measured last time

the controller was activated and the currently measured value of the QoS, QoScurr.

If QoScurr < QoSmin
then CI ← CImin
else begin

ε =
∣

∣

∣

QoScurr−QoSprev

QoSprev

∣

∣

∣

If 0 ≤ ε ≤ 0.05 then K = 12
If 0.05 < ε ≤ 0.1 then K = 6
If 0.1 < ε ≤ 0.2 then K = 5
If 0.2 < ε ≤ 0.3 then K = 4
If 0.3 < ε ≤ 0.4 then K = 3
If 0.4 < ε ≤ 0.5 then K = 2
If ε > 0.5 then K = 1
CI ← K × CImin

end

Figure 4.24: Algorithm for adjusting control interval length

Figure 4.25 shows the variation of the QoS when the control interval varies ac-

cording to the algorithm of Fig. 4.24 when Ca = Cs = 1.0. In these curves, workload

forecasting is always used. The workload used in that experiment has two peaks: one

at time 6 and another at time 20. It can be clearly seen from the figure that the use of

a dynamically adjusted controller interval yields better QoS values. For example, at

peak loads (see monitoring intervals 6 and 20), the QoS for the dynamically adjusted

system is always positive. These curves also show that the QoS values obtained when

adaptive control intervals are used are generally higher than those achieved when the

controller runs at fixed intervals.

One could ask the question whether these improvements come mainly from the

dynamic adjustment of the control interval and not because of workload forecasting.
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Figure 4.25: Dynamic controller interval impact on QoS (forecasting always used)

To this end, we conducted another set of experiments in which we compare the average

QoS values obtained for the cases when dynamic controller intervals were used alone

against the cases when they were used jointly with workload forecasting. The results

are reported in Fig. 4.26 for Ca = Cs = 1.0. The curves in this figure clearly show

that there is a statistically significant performance gain when forecasting is enabled in

conjunction with dynamic controller intervals. There is an accompanying increase in

the QoS gain as a result of using dynamic controller intervals combined with workload

forecasting.
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Figure 4.26: Impact of workload forecasting on QoS (dynamic controller intervals

always used)
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4.2 Illustration of the Control Approach on a Mul-

tiple Class Multithreaded Server

In this section we investigate the efficiency of the control approach for the case of

a multiple class multithreaded server. The goal of this section is to show through

the simulation of a multithreded server with multiple classes of requests that our

suggested performance model presented in section 4.2.2 achieves the following:

• The controlled multiple class multithreaded server yields a higher QoS than the

non controlled server.

• The controller strives to adhere to respecting the relative importance (priority)

of the different classes as expressed in their SLAs.

4.2.1 System Description

The multithreaded server services C distinct classes of customer requests. The classes

are numbered from c = 1, 2, ..., C. All arriving requests to the system join the same

single queue of incoming requests that wait for an avaialable thread to start working

on them. A thread in the server picks the request that is at the front of the queue

regardless of its class. In other words, a thread can service any class of requests. Once

a thread begins working on a request, it starts competing for the physical resources

with the other threads who are servicing other requests possibly from other classes of

customers. After a request gets serviced at the CPU and the disk, it departs from the

system. The server has only a finite queue of requests and a finite number of threads.

Therefore, a request that arrives to the server and finds no room in the waiting queue

for available threads is rejected. The inter-arrival times for each class of requests are
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assumed to be exponentially distributed as well as the requests service times at the

CPU and the disk.

Each class, c, has its own SLAs expressed in terms of maximum response time and

maximum probability of rejection. There are also weights associated with the response

time and the probability of rejection of requests for each class c. These are denoted

by wRc and wPrejc, respectively and they satisfy the following constraints:

•
∑C

c=1 wRc = 1, and

•
∑C

c=1 wPrejc = 1.

The global QoS, at configuration vector ~C and workload vector ~W , is defined then

as: QoS( ~C, ~W ) = WR ∗QoSR( ~C, ~W ) + WPrej ∗QoSPrej( ~C, ~W ) where:

• WR + WPrej = 1, and

• QoSR( ~C, ~W ) =
∑C

c=1 wRc ∗∆QoSRc( ~C, ~W ), and

• QoSPrej( ~C, ~W ) =
∑C

c=1 wPrejc ∗∆QoSPrejc( ~C, ~W ).

∆QoSRc( ~C, ~W ) and ∆QoSPrejc( ~C, ~W ) are, respectively, the relative deviations of

the response time and probability of rejection for class c with respect to its SLAs for

configuration vector ~C and workload vector ~W . Their exact formulas are given in

section 3.1.2.

4.2.2 The Multiple Class Performance Model

The multiclass performance algorithm used by the controller has two phases. The first

phase consists of the initialization of the average number of requests in the execution
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mix for every class. The first phase is given in Fig. 4.27.The second phase of the

algorithm consists of the necessary iterative steps that need to be carried out before

the algoritm actually converges to the solution and that performance metrics can be

obtained. The second phase is given in Fig. 4.28.

It is worth noting that this algorithm is adapted from the generalized algorithm that

appears in [37]. In our case, all the classes are memory constrained. The following

notation is used in the algorithm:

• I: Number of resources.

• C: Number of classes.

• i: index for resources.

• c: index for classes.

• J : Number of threads in the system.

• K: System size (queue length + number of threads in system).

• n̄c,system: Number of class c requests in the system.

• n̄c: Number of class c requests in execution.

• FESC: Flow Equivalent Service Center.
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For every device i and class c Do:
Begin

Ui,c(~λ) = λc ∗Di,c

Ui(~λ) =
∑C

c=1 Ui,c(~λ)

If (Ui(~λ) < 1.0) for all i Do:

n̄i,c(~λ) =
Ui,c(~λ)

1−Ui(~λ)

For every class c Do:
set n̄c as: n̄c(~λ) =

∑I

i=1 n̄i,c(~λ)

adjust n̄c as: n̄c(~λ) = min{n̄c(~λ), Jc} where: Jc = J ∗ n̄c(~λ)
PC

c=1 n̄c(~λ)

Else
use an alternative initialization:
For every class c set:

n̄c(~λ) = λc
Pr=C

r=1 λr
and n̄c,system(~λ) = n̄c(~λ)

End

Figure 4.27: Initialization Phase of the Performance Model for a Multiclass Multi-

threaded Server.

4.2.3 Case of a Simulated Multithreaded Server With Mul-

tiple Classes of Requests

In this section we report the results obtained when using the proposed performance

model for multiple classes of requests in section 4.2.2 to control a simulated multi-

threaded server with several classes of workloads.

4.2.3.1 The Experimental Setting

In the experiments reported in this section we consider a multithreaded server with 3

classes of requests. Table 4.2 shows the input parameters considered for these experi-

ments. The table shows the service demands in seconds for each class, the maximum

response time (in seconds) and the maximum probability of rejection for each class,

and the weights for the response time as well as the weights for the probability of
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Table 4.2: Input Parameters for the Experiments

Multiclass Multithreaded Server
C 3
c 1 2 3
DCPU,c 0.006 0.005 0.004
Ddisk,c 0.004 0.005 0.006
Rmaxc 0.15 0.15 0.15
Prejmaxc 0.01 0.01 0.01
wRc 0.35 0.35 0.30
wPrejc 0.35 0.35 0.30

rejection for each class(wRc and wPrejc values, respectively).

Initially, WR = 0.40 and WPrej = 0.60. Therefore, a higher importance is given

to the overall probability of rejection of requests. The initial configuration for the

experiments is 10 threads and a system size equal to 30.

4.2.3.2 Results

Ten runs were conducted for the experiments and 95% confidence intervals were ob-

tained for the results reported in this section. The workloads for the 3 classes were

varied as shown in Fig. 4.29 for these experiments.

Figure 4.30 shows the variation of the global QoS function during the experiment

for the controller and non-controller cases. The graph also shows the 95% confidence

intervals. The graph clearly indicates that the global QoS function is significantly

higher when the controller is used and that it is always positive. For the non-controller

case, however, the QoS is in the negative territory between controller intervals 6 and

23. This indicates that at least one class has seen a violation of at least one of its

SLAs (maximum response time or maximum probability of rejection). As shown in
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Fig. 4.29, the workloads intensity slightly increases between controller intervals 6 and

23 before dropping back again to initial levels.

Figure 4.31 shows the variation of the average response time for the three workload

classes for the controller and non-controller cases. As it can be seen in this figure, the

average response time for the controller case is significantly higher than in the non-

controller case between controller intervals 6 an 23. At several occasions, the average

response time for the controller case goes beyond the target maximum response time

of 0.15 sec with the highest response time of 0.27 sec occuring at CI = 15. For the

non-controller case, on the other hand, the average response time is always below its

SLA.

This counter-intuitive result is best explained when we look at Fig. 4.32 that

corresponds to the variations of the probabilities of rejection. This figure shows that,

unlike for the case of the response times, the probabilities of rejection for the case of

the controller are much lower than in the non-controller case. For the non-controller

case, the probabilities of rejection go beyond their SLA of a maximum probability

of rejection of 0.01 between controller intervals 6 and 23. For the controller case,

the probabilities of rejection are below their SLA for the entire experiment and their

highest value is 0.0016 only.

The explanation of this controller behavior is that because WPrej > WR, the

controller realized that some sacrifices in terms of response times at some points

would be compensated for by even greater gains in terms of probabilities of rejection

and that would ultimately result in an overall superior global QoS.

To verify this claim that the controller behaves well in accordance to the overall

importance given to either the response time or the probability of rejection factors,
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we conducted an additional set of experiments where we switched the values of WPrej

and WR. Thus, we ran experiments under the same conditions as before (including

the same workloads variations) but with WPrej = 0.40 and WR = 0.60. This case

is referred to as R-higher-weight (for “R has higher weight”). The preceeding case

corresponded, therefore, to a Prej-higher-weight (for “Prej has higher weight”).

Figure 4.33 shows the variation of the global QoS function during the R-higher-

weight experiment for the controller and non-controller cases. The graph also shows

the 95% confidence intervals. As expected, the graph shows that the global QoS

function is significantly higher when the controller is used and is always positive.

It is more importantly related to our contoller behavior claim to compare the

response times and the probabilities of rejections under the controlled mode for the

2 cases of R-higher-weight and Prej-higher-weight.

Figure 4.34 compares the response time for class 1 for the case of R-higher-weight

and Prej-higher-weight when the controller is always enabled. This figure shows that

for the case of R-higher-weight the achieved response times are generally lower than

in the case of Prej-higher-weight. For example, the largest measured average response

time at CI = 15 was reduced from 0.27 sec to 0.20 sec.

Likewise, Fig. 4.35 compares the probability of rejection for class 1 for the case of

R-higher-weight and Prej-higher-weight when the controller is always enabled. This

figure shows that for the case of Prej-higher-weight the achieved probabilities of rejec-

tion are generally lower than in the case of R-higher-weight. For example, the largest

measured probability of rejection at CI = 16 was dropped from 0.003 to zero.

Similar results apply to classes 2 and 3 as well. These results indeed show that

the controller is flexible enough that its behavior is driven by the relative importance
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given to the different performance metrics of interest.
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Step 1:
For every class c = 1, 2, ..., C Do:

Begin
Set δc =

∑

c′ 6=c n̄c′(~λ)

Set γc =
∑

c′ 6=c n̄c′,system(~λ)
For nc = 1, 2, ..., bJ − δcc Do:

Call aMVA to compute Xc(n̄1, n̄2, ...., nc, ...., n̄C)
If (J − δc) is not an integer:

Call aMVA to compute Xc(n̄1, n̄2, ...., J − δc, ...., n̄C)
Define a single class load dependent model M/M/J/K
with the following throughputs:

µc(n) = Xc(n), for 1 ≤ n ≤ J − δc, and
µc(n) = Xc(J − δc), for J − δc < n ≤ bK − γcc.

Compute the queue length distribution, Pi, as:
(from a single class M/M/J/K model)

Pi = P0 ×
λi

c

β(i)
, for 1 ≤ i ≤ bJ − δcc, and

Pi = P0 ×
ρi×φbJ−δcc
β(bJ−δcc)

, for bJ − δcc + 1 ≤ i ≤ bK − γcc

where φ = µc(J − δc), ρ = λc/φ, β(i) =
∏j=i

j=1 µc(j), and

P0 = [1 +
∑bJ−δcc

j=1 λj
c/β(j) + ρ×λ

bJ−δcc
c ×(1−ρbK−γcc−bJ−δcc)

β(bJ−δcc)×(1−ρ)
]−1

Compute the performance metrics as:
average number of requests in system:

n̄c,system =
∑i=bK−γcc

i=1 (i× Pi)
average throughput:

X0,c(~λ) =
∑j=bJ−δcc

j=1 Pj ×Xc(j)+ Xc(J − δc)× [1−
∑j=bJ−δcc

j=0 Pj]
probability of rejection:

Pc,Rej(~λ) = PbK−γcc
average response time:

R0,c(~λ) = n̄c,system

X0,c(~λ)

average number of requests in execution:
n̄c =

∑j=bJ−δcc
j=1 j × Pj + (J − δc)× [1−

∑j=bJ−δcc
j=0 Pj]

End
Step 2: Repeat step 1 until successive values for n̄c are sufficiently close for

all classes.
Step 3: Return the performance metrics as computed in the last iteration of

Step 1.
End.

Figure 4.28: Iterative Phase of the Performance Model for a Multiclass Multithreaded

Server.
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Figure 4.29: Variation of the workload intensity for classes 1, 2, and 3.
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Figure 4.30: Variation of the global QoS function.



86

0


0.05


0.1


0.15


0.2


0.25


0.3


0.35


1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30


Control Interval


C
la

ss
 1

 R
es

p
. T

im
e 

(s
ec

)


R1  (no controller)
 R1 (controller)
 SLA


0


0.05


0.1


0.15


0.2


0.25


0.3


0.35


1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30


Control Interval


C
la

ss
 2

 R
es

p
. T

im
e 

(s
ec

)


R2 (no controller)
 R2  (controller)
 SLA


0


0.05


0.1


0.15


0.2


0.25


0.3


0.35


1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30


Control Interval


C
la

ss
 3

 R
es

p
. T

im
e 

(s
ec

)


R3 (no controller)
 R3  (controller)
 SLA


Figure 4.31: Variation of the average response times R1 (top), R2 (middle), and R3

(bottom).
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Figure 4.32: Variation of the probabilities of rejection Prej1 (top), Prej2 (middle),

and Prej3 (bottom).
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Figure 4.33: Variation of the global QoS function for the case of R-higher-weight.
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Figure 4.34: Variation of the global QoS function for the case of R-higher-weight.
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Figure 4.35: Variation of the global QoS function for the case of R-higher-weight.



Chapter 5: An Autonomic Data Center

This chapter shows how analytic performance models can be very beneficial to another

category of autonomic systems. Hence, in the context of autonomic Internet data cen-

ters, we demonstrate the ability of our proposed controller approach in maintaining

the centers operating at adequate performance levels. In this chapter, performance

attributes are expressed in terms of utility functions as introduced in Chapter 2.

The case of Internet data centers is chosen because of the growing interest of busi-

nesses into shifting the burden of operating and maintaining their IT infrastructures

to third parties. As a result, hosting Internet data centers find themselves committed

to provide good service levels to multiple customers using their limited IT resources.

Autonomic computing helps then to ensure that resources are deployed dynamically

in an intelligent manner, where they are mostly needed within the data center. It is

a common practice to assign to each customer’s application a logically self-contained

environment, referred to as an Application Environment (AE).

The first section of this chapter provides a formal statement of the problem of dynamic

resource allocation in Internet data centers. In the second section, an illustration of

the control approach for the case of a simulated Internet data center is presented.

In particular, that section provides a description of the proposed controller system,

reviews the controller approach as well as the performance models for two types of

hosted application environments: online transactions and batch. Simulation results

91
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are presented in that section as well. The third section shows the efficiency of the con-

troller approach for the case of a data center prototype. It starts with a description

of the autonomic data center prototype, then presents the performance model used,

and follows that by a discussion of experimental results. Section 4 presents a com-

parison to a machine learning approach, namely reinforcement learning, to achieve

self-management for the prototype data center. It also contrasts this technique with

the analytic performance models and discusses the pros and cons of each of these

two approaches. Trade-offs between availability and performance in autonomic data

centers is the subject of the last section where simulation results are presented as well.

Work presented in this chapter appears in the following publications: [11, 55, 69].

The work on the data center prototype was conducted at IBM T. J. Watson Research

Center while I was an intern in the summer of 2005.

5.1 The Dynamic Resource Allocation Problem

A data center consists of M application environments (AEs) and N servers (see

Fig. 5.1). The number of servers assigned to AEi is ni. So,
∑M

i=1 ni = N . Each AE

may execute several classes of transactions. The number of classes of transactions at

AEi is Si. Servers can be dynamically moved among AEs with the goal of optimizing

a global utility function, Ug, for the data center. A resource manager local to each

AE collects local measurements, computes local utility functions, and cooperates with

the global controller to implement server redeployments. In this work, we assume the

presence of a Storage Area Network (SAN) in the data center so that the overhead

induced by the switching of servers among AEs is always considered to be negligible.

AEs may run online transaction workloads or batch workloads. For the case of



93

Local

Controller


Local

Controller


Server


Server


Server


Server


Server


Server


Global

Controller


Application

Environment 1


Application

Environment M


Figure 5.1: Application Environments.

online workloads, the workload intensity is specified by the average arrival rate λi,s

of transactions of class s at AEi. For batch workloads, the workload intensity is

given by the concurrency level ci,s in each class s of AEi, i.e., the average number of

concurrent jobs in execution per class. We define a workload vector ~wi for AEi as

~wi =

{

(λi,1, · · · , λi,Si
) if AEi is online

(ci,1, · · · , ci,Si
) if AEi is batch

(5.1)

We consider in this study that the relevant performance metrics for online AEs
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are the response times Ri,s for each class s of AEi and that the relevant metrics

of batch AEs are the throughputs Xi,s of each class s of AEi. We then define the

response time and throughput vectors for AEi as ~Ri = (Ri,1, · · · , Ri,Si
) and ~Xi =

(Xi,1, · · · , Xi,Si
), respectively. These performance metrics can be obtained by solving

an analytic performance model,Mi, for AEi. The value of these metrics is a function

of the workload ~wi and of the number of servers, ni, allocated to AEi. Thus,

~Ri =Mo
i (~wi, ni) (5.2)

~Xi =Mb
i(~wi, ni) (5.3)

The superscript o or b inMi is used to denote whether the model is for an online AE

or a batch AE. These analytic models are discussed in Sections 5.2.3.1 and 5.2.3.2

Each AE i has a utility function Ui that is a function of the set of performance

metrics for the classes of that AE. So,

Ui =

{

f(~Ri) = f(Mo
i (~wi, ni)) if AEi is online

g( ~Xi) = g(Mb
i(~wi, ni)) if AEi is batch.

(5.4)

The global utility function Ug is a function of the utility functions of each AE.

Thus,

Ug = h(U1, · · · , UM). (5.5)

We describe now the utility functions that we consider in this chapter. Clearly, any

other functions could be considered. For online AEs, we want a function that indicates

a decreasing utility as the response time increases. The decrease in utility should

be sharper as the response time approaches a desired SLA, βi,s for class s at AEi.

Sigmoid functions possess such features and they have been deployed previously as
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utility functions for autonomic data centers in [71]. Likewise, we as well use sigmoid-

based utility functions for the online and batch AEs considered in this chapter. Thus,

the utility function that we use for class s at online AEi is defined as

Ui,s =
Ki,s.e

−Ri,s+βi,s

1 + e−Ri,s+βi,s
(5.6)

where Ki,s is a scaling factor. This function has an inflection point at βi,s and decreases

fast after the response time exceeds this value. See an example in Fig. 5.2 for Ki,s =

100 and βi,s = 4.
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Figure 5.2: Utility as a function of response time.

The total utility function, Ui, is a weighted sum of the class utility functions. So,

Ui =

Si
∑

s=1

ai,s × Ui,s (5.7)
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where 0 < ai,s < 1 and
∑Si

s=1 ai,s = 1. The utility function for batch AEs has to take

into account the fact that the higher the throughput the higher the utility. Thus, we

use the function

Ui,s = Ki,s ×

(

1

1 + e−Xi,s+βi,s
−

1

1 + eβi,s

)

(5.8)

for class s at batch AEi. Again, as the throughput decreases from its minimum value

of βi,r, the value of the utility function goes rapidly to zero. Note that Eq. (5.8) is

defined in such a way that the utility is zero when the throughput is zero. See an

example in Fig. 5.3 for Ki,s = 100 and βi,s = 2.
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Figure 5.3: Utility as a function of the throughput.

We use Eq. (5.7) to compute Ui in the batch case also. The resource allocation

problem addressed in this chapter is similar to the one addressed in [71]. However,

our solution uses a different approach, which is based on the concepts we developed
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in our earlier work [10, 46, 51, 48]. The resource allocation problem in question is

how to dynamically switch servers among AEs with the goal of maximizing the global

utility function Ug.

5.2 Illustration of the Control Approach on a Sim-

ulated Internet Data Center

In this section we examine our proposed control approach for the case of a simulated

data center. We start by providing a description of the simulated system. We then

revise the controller algorithm, present the performance models used, and provide

simulations results.

5.2.1 System Description

The simulated Internet data center consists of a set of AEs. Some AEs are of type

online transactions while the others are of type batch processing. Each AE has one

or more classes of customer requests. The classes of an online transaction AE are all

open. For a batch processing AE, all the classes are closed. Each AE has its own

SLA per class, in terms of maximum response times and minimum throughputs for

the case of online transaction AEs and batch AEs, respectively. AEs local controllers

keep track of the workloads of all classes of the AE as well as the assigned number

of resources (servers in this case). Local controllers communicate these information

to a global controller at its request. The global controller then runs a controller

algorithm to determine the optimal number of resources to be assigned to each AE.

Local controllers are then instructed of the changes in their allocated resources. In

this sense, the configurable knobs are simply the number of servers to assign to each
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AE.

5.2.2 The Controller Approach

Figure 5.4 depicts the main components of a local controller in an application en-

vironment. The workload monitor collects data about workload intensity levels (1)

(e.g., transaction arrival rates per transaction class) and stores them in a workload

database (2). The workload forecaster component uses the data in this database to

make predictions about future workload intensity levels (6). Any number of statistical

forecasting techniques [3] can be used here. The predictive model solver uses either

currently observed workload measurements (5) or predicted workloads (6) along with

the number of servers allocated to the AE to make performance predictions for the

current workload level or for a forecast workload level. These predictions, along with

SLAs for all classes of the AE, are used by the utility function evaluator to compute

the utility function for the AE as explained in Section 5.1. If the utility function

needs to be computed for the current configuration, measured performance metrics

(response time and/or throughputs) (4) obtained from a performance monitor (3) are

used instead of predictions.

Figure 5.5 shows the components of the global controller. A global controller

driver determines (1) how often the global controller algorithm should be executed.

For example, the controller could be activated at regular time intervals, called control

intervals, or it could be made to react to changes in the global utility function. The

global controller algorithm executes a combinatorial search technique over the space

of possible configuration vectors ~n = (n1, · · · , ni, · · · , nM). For each configuration

examined by the controller algorithm, the corresponding number of servers (3) is sent
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Figure 5.4: Local Controller.
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to each AE, which return the values of the utility functions Ui (4). The global utility

function evaluator computes Ug using Eq. 5.5 and returns the value (2) to the global

controller algorithm. When the global controller finds a better allocation of servers,

it starts the redeployment process. The breakdown between the functions of the local

controller and the global controller described above is not the only possible design

alternative. For example, one may want to have a lighter weight local controller and

have a global controller that runs the predictive performance models for all AEs.

The global controller algorithm searches the space of configurations ~n = (n1, · · · , nM)

using a beam-search algorithm. Beam search is a combinatorial search procedure that

works as follows [63]. Starting from the initial configuration, the global utility func-

tion, Ug, is computed for all the “neighbors” of that node. The k configurations with

the highest values of Ug are kept to continue the search. The value of k is called

the beam. Then, the “neighbors” of each of the k selected points are evaluated and,

again, the k highest values among all these points are kept for further consideration.

This process repeats itself until a given number of levels, d, is reached.

The following definitions are in order so that we can more formally define the concept

of neighbor of a configuration. Let ~v = (v1, v2, · · · , vM) be a neighbor of a current

configuration vector ~n = (n1, n2, · · · , nM). We define N as the list of possible number

of servers for a batch AE in such a way that the concurrency level for all classes can

be evenly distributed among all servers of that AE. This is achieved by making N

be the list of common denominators of the concurrency levels of all classes of that

AE. For example, consider a batch AE with three classes whose concurrency levels

are 30, 20, and 10. The list of common denominators, is N = (1, 2, 5, 10). Thus, if

we have 5 servers, the concurrency level per server for all classes is given by (6, 4, 2).
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We define vi as the successor of ni for a batch AEi if vi follows ni in N . Similarly,

vi is a predecessor of ni if vi precedes ni in N . If AEi is an online AE, then vi is a

successor of ni if vi = ni + 1 and vi is a predecessor of ni if vi = ni − 1. Then, ~v is a

neighbor of ~n iff

1.
∑M

i=1 vi = N ,

2. The utilization of any resource within the online servers of online AEs does not

exceed 100%, and

3. There is one and only one i (1 ≤ i ≤ M) and one j (1 ≤ j ≤ M) such that vi

is predecessor of ni and vj is a successor of nj.

The controller algorithm is specified more precisely in Fig. 5.6. The following notation

is in order:

• V(~n): set of neighbors of configuration vector ~n.

• LevelListi: set of configuration vectors examined at level i of the beam search

tree.

• CandidateList: set of all configuration vectors selected as the k best at all levels

of the beam search tree.

• Top (k, L): set of configuration vectors with the k highest utility function values

from the set L.

• ~n0: current configuration vector.
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LevelList0 ← ~n0;
CandidateList← LevelList0;
For i = 1 to d Do

Begin
LevelListi ← ∅;
For each ~n ∈ LevelListi−1 Do

LevelListi ← LevelListi ∪ V(~n);
LevelListi ← Top (k, LevelListi);
CandidateList ← CandidateList ∪LevelListi;

End;
~nopt ← max (CandidateList)

Figure 5.6: Controller Algorithm.

5.2.3 The Performance Models

The analytic performance models that are used by the controller to predict the global

utility, Ug, for a given configuration vector ~n = (n1, · · · , nM) are presented in this

section. We distinguish between the performance models used for each type of ap-

plication environment. The reason for that comes from the fact that the classes for

customer requests are all open for online AEs and closed for batch AEs. It is im-

portant to mention that both performance models scale very well with respect to the

number of classes in each AE.

5.2.3.1 Performance Model for Online Transactions AEs

This section describes the performance model used to estimate the response time for

AEs that run online transactions (e.g., e-commerce, database transactions). Let DCPU
i,s

be the CPU service demand (i.e., total CPU time not including queuing for CPU) of

transactions of class s at any server of AEi and DIO
i,s be the IO service demand (i.e.,

total IO time not including queuing time for IO) of transactions of class s at any
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server of AEi. In practice, the service demand at a device i for class s transactions

can be measured using the Service Demand Law [42], which says that the service

demand at device i is the ratio between the utilization of device i due to class s and

the throughput of class s. Let λi,s be the average arrival rate of transactions of class

s at AEi. Then, using multiclass open queuing network models as presented in [42],

the response time, Ri,s(ni), of class s transactions at AEi can be computed as:

Ri,s(ni) =
DCPU

i,s

1−
∑Si

t=1
λi,t

ni
×DCPU

i,t

+

DIO
i,s

1−
∑Si

t=1
λi,t

ni
×DIO

i,t

. (5.9)

Note that the response time Ri,r is a function of the number of servers, ni, allocated to

AEi. Eq. (5.9) assumes perfect load balancing among the servers of an AE. Relaxing

this assumption is straightforward.

Figure 5.7 shows response time curves obtained with Eq. (5.9) for a case in which

an AE has three classes and two, three, or four servers are used in the AE. The x-axis

corresponds to the total arrival rate of transactions to the AE, i.e., the sum of the

arrival rates for all three classes. In this example, transactions of class 1 account for

30% of all arrivals, class 2 accounts for 25%, and class 3 for the remaining 45%. The

service demand values used in this case are given in Table 5.1.

5.2.3.2 Performance Model for Batch Processing AEs

Some AEs may be dedicated to processing batch jobs such as in long report generation

for decision support systems or data mining applications over large databases. In these

cases, throughput is often of higher concern than response time. Multiclass closed
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Table 5.1: Service demands (in sec) for the example of Fig. 5.7

Class
1 2 3

CPU 0.030 0.015 0.045
IO 0.024 0.010 0.030
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Figure 5.8: Throughputs for a batch processing AE.

queuing network models [42] can be used to compute the throughput of jobs running in

batch environments. These models use multiclass Approximate Mean Value Analysis

(AMVA)—an iterative solution technique for closed queuing networks. Instead of

transaction arrival rates, the measure of workload intensity is the concurrency level,

i.e., the number of concurrent jobs in execution in each class. We assume here that

the total concurrency level of an AE is equally split among the servers of that AE.

Figure 5.8 shows how the throughput of two classes of batch applications running in

an AE varies as the number of servers allocated to that AE varies from 1 to 3. The

graphs, obtained through analytic models [42], show the variation of the throughput

for each class as a function of the total concurrency level within the AE, i.e., the total

number of concurrent jobs of all classes running in the AE. The two classes in this

example have the same service demands as classes 1 and 2 in Table 5.1.
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5.2.4 The Experimental Setting

In order to evaluate the approach described in the previous section, we set up an ex-

perimental environment that simulates a data center with three AEs and 25 servers.

There are two online AEs and one batch AE. Each AE runs multiple classes of trans-

actions/jobs. The AEs were simulated using CSIM [16] and each simulated server

has one CPU and one disk. While the data center and all its AEs were simulated

in one machine, a different machine executed the controller code, which runs a beam

search algorithm and uses queuing network analytic models to decide the best alloca-

tion of servers to AEs. The controller communicates with the machine that simulates

the data center through Windows named pipes. A local controller in each AE col-

lects measurements from the AE (number of allocated servers, arrival rates per class

for online AEs, and concurrency levels per class for batch AEs) and sends them to

the global controller. The local controller is responsible for adjusting the number of

servers deployed to each AE.

Transactions for each class of the two online AEs are generated by separate work-

load generators with their own arrival rates. Separate workload generators for each

class of each AE generate transactions for the online AEs. The batch AEs have as

many threads per class as the concurrency level for that class.

In this set of experiments we considered that the switching cost is zero, i.e., servers

are moved from one AE to another instantaneously. This assumption is based on

the fact that all applications are installed in all servers and that the switching cost

amounts to launching an application, which is in the order of a few seconds.

Table 5.2 shows the input parameters considered for each AE. The table shows

the service demands in seconds for each class, the SLA for each class (the βi,s values),
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Table 5.2: Input Parameters for the Experiments

Application Environment 1
Type Online
S1 3
s 1 2 3
DCPU

1,s 0.030 0.015 0.045
DIO

1,s 0.024 0.010 0.030

β1,s 0.060 0.040 0.080
a1,s 0.350 0.350 0.300

Application Environment 2
Type Online
S2 2
s 1 2
DCPU

2,s 0.030 0.015
DIO

2,s 0.024 0.010

β2,s 0.100 0.050
a2,s 0.450 0.550

Application Environment 3
Type Batch
S3 3
s 1 2 3
DCPU

3,s 0.005 0.010 0.015
DIO

3,s 0.004 0.008 0.012

β3,s 400 250 150
a3,s 0.350 0.350 0.300
c3,s 30 20 10

and the weights (ai,s values) used to compute the utility function Ui according to

Eq. (5.7). The values of β for the two online AEs are given in seconds because they

correspond to response times. The β values for the batch AE are given in jobs/sec

because they correspond to minimum throughput requirements. The table also shows

the values of the concurrency levels for the three classes of AE3. These values do not

change during the experiments.
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The global utility function, Ug, is computed as

Ug = 0.35× U1 + 0.35× U2 + 0.3× U3. (5.10)

The values of the scaling factors, Ki,s, for the online AEs were computed in such a

way that the value of the utility function is 100 when the response time is zero. Thus,

Ki,s = 100

(

1 + eβi,s

eβi,s

)

(5.11)

for the two online AEs. For the batch AE, the scaling factor for each class was

computed in a way that its value is 100 when the throughput for the class approaches

its upper bound. For the multiple class case, we use the single class heavy-load

asymptotic bound [42], which is a loose upper bound for the multiple class case. This

bound, X+
i,s, is equal to the inverse of the maximum service demand for that class

multiplied by the maximum number of servers that could be allocated to that AE.

Thus,

X+
i,s =

N − (M − 1)

max(DCPU
i,s , DIO

i,s)
(5.12)

and the value of Ki,s for batch workloads is

Ki,s =
100

(

1

1+e
−X

+
i,s

+βi,s
− 1

1+e
βi,s

) . (5.13)

.

During the experiments, the transaction arrival rates at the two online AEs was

varied as shown in Fig. 5.9. The x-axis is the control interval (CI), set at 2 minutes

during our experiment. For AE 1, the arrival rates for classes 1–3 have three peaks,
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Figure 5.9: Variation of the workload intensity for AEs 1 and 2.

at CI = 7, CI = 19, and CI = 29. The arrival rates for classes 1 and 2 of AE 2 peak

at CI = 1, CI = 12, and CI = 24. As the figure shows, the peaks and valleys for AEs

1 and 2 are out of synch. This was done on purpose to create situations in which

servers needed by AE1 during peak loads could be obtained from AE2 and vice-versa.

As we show in the next section, the global controller is able to switch resources from

one AE to another, as needed, to maximize the global utility function.

5.2.5 Results

The initial allocation of servers to AEs was set in a way that maximized the global

utility function Ug for the initial values of the arrival rates. We kept the arrival rates

constant at these values and allowed the controller to obtain the best allocation of

servers to AEs. The resulting initial configuration thus obtained was n1 = 7, n2 = 8,
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Figure 5.10: Variation of the global utility function Ug.

and n3 = 10.

Figure 5.10 shows the variation of the global utility function, Ug, during the ex-

periment for the controller and non-controller cases. The graph also shows the 90%

confidence intervals (the confidence intervals are very small for the controller case and

are not as easily seen as in the non-controller case). The graph clearly indicates that

the global utility function mantains its value pretty much stable when the controller

is used despite the various peaks and valleys in the workload intensity for AEs 1 and

2 as shown in Fig. 5.9. However, when the controller is not used, Ug shows clear drops

at the points where AE1 reaches its peak arrival rates and a slight reduction when

AE2 reaches its peak workload intensity points.

The local utility functions are shown in Fig. 5.11. The figure shows that U1 and

U2 decrease when the corresponding arrival rates reach their peak. The figure also
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Figure 5.11: Variation of the local utility functions U1, U2, and U3.

shows that U3 remains flat at 100 during the whole experiment. This is due to the

fact that i) AE3 is already close to its maximum possible throughput in each class

and all of them exceed their SLAs (X3,1 = 548 > 400 requests/sec, X3,2 = 363 > 250

requests/sec, and X3,3 = 182 > 150 requests/sec) and ii) the initialization we selected

gave AE3 an adequate number of servers, which happens to be the maximum it could

get. Adding servers to AE3 does not improve its throughput because the utilization

of the CPU (the bottleneck device for AE3) is already at 92%. We discuss later a

situation in which AE3 participates in the movement of servers among the AEs.

Figure 5.12 shows the variation of the number of servers allocated to each AE

during the experiment for both controlled and non-controlled cases. For the rea-

sons explained above, the initial number of servers allocated to AE3 did not change

throughout the experiment. However, AEs 1 and 2 exchange servers as needed. For
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example, n1 decreases from its initial value of 7 to 5 and n2 increases from its initial

value of 8 to 10 at CI = 2 because the controller realized that AE2, which is at a peak,

needs more servers initially, unlike AE1. At CI = 4, the arrival rates for AE2 start

to increase and the arrival rates for AE1 start to decrease (see Fig. 5.9). As a conse-

quence, n1 starts to increase and n2 starts to decrease so that at CI = 8, n1 reaches

its maximum value of 12 and n2 its minimum value of 3. Note that these values occur

one CI after the respective peak and valleys happen for AEs 1 and 2. This observation

is explained by the fact that the controller implemented in the experiments uses the

average arrival rate observed during the previous control interval as an input to the

predictive performance model. The use of a forecast workload intensity might have

adjusted the number of servers sooner. The pattern we just described repeats itself

at CI = 13, CI = 20, and CI = 30. As the figure shows, the controller is effective

in moving servers to the AEs that need them most as a result of a varying workload

intensity.

It is interesting to analyze how the response times vary as the experiment pro-

gresses and as the number of servers allocated to AEs 1 and 2 change. Figure 5.13

shows the variation of the average response time for transactions of classes 1, 2, and

3 at AE1 for the controller and non-controller cases. As it can be seen, when the

controller is used, the response times stay pretty much stable despite the peaks in

workload intensity for all three classes. For example, for class 1, the response time

stays around 0.076 sec when the controller is used. However, when the controller is

disabled, the response time reaches three peaks at CI = 7, CI = 19, and CI = 30,

with the values of 0.284 sec, 0.344 sec, and 0.28 sec, respectively. Similar behavior

can be seen for classes 2 and 3.
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Figure 5.12: Variation of the number of servers n1, n2, and n3.

A similar analysis for AE2 is shown in Fig. 5.14 for its two classes for the controlled

and non-controlled cases. As before, the non-controlled cases exhibit peaks of response

times when the arrival rates of AE2 reach their peak. It should be noted also that

right after CI = 1, i.e., when the controller is active, the response time for class 2

never exceeds its SLA of 0.05 sec, while the response time exceeds the SLA by 54%

at the peak value without the controller.

Figure 5.15 shows the variation of the utilization of the CPU and disk for AE1

for the non-controller and controller case. When the controller is used, the utilization

of the CPU remains in the range between 13% and 38% with the peaks in CPU

utilization occurring as expected around the peaks in arrival rate. When the controller

is disabled, the range in CPU utilization is much wider going from 12.6% to 56%.

The same can be seen with respect to the disk. The utilization of the disk in the
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Figure 5.13: Variation of the average response times R1,1 (top), R1,2 (middle), and

R1,3 (bottom).
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Figure 5.14: Variation of the average response times R2,1 (top) and R2,2 (bottom) for

AE2.
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controlled case ranges from 9.3% to 28% while in the non-controlled case it ranges

from 8.9% to 39.6%. Thus, the controller provides a much more consistent use of

server resources avoiding situations of under or over utilization of resources.

Figure 5.16 shows a situation similar to that of Fig. 5.15, but for AE2. Note that

the utilization of the CPU and disk for AE2 is higher for the controlled case than for

the uncontrolled case during most of the time. This is due to the fact that AE2 was

initially allocated 8 servers, significantly more than its minimum of 3 achieved when

the controller is activated.

As discussed before, we ran an additional experiment to force servers to be given to

the batch AE, AE3. For that purpose, we maintained the same input parameters for

AEs 1 and 2 and made the following changes to the parameters of AE3: DCPU
3,1 = 0.004

sec, DCPU
3,2 = 0.006 sec, DCPU

3,3 = 0.008 sec, DIO
3,1 = 0.002 sec, DIO

3,2 = 0.004 sec,

DIO
3,3 = 0.006 sec, β3,1 = 300 jobs/sec, β3,2 = 200 jobs/sec, β3,3 = 120 jobs/sec,

c3,1 = 18 jobs, c3,2 = 12 jobs, and c3,3 = 6 jobs.

These service demands are all much lower than the ones in Table 5.2. The new

SLAs for AE3 are lower, and the concurrency levels for each class are also lower.

This means that a lower initial server allocation than the one used in the previous

experiment would be feasible. Thus, we gave an initial allocation of 3 servers to AE3.

Note that in this experiment, the possible number of servers for AE3 are 1, 2, 3 and

6 because of the new concurrency levels. The initial allocation is n1 = n2 = 11, and

n3 = 3 for the same total number of servers equal to 25.

As Fig. 5.17 indicates, the controller gives 3 more servers to AE3 and 2 more

servers to AE2 at CI = 2. These 5 servers come from AE1. The number of servers

in AE3 remains at 6, the optimal value after CI = 2, while the remaining 19 servers
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Figure 5.15: Utilization of the CPU and disk for AE1.
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Figure 5.16: Utilization of the CPU and disk for AE2.
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Figure 5.17: Variation of the number of servers n1, n2, and n3 during the experiments

with an initial allocation of 3 servers to AE3.

alternate between AE1 and AE2 with n1 and n2 ranging between 6 and 15 and between

4 and 13, respectively.

5.3 Illustration of the Control Approach on an In-

ternet Data Center Prototype

In this section we examine the effectiveness of analytic performance models for the

case of a real Internet data center prototype, called Unity, availabale at IBM T. J.

Watson Research Center. We start by providing a description of the system under

test. Then, we discuss the controller algorithm, present the performance model used,

and provide experimental results later. Work reported in this section and the following
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one was conducted at IBM T. J. Watson Research Center in the summer of 2005.

5.3.1 System Description

The Internet data center prototype consists of a finite number of homogeneous servers

and it hosts a set of AEs. Each server in the data center runs an application server

(WebSphere Basic 5.0) on top of a database management system (DB2). Servers

are assigned to AEs in an exclusive manner at any time. Therefore, during a given

controller interval, servers service requests for one and only one AE. Some AEs are

of type online transactions while others are of type batch processing. Each AE has

a single class of customer requests. The batch application is considered to have a

constant demand therefore its SLA is simply an increasing function of the number of

assigned servers. Online transaction AEs run the Trade3 application [70]. Trade3 is

a realistic simulation of an electronic trading platform that is designed to benchmark

web servers. At any time, there is a finite number of customers that alternate between

sending requests to the the online transaction AEs, waiting for responses, thinking

for a certain amount of time, sending the next requests and so and so forth. The

SLAs for online transaction AEs are expressed in terms of desired maximum response

times. A sigmoidal function is used to map achieved service levels (S) to utiliy values

(U). This function is also known as a service level utility function, U(S). However,

since a service level, S, is a function of the resource level (i.e., number of assigned

servers), n, the utility values can be expressed in terms of n directly. In that case,

U(n) is referred to as a resource level utility function.

Each AE has its own Application Manager while there is a single Resource Arbiter
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in the data center. The Resource Arbiter acts like a global controller whereas Ap-

plication Managers act like local controllers. Application Managers are in charge of

keeping track of their workloads, their number of assigned servers, n, and of run-

ning an optimization algorithm to determine a resource level utility function, U(n),

that maps resource levels to utility values. Application Managers need to send their

resource level utility function to the Resource Arbiter which in turn runs a simple

algorithm to find the allocation that maximizes the sum of all resource level util-

ity functions. Therefore, the global utility of the data center, Ug, is defined as:

Ug = Utransaction + Ubatch.

The Resource Arbiter and the Application Managers are invoked every 5 seconds.

The system is illustrated in Fig. 5.18 and is found in [71].

Each online transaction AE is equipped with a dispatcher that assigns incoming

requests to servers within the AE in a round robin fashion so as to maintain an equally

balanced load across all servers.

5.3.2 The Controller Approach

The control in the data center prototype is achieved through a coordination between

the Resource Arbiter and the Application Managers as shown in Fig. 5.18. The

Resource Arbiter is a quite light optimization algorithm that does not need to know

about the details of the associations between assigned resource levels to AEs and the

resulting service levels. On the other hand, Application Managers are responsible of

the mapping between resource levels and the expected service levels. This mapping

results in a curve of service levels, S, as a function of resource levels, n. This curve is

denoted by S(n). The curve S(n) is obtained by running some analytic performance
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Figure 5.18: IBM Data Center Prototype.
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models. Once the Application Managers have computed their S(n) curve, they can

map that back to a resource level utility curve, U(n), through their maintained service

level utility curve, U(S). In other words, U(n) is computed as U(n) = U(S(n)).

At the start of each control interval, Application Managers send their computed

resource level utility function, U(n), to the Resource Arbiter. The Resource Arbiter

determines then the best allocation of servers for each AE and then instructs the

Application Managers for the new configuration deployment. The only constraint in

the assignments of servers is that a transaction AE must have at least one server at

any time while a batch AE might have none.

5.3.3 The Performance Model

As explained in section 5.3.1, the Application Managers for batch AEs simply used a

linearly increasing function for S(n). So the only performance model needed is that

of an online transaction AE. A transaction AE has only a finite number of customers

(M) and of servers (n) at any time. These customers alternate between sending

HTTP requests to the transaction AE, waiting for responses, thinking for a certain

amount of time (Z), and then sending their next requests and so and so forth. The

average think time (Z) is varying as well. A system level model for a transaction

application environment is shown in Fig. 5.19.

The performance model is used to predict the average response time, R, of the

transaction application environment for each possible assignment level of servers as a

function of input parameters M and Z. In other words, the performance model needs

to evaluate Rt+1(Mt+1, Zt+1, nt+1) for all possible server assignment levels, nt+1, for

the controller interval t+1. At the end of the current controller interval t, the following
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Figure 5.19: System Model for a Transaction AE.

metrics are known to the performance model: Rt, Mt, nt, and X0t (the measured

throughput of the entire application environment). Since the workload is equally

distributed across the servers in a transaction AE, solving for Rt+1(Mt+1, Zt+1, nt+1)

is equivalent to solving for Rt+1(Mt+1/nt+1, Zt+1, 1). That corresponds exactly to the

case of a transaction application environment with only one server and Mt+1/nt+1

customers each having an average think time equal to Z as shown in Fig. 5.20.

The well known Mean Value Analysis (MVA) technique is very suitable for solving

such queuing models [42]. However, MVA needs the following input parameters: the

average service time at the server, ST , and the average think time, Zt+1. The per-

formance model uses Zt as an estimation for Zt+1. Using an approximation from the

M/M/1 model, ST can be estimated as ST = Rt

1+λt∗Rt
. However, this approximation
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is quite sensitive to the variations in Rt which can be mainly attributed to the over-

head introduced by Java Garbage Collection process. Therefore, some exponential

smoothing for ST is done before it is actually passed to the MVA algorithm. For the

MVA second input parameter, Zt, it is derived from the Interactive Response Time

Law [42], as: Zt = Mt

X0t
− Rt.

It is worth mentioning that this suggested performance model is quite high level in the

sense that it models the entire server as a single resource. Therefore, this performance

model is oblivious to the interactions between the WebSphere and DB2 processes run-

ning in the server, to the dynamic behavior of the WebSphere pool of threads, and

to the service demands at the CPUs and disks. The reason this performance model

is chosen for control is to be able to conduct a fair comparison to another controller
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that uses a black box machine learning approach as explained in section 5.3.4.

5.3.4 The Experimental Setting

The Unity data center prototype used for these experiments consists of a cluster of

five identical IBM eServer xSeries 335 machines running Redhat Enterprise Linux

Advanced Server. The data center hosts one online transaction AE and one batch

AE. The online transaction AE runs the Trade3 benchmark. The SLA for the online

transaction AE requires that the maximum average response time does not exceed

40 milliseconds. The resource level utility vector for the batch AE is (-20, 8, 34, 50,

80) for an allocation of 0, 1, 2, 3, or 4 servers, respectively. The batch AE cannot

be granted the total number of servers in the data center (5 in this case) because the

online transaction AE needs at least one server all the time.

For the transaction AE, the utility as a function of the measured response time, R,

is computed as follows:

Utransaction(R) =
200

1 + e
R−40

5

− 100 (5.14)

We conducted two sets of experiments. In the first set of experiments, the number

of customers for the transaction AE is kept fixed at 45 and the think time is an

exponentially distributed random variable. In the second set of experiments, the

number of customers varies between 10 and 60 while the think time is drawn from

an exponential distribution with a fixed mean equal to 167 msec. In either case, the

workload varies according to a modified time series model of Web traffic that was

developed by Squillante et al. [66]. In this modified time series, either the average

think time or the average number of customers is reset every 1 second. The resulting
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workload mimics fairly well the stochastic burstiness in demand typically found in

Internet traffic. In each set of experiments, we compare the mean global utilitiy value

of the data center under the four following server allocation techniques: random,

static (3 servers for the online transaction AE and 2 servers for the batch AE),

our suggested performance model, and a machine learning approach. For the case

of the machine learning approach, the same reinforcement learning (RL) technique

that was previously developed by the Autonomic Computing Group at IBM is used

[67, 68]. The RL algorithm has already been trained off-line before being used in

these experiments. Therefore, we refer to this technique as Trained RL. Each run

lasts for about 14 hours. For each run we drop the first 250 controller intervals as we

expect them to include the transient period. Then, we consider only the next 10,000

controller intervals for each run.

5.3.5 Results

In this section, we present the results obtained for each set of experiments. For

each set of experiments we compare the performance of the controller when servers

allocation decisions are either random, static, based on the performance model in

section 5.3.3 or the trained RL. For each run we collect results that correspond to

10,000 allocation decisions (after the transient period). The results obtained for these

10,000 control intervals are aggregated into 25 averaged results obtained for the 25

summarized intervals that we refer to as Aggregate Intervals. Therefore, the length

of each aggregate interval is 400 times the duration of a controller interval (5 sec),

that is a total length of 2000 seconds.
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5.3.5.1 Results for The Fixed Number of Customers Case

The results reported in this section were obtained from experiments with a fixed

number of customers equal to 45 and a varying think time. Figure 5.21 shows the

averaged variations of the think time during these experiments.
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Figure 5.21: Variations for the average think time.

The variations in the average arrival rates that results from variations in the think

time are shown in Fig. 5.22.

The server allocation decisions made through the experiments for the case of the

online transaction AE are depicted in Fig. 5.23. Static allocation allocates 3 servers,

random allocation allocates more than 3 servers during the run while the performance

model and Trained RL both allocate less than 3 servers in general and get close to

that in the last 3 aggregate intervals where the load peaks to 270-275 requests per
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Figure 5.22: Variations for the average arrival rate.

second. The figure shows that trained RL consistently allocates less servers than the

performance model while at the same time following a very similar allocation pattern.

In Fig. 5.24 we show the variations of the average response time for the online

transaction AE. This figure shows that for most of the techniques, the measured

response times are well below the target SLA except for some few points for the

random allocation. The static allocation (3 servers) generally achieves the lowest

response times except for the last 3 aggregate intervals. In these last 3 intervals,

the average arrival rates peak to 270 and 275 requests per second. This observation

suggests that for most of the run the transaction AE had sufficient computing capacity

with 3 servers but would have needed some additional servers as the load was peaking

for the last 3 aggregate intervals. This figure also shows that for most of the time the

response time achieved by the performance model is lower than for the trained RL.
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Figure 5.23: Variations for the average number of servers allocated to the transaction

AE for a fixed number of customers.

These observations made regarding the response time are further reflected in the

utility of the transaction AE curves in Fig. 5.25. For most of the run, the static

and the performance model based allocations perform the highest except for the last

3 aggregate intervals when the achieved local utility for the static allocation drops.

The random allocation performs the worst for several aggregate intervals with even

a negative utility value of -2.35 at the last aggregate interval. Trained RL achieves a

local utility curve that is lower than in the performance model case but again both

curves have similar shapes.

Figure 5.26 shows the variations of the average local utility for the batch AE. The

random allocation achieves the lowest local utility values while the static allocation

yields a constant local utility value equal to 34 that corresponds to the two assigned
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Figure 5.24: Variations for the average response time for the transaction AE for a

fixed number of customers.

servers. Unlike the case of the transaction AE, trained RL achieves higher local utility

values than in the case of the performance model. However, as shown in the figure,

the two curves do have similar tendencies this time again.

The global utility values for the whole data center are shown in Fig. 5.27. As

the figure shows, the random allocation performs the worst, followed by the static

allocation. For the cases of the performance model and Trained RL, the two curves

are very close to each other with some points where visibly performing better for

one technique than the other. When conducting a paired t-test to compare the

performance model to trained RL at a 95% confidence level, the obtained interval for

the difference between the performance model and the trained RL utility values was

[-2.865, 1.989]. This interval contains 0 and therefore no conclusion can be drawn.
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Figure 5.25: Variations for the average local utility for the transaction AE for a fixed

number of customers.

5.3.5.2 Results for The Fixed Average Think Time Case

The results reported in this section were obtained from experiments with a fixed

average think time equal to 167 msec and a varying number of customers between 10

and 60. Figure 5.28 shows the averaged variations of the number of customers during

these experiments.

The workload applied in the experiments of this section is a bit higher than in the

case of fixed number of customers. For this reason, the run for the static allocation

was subject to the crash of one of the 3 servers allocated to the transaction AE in

the last 30 minutes of the run. Therefore, the corresponding data points for the last

aggregate interval are missing in the curves presented in this section.
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Figure 5.26: Variations for the average local utility for the batch AE for a fixed

number of customers.

The server allocation decisions made through the experiments for the case of the

online transaction AE are depicted in Fig. 5.29. Static allocation assigns 3 servers,

random allocation assigns more than 3 servers during the run while the performance

model and trained RL both allocate less than 3 servers for most of the run. However,

the performance model allocates about 3.5 servers on average at aggregate interval 6

where the number of customers surges to 56. The performance model even allocates a

fourth server at aggregate intervals 23-25 where the number of customers reach peak

values of 60 and 58. Trained RL allocates the least number of servers (no more than

3) during the entire run. The figure also shows that trained RL and the performance

model follow similar patterns for server allocation.
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Figure 5.27: Variations for the average global utility for the data center for a fixed

number of customers.

Figure 5.30 shows the variations of the average response time for the online trans-

action AE. The figure shows that the performance model achieves the lowest response

time in general. For the case of the performance model, the response time is well be-

low the SLA for the entire run; the highest value is 33 ms at aggregate interval 6.

This is not the case for the other techniques. For the random allocation, the response

time values exceed the SLA by far at many aggregate intervals with the largest value

of 128 ms recorded at the peak load. For the static allocation, the lowest response

time values are obtained only under low load. As the load reaches high levels (aggre-

gate intervals 6, 17, 20-25), the response times go beyond the SLA. For trained RL,

the response times are higher than in the performance model case but both curves

do have similar variation tendencies. The response time values get around the SLA
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Figure 5.28: Variations for the average number of customers.

when the load is at its peak for the trained RL case.

The observations made regarding the response time are again reflected in the

utility of the transaction AE curves in Fig. 5.31. For most of the run, the performance

model based allocations outperform other techniques; the lowest utility value of 61

was obtained at aggregate interval 6. While the trained RL curve keeps the same

variation tendencies as in the performance model case, the obtained utility values,

however, are much lower with the ever lowest value of 30 recorded for aggregate

interval 23. Static allocation achieves high utility values only under light load. For

high load conditions, the achieved utility values are very low and go below 0 starting

at aggregate interval 23. The random allocation yields the lowest utility values.

Figure 5.32 shows the variations of the average local utility for the batch AE. The
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Figure 5.29: Variations for the average number of servers allocated to the transaction

AE for a varying number of customers.

random allocation achieves the lowest local utility values (about 27 overall) while

the static allocation yields a constant local utility value equal to 34 that corresponds

to the two assigned servers. Unlike the case of the transaction AE, this time again

trained RL achieves the highest local utility values. For the case of the performance

model, the utility values are somehow lower than in the trained RL case except for

the last three aggregate intervals where the utility is around 8 (only 1 server assigned

to the batch AE by the performance model while the other 4 servers were assigned to

the transaction AE because of its workload surge). However, as shown in the figure,

the two curves do have similar tendencies, in general, this time as well.

The global utility values for the whole data center are shown in Fig. 5.33. As the
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Figure 5.30: Variations for the average response time for the transaction AE for a

varying number of customers.

figure shows, in this case again, the random allocation performs the worst and it is

followed in that by the static allocation. For the cases of the performance model and

trained RL, the two curves are close to each other with an apparent advantage for

the performance model for the case of most points. To confirm this conclusion, we

conducted a paired t-test to compare the performance model to trained RL at a 95%

confidence level. The interval obtained for the difference between the performance

model and the trained RL utility values was [4.081, 6.465]. This interval does not

contain 0 and therefore we conclude that the performance model is superior to trained

RL under this workload where the average number of customers is varying and the

average think time is kept constant.
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Figure 5.31: Variations for the average local utility for the transaction AE for a

varying number of customers.

5.4 Comparison of Machine Learning and Analytic

Performance Model Based Controllers

In this section we provide a comparison between controllers that use a machine learn-

ing technique or an analytic performance model to drive their resource allocation

decisions.

The first fundamental difference between these two radically different approaches is

that machine learning control falls into the category of black box control along with

a control theoretic approach, for example. On the other hand, control that is based

on analytic performance model falls into the category of white box control. The main

advantage of black box control is that no knowledge of the internal components of
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Figure 5.32: Variations for the average local utility for the batch AE for a varying

number of customers.

the system is required. The controller simply tries to infer relationships between the

inputs and outputs of the system. This gives an edge to a machine learning approach

for systems for which parameter inter-dependencies are not clear, not much knowl-

edge about system under test is available, or the performance model is very difficult

to solve or its input paramaters are not easily obtainable.

On the other hand, a machine learning approach requires some significant training

time before becoming ready for deployment. Besides that, any changes in the sys-

tem in terms of new or upgrade of physical resources, new application environments,

changes in the SLAs, or even changes in the workload patterns would require the ma-

chine learning algorithm to be re-trained. This lack of flexibility could significantly

hinder the wide adoption of this approach in the self-management of today’s complex
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Figure 5.33: Variations for the average global utility for the data center for a varying

number of customers.

computing systems due to their very dynamic nature. Also, it is not clear yet how

efficient a machine learning approach could be for the cases of application environ-

ments with multiple classes. The work conducted in [67, 68] deals only with a single

class of customer requests per application environment for the moment.

5.5 Availability and Performance in Autonomic Data

Centers

This section shows how autonomic computing techniques can be used to dynamically

allocate servers to application environments in a way that maximizes a global utility

function for the data center even when servers fail.
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5.5.1 The Experimental Setting

In the experiments of this section we consider a simulated internet data center with

two online AEs. AE 1 has three classes of transactions and AE 2 has two transaction

classes. The total number of servers in the data center is 30 and each server is assumed

to have one CPU and one disk.

Two scenarios are considered:

• Server failure with fixed workload intensity . In this scenario, one of the servers

fails at time unit 5 and recovers at time unit 15. The average workload intensity

is maintained constant for all classes as ~λ1 = (20 tps, 40 tps, 14 tps) and ~λ2 =

(120 tps, 240 tps). The purpose of this experiment is to show how the controller

is capable of moving servers between the AEs in response to failure and recovery

events.

• Server failure with variable workload intensity . In this scenario the workload

intensity varies as well and one server fails as in the previous case.

Table 5.3 shows the service demands (in sec) for the CPU and disk, the SLA

per class (in sec), as well as the weight of each class for the computation of the

utility function of the AE. The global utility function used in all experiments is

Ug = 0.5× (U1 + U2).

5.5.2 Results

The following subsections show the numerical results obtained for the two scenarios

described earlier. Each point is an average over 10 runs with 95% confidence intervals

shown. In many cases, the confidence intervals are so small that the bars are not
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Table 5.3: Input Parameters for the Experiments

Application Environment 1
s 1 2 3
DCPU

1,s 0.030 0.015 0.045
DIO

1,s 0.024 0.010 0.030

β1,s 0.060 0.040 0.080
a1,s 0.350 0.350 0.300

Application Environment 2
s 1 2
DCPU

2,s 0.030 0.015
DIO

2,s 0.024 0.010

β2,s 0.100 0.050
a2,s 0.450 0.550

visible. The x-axis on all graphs shown in the following subsections indicate the

progression of time during the experiment measured in control intervals, which are 2

minutes each.

5.5.2.1 Fixed Workload Intensity with Failures

In the curves shown in this section, the average arrival rates are fixed for each class.

However, since a server allocated to AE 2 fails at time equal to 5 units, the global

utility function of the non-controlled case shows a clear drop at that time as shown

in Fig. 5.34. When the server recovers at time 15, Ug increases to its initial level.

Note that the controller is able to maintain Ug pretty much constant despite the

server failure. It should be emphasized that the small variations of Ug are due to the

stochastic nature of the arrival process. What is fixed in these experiments is the

average arrival rate.

The variation of number of servers is illustrated in Fig. 5.35. Without the con-

troller, n1 starts at 14 and n2 at 16. At time 5, n2 goes to 15 and remains at that
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Figure 5.34: Ug for Fixed Arrival Rate and Failures.

values until time 14. At time 15, n2 returns to 16. When the controller is used, n1

starts at 14 but changes immediately to 10 at time 2. The value of n2 starts at 16

but moves immediately to 20 at time 2. When a server of AE 2 fails at time 5, n2

goes to 19, but the controller, takes one server away from AE 1 at time 6 so that n2

can return to 20. When the failed server recovers at time 15, AE 1 regains the server

it had lost due to the failure of a server allocated to AE 2.

Figure 5.36 shows the response time for class 1 of AE 1 for the controller and no-

controller cases. The figure shows that the controller makes the SLA for this class to

be slightly violated by 6.7% of its target value of 0.06 sec. This small loss in response

time is counterbalanced by a significant gain of 66.7% in the response time of class 1

of AE 2. This gain is reflected as well in the total utility value as shown in Fig. 5.34.
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Figure 5.35: Variation of Number of Servers for Fixed Arrival Rate and Failures.

Figure 5.37 shows the variation of the response time for class 1 of AE 2. It can be

seen that when the controller is not used, the response time increases at the moment

the server fails and only decreases when the server recovers. The controller manages

to keep the response time virtually constant due to the dynamic server reallocation.

5.5.2.2 Variable Workload Intensity with Failures

The purpose of this experiment is to illustrate how the controller is capable of dynam-

ically moving servers between the two AEs to cope with both the cases of a variation

in the workload intensity and servers failure. Figure 5.38 shows the variation of the

workload intensity for all five classes during the experiment. On purpose, the peaks

in workload intensity for AE 1 coincide with the valleys for AE 2 and vice-versa.
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Figure 5.36: Variation of the Response Time for Class 1 of AE 1 for Fixed Arrival

Rate and Failures.
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Figure 5.37: Variation of the Response Time for Class 1 of AE 2 for Fixed Arrival

Rate and Failures.
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Figure 5.38: Variation of the arrival rate for all classes of AEs 1 and 2.

Again in this experiment, a server allocated to AE 2 fails at time unit 5 and recovers

at time unit 15.

Figure 5.39 depicts the total utility function Ug. As it can be seen, the controller

is able to cope with the simultaneous variability in the workload intensity and server

failure and maintain Ug pretty much constant.

The curves for number of servers, Fig. 5.40, illustrate how servers are switched

among AEs to give each of them the number of servers needed to bring the utility

function to its highest possible level for each circumstance.

Figure 5.41 shows the variation of the response time for class 1 of AE 1. The

figure shows that if the controller is not used, the response time for this class reaches

peaks that are much higher than the SLA for that class (i.e., 0.06 sec) at time units



149

89


90


91


92


93


94


95


96


97


98


1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30


Control Interval


U
g




No Controller
 Controller


Figure 5.39: Ug for Variable Arrival Rate and Failures.

7 and 19. These instants correspond to the peak arrival rates for this class. However,

when the controller is used, the response time stays close to the SLA even when the

the workload intensity surges for these classes.

The response time for class 1 of AE 2 is shown in Fig. 5.42. In this case, the

difference between the controller and no-controller situations is not as marked as in

Fig. 5.41 because the SLA is not as strict for this class as is the case with the classes

of AE 1. As it can be seen in Fig. 5.42, the response time is generally below the

SLA of 0.10 sec, except for time units 12 and 13 where the workload intensity surges

for class 1 of AE 2 . There are even some cases in which the response time with

the controller is worse than that without the controller. This happens because the

controller is giving more servers to AE 1 because of its more stringent response time
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Figure 5.40: Variation of Number of Servers for Variable Arrival Rate and Failures.

requirements.
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Chapter 6: Autonomic Computing For Virtualized

Environments

This chapter deals with autonomic computing for virtualized environments. It studies

how online analytic performance models could be used to enable virtualized systems

to manage their configurations dynamically so as to increase their overall perfor-

mance. Virtualization offers several advantages in terms of an increased security, a

reduced total cost, and an easy support for legacy applications [49]. For these rea-

sons, virtualized environments are back gaining ground in organizations’ computing

facilities. In fact, several recent commercial products provide virtualization capabili-

ties. These include Solaris 10, IBM LPAR, XEN, and VMWare. However, because of

the increased unpredictability in nowadays workloads, virtualized environments need

to be autonomic in nature in order to deliver adequate performance.

This chapter deals with the problem of dynamic CPU allocation in virtual servers.

The chapter covers two techniques for CPU virtualization. The first technique, pri-

ority based allocation, assigns the CPU to applications according to their specified

priorities. The second technique, referred to as CPU share based allocation, assigns

only some of the CPU shares to an application at any time. The number of CPU

shares can vary dynamically in order to maximize the global utility value of the vir-

tual server. In this chapter, the mathematical formulation of the problem uses the

same framework that appears in the previous two chapters (Autonomic Multithreaded

Servers and An Autonomic Data Center) and adapts it to the case of an autonomic

153
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virtual server.

This chapter is organized as follows. The first section formally defines the problem of

dynamic allocation of the CPU. The second section presents the controller approach.

The performance models are presented in section 3. The experimental setting and

results are reported in sections 4 and 5, respectively.

Work presented in this chapter appears in the following publication: [56].

6.1 The Dynamic CPU Allocation Problem

We consider a virtualized environment (virtual server in this case) with M virtual

machines (VM). Each VM i may run Si different workload classes. We consider in

this chapter the problem of dynamically allocating the CPU to the various virtual

machines in response to changes in the workload intensity. The workload intensity

level for workload class s at VM i is specified by the average arrival rate λi,s of

transactions of class s at VM i. We define a workload vector ~wi for VM i as ~wi =

(λi,1, · · · , λi,Si
). We consider in this work that the relevant performance metric for

the workload classes are the average response times Ri,s for each class s of VM i.

Including throughput as a performance metric of interested is straightforward. We

define a response time vector, ~Ri, for VM i as ~Ri = (Ri,1, · · · , Ri,Si
). Again these

performance metrics can be obtained by solving an analytic performance model,Mi,

for VM i. The value of these metrics is a function of the workload ~wi and of the CPU

allocation, ai, to VM i. Thus, ~Ri = Mi(~wi, ai). We investigate two approaches for

assigning the CPU allocation ai to each VM.
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• Priority allocation: Each VM i has a dispatching priority, pi (pi = 1, ..., P ),

at the CPU. We assume preemptive resume priorities with priority 1 being

the highest and priority P being the lowest. The priority changes dynamically

according to the autonomic controller.

• CPU share allocation: Each VM i is allocated a share fi of the CPU (
∑M

i=1 fi =

1). VMWare allows CPU shares to be allocated to different virtual machines

in order to influence their processing rate (www.vmware.com). For example,

if VM1 has 1,000 CPU shares and VM2 and VM3 have 500 CPU shares each,

then VM1 will execute at a rate twice as high as VM2 and VM3, which will

execute at the same rate. In the case of VMWare, the allocation of CPU shares

can be changed by an administrator. In this chapter we show how this can be

done by the autonomic controller.

Each VM i has a utility function Ui that is a function of the set of performance

metrics for the classes of that VM. So, Ui = f(~Ri). The global utility function, Ug, of

the entire virtualized environment is a function of the utility functions of each VM.

Thus,

Ug = h(U1, · · · , UM). (6.1)

The utility function that we use in this chapter for class s at VM i, Ui,s, is defined as

the relative deviation of the response time Ri,s of that class with respect to its service

level agreement (SLA), βi,s. This utility function is obtained from the QoS function

defined in chapter 3 by considering only the response time component. Again, any
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other function could have been considered instead. Hence,

Ui,s =
βi,s −Ri,s

max{βi,s, Ri,s}
. (6.2)

If the average response time Ri,s meets the SLA, Ui,s is equal to zero. If Ri,s > βi,s,

then −1 < Ui,s < 0. If Ri,s < βi,s, then 0 < Ui,s < 1. Thus, the utility function

Ui,s is a dimensionless number in the (−1, 1) interval. Other utility functions can be

defined. See [11, 71] for examples. The utility function for VM i, Ui, is a weighted

sum of the class utility functions. So,

Ui =

Si
∑

s=1

αi,s × Ui,s (6.3)

where 0 < αi,s < 1 and
∑Si

s=1 αi,s = 1. Ui is also a number in the (−1, 1) interval.

The resource allocation problem in question is how to dynamically allocate the CPU

among VMs with the goal of maximizing the global utility function Ug. The dynamic

CPU allocation is achieved through an autonomic controller of the white box type;

i.e., a controller that knows the internal details of the system being controlled and

can use this knowledge to build a model that relates the output with the input for a

given value of the controllable parameter. In this chapter, we develop specific analytic

models to be used by the controller in this virtualized environment.

6.2 The Controller Approach

The goal of the autonomic controller is to find an optimal CPU allocation vector

~a = (a1, · · · , aM) to the set of M virtual machines that optimizes the global utility

function Ug. Let S be the space of all possible allocations. In the case in which the
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CPU allocation is priority-based, the cardinality of S is P M where P is the number of

possible priority levels for the virtual machines. If P = M = 10, there are 10 billion

possible CPU allocations. In the case of CPU-share allocations, we discretize S by

assuming that the total number of shares is T and that a VM is given a number of

shares ni, ni = 1, 2, · · · , T such that
∑M

i=1 ni = T . Thus fi = ni/T . It is not difficult

to see, using combinatorial arguments, that the cardinality of S in the CPU share

case is given by

| S |=

(

T + M − 1
M − 1

)

−
T+M−2
∑

j=T+1

j (6.4)

which can be written as

(

T + M − 1
M − 1

)

−
(M − 2)

2
(2 T + M − 1). (6.5)

For T = 100 and M = 10, the number of possible allocations is a very large number

in the order of 1013. As it can be seen, the space of possible allocations S can be

extremely large depending on the values of P, M, and T. The autonomic controller uses

heuristic combinatorial search techniques [63], beam-search in our case, to explore a

subset of S in which a solution close to the optimal may be found. Clearly, if the size

of S is small enough, an exhaustive search should be conducted by the controller. The

utility function associated with each point in S is computed using the performance

models discussed in Section 6.3. Here again, at the end of every controller interval

(CI), the controller runs the controller algorithm, which searches through a subset of

S, as explained above, and determines the best allocation ~a, which is communicated

to the CPU scheduler module of the VMM.

More specifically, the controller algorithm searches the space of CPU allocations ~a =
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(a1, · · · , aM) using a beam-search algorithm as follows. Starting from the current

allocation ~a0, the global utility function, Ug, is computed for all the “neighbors” of

that allocation. The k allocations with the highest values of Ug are kept to continue

the search. The value of k is called the beam. Then, the “neighbors” of each of the k

selected points are evaluated and, again, the k highest values among all these points

are kept for further consideration. This process repeats itself until a given number

of levels, d, is reached. The following definitions are in order to more formally define

the concept of neighbor of an allocation. Let ~v = (v1, v2, · · · , vM) be a neighbor of an

allocation vector ~a = (a1, a2, · · · , aM). In the priority case, ~v and ~a represent priorities

of the M VMs in the range 1, · · · , P . The allocation vector ~v is a neighbor of ~a if

the priority of one of the VMs in ~v differs from the priority of the same machine in ~a

by ± 1 in the sequence 1, · · · , P . Adding one to priority P should result in priority

1 and subtracting one from priority 1 should result in priority P . In the case of

CPU-share allocations, the allocation vector ~v is a neighbor of ~a if vi = ai + 1/T and

vj = aj − 1/T for some i 6= j and vk = ak for all k 6= i and k 6= j. The controller

algorithm is specified more precisely in Figure 6.1. The following notation is in order:

• V(~a): set of neighbors of allocation vector ~a.

• LevelListi: set of allocation vectors examined at level i of the beam search tree.

• CandidateList: set of all allocation vectors selected as the k best at all levels of

the beam search tree.

• Top (k, L): set of allocation vectors with the k highest utility function values

from the set L.
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• ~a0: current allocation vector.

6.3 The Performance Models

In this section we present the performance models used by the controller to predict

the performance of various allocation configurations. We distinguish between the

cases of whether allocations are based on the priority of the virtual machines or on

their respective CPU shares.

The queuing network models used here fall into the category of open multiclass queu-

ing network models [42]. Each queue in the queuing network (QN) represents a

resource (e.g., CPU, disk). There may be multiple classes of transactions depending

on their use of the resources and their workload intensities. The total time spent by

a transaction class s using a resource k is its service demand, Dk,s. It is to be recalled

that the service demand does not include any queuing time spent at the resource. We

consider in this chapter that all workloads are open workloads whose intensities are

specified by their arrival rates. The response time, Ri,s, for class s of VM i is given

by [42]:

Ri,s =

K
∑

k=1

Dk,s

1−
∑Si

s=1 λi,s ×Dk,s

(6.6)

where K is the number of resources used by transaction s of VM i. Equation (6.6)

does not cover the case of priority-based scheduling nor the case of CPU shares. In

the next subsections we show how we adapt the results of Eq. (6.6) to these situations.



160

6.3.1 Performance Model for Priority Based Allocation

To model CPU preemptive resume dispatching priorities, we use the shadow CPU

approximation in [42]. All the workloads of the same VM have the same priority

in the model, since the VMM assigns dispatching priorities to the VM as a whole

and not to its individual workloads. In this approach, the open QN model is solved

incrementally in P steps, one per priority class, from the highest priority class 1 to

the lowest priority class P . At step p, only classes of priority q ≤ p are included

and the open QN model is solved. This partial model at step p has p shadow CPUs

instead of one. Each shadow CPU is dedicated to all workloads that have the same

priority. Let Dp
CPU,s be the CPU service demand for workload class s at the shadow

CPU associated to priority p. For a workload s of priority q 6= p, Dp
CPU,s = 0 since

workload s only uses the CPU associated to priority q. For a workload s of priority p,

one has to inflate the service demand at the dedicated CPU for that class to account

for the fact that class s only sees the amount of CPU not used by all workloads of

higher priority, i.e., priorities q < p. Thus,

Dp
CPU,s =

DCPU,s

1−
∑p−1

q=1

∑

r∈Ω(q) λr ×DCPU,r

(6.7)

where Dp
CPU,s is the inflated CPU service demand for class s at the shadow CPU

associated to priority p, DCPU,s is the original CPU service demand of workload s,

and Ω(q) is the set of workloads with priority q. The summation in the denominator

of Eq. (6.7) is the sum of the CPU utilizations due to all workloads of priority q < p.

Even though Eq. (6.7) does not explicitly indicate a VM, the workload designation

s is assumed to be associated with a specific VM. The disk service demands do not
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need to be changed because priorities only apply to the CPU. The final response time

is obtained with the solution of the complete QN model at step P .

6.3.2 Performance Model for CPU-Share Based Allocation

The CPU share model is built by having M shadow CPUs, one per VM. The CPU

service demands have to be adjusted to account for the share allocation of each VM.

This is done by setting

De
i;CPUs

= Di;CPUs/fi (6.8)

where De
i;CPUs

is the elongated CPU demand of class s at the shadow CPU for VM

i and Di;CPUs is the original CPU demand of class s of VM i. Equation (6.8) can be

understood by interpreting fi as the rate at which workloads of VM i execute. For

example, if fi = 0.25, then any workload of that VM will execute at a rate equal to

0.25 seconds of work per second of real time, assuming that a workload that receives

a 100% allocation of the CPU executes at a rate of 1 second of work per second of

real time. Thus, the average amount of time needed to execute one second of work is

1/0.25 = 4 seconds in this example.

6.4 The Experimental Setting

We used simulation to evaluate the controller for the two different cases discussed

before: priority and CPU shares. A CSIM (www.mesquite.com) model was built to

simulate the virtualized environment in each case. The controller was implemented

in a separate machine from the one used to run the simulation and used a controller

interval equal to two minutes. For the simulation of the priority based case, we used
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a preemptive resume scheduling discipline at the CPU with a time slice equal to 0.001

sec. For the CPU share case, we used a round-robin scheduling discipline at the CPU

with a time slice of 0.001 sec. In both cases, the disk scheduling discipline is FCFS.

The experiments reported in what follows assume two virtual machines 1 and 2

with one workload class each. The methodology described above can be easily applied

to a large number of virtual machines and workloads given that the utility function

is computed using a very fast analytic model and the beam-search algorithm can be

tuned by setting its breadth and depth parameters in order to limit the subset of S

examined at each control interval. The service demands assumed in the experiments

reported here are given in Table 6.1. As it can be seen, the I/O service demands

were set at a very low value since the controller is acting on CPU allocation only.

For this reason, we did not want the I/O activity to mask the results obtained in the

experiments. We assume in the simulation experiments that CPU shares can only

Table 6.1: Service demands (in sec)

Class
1 2

CPU 0.020 0.010
IO 0.0005 0.0005

vary in increments of 5%. The global utility function for the virtualized environment

is computed as Ug = 0.4 × U1 + 0.6 × U2. All experiments reported here include a

95% confidence interval illustrated by the bars in each point in the graphs.
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6.5 Results

In this section we present the simulation results obtained for each of the CPU allo-

cation modes.

6.5.1 Results for the Priority Allocation

The variation of the workload intensity, in transactions per second (tps), for each of

the workloads in each VM is shown in Fig. 6.2. The workload intensities show peaks

and valleys, which are out of phase for the two VMs to force an exchange of CPU

allocation between the two VMs. Workload 1 has its peaks at CIs 7 and 8 and then

again at 19 and 20. Workload 2 has three peaks: at 1–3, 12, and 24.

Figures 6.3 and 6.4 show the variation of the utility functions U1 and U2 during

the 60 minutes experiment, using the variation of the workload intensity shown in

Fig. 6.2. Each curve shows the variation of the utility function when the autonomic

controller is used and when it is not used.

The graph of Fig 6.3 shows that (1) there is very little difference between the

controller and non-controller results, (2) the non-controller results seem to be slightly

better in some cases especially when the workload of VM 2 has its peaks; this is due

to the fact that the controller is providing more CPU resources to workload 2, which

has a higher weight in the global utility function Ug.

Figure 6.4 shows a marked difference between the controller and non-controller

cases. The utility function for U2 remains in the positive territory from CI = 2

onwards.

Figure 6.5 shows the the variation of the global utility function Ug during the

60 minutes experiment. The figure shows that the controller is able to maintain a
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significantly higher global utility for the virtualized environment even at periods in

which the two workloads go through their peaks in workload intensity.

Figure 6.6 shows the variation of the priorities of VMs 1 and 2 during the 60-minute

experiment. Both VMs start with the same priority (i.e., priority 2). The priority

of VM1 remains unchanged throughout the experiment. However, VM2 receives an

immediate priority boost to priority 1 (the highest) because this workload is at its

workload peak. However, the controller reduces VM 2’s priority to 2 (i..e., now

both VMs have the same priority) when VM 1 goes through workload peaks. This

demonstrates that the autonomic controller is able to react to changes in workload

intensity in order to improve the global utility function.

Figures 6.7 and 6.8 show the variation of the response time for VMs 1 and 2,

respectively, for the controller and non-controller cases, as well as the SLA (dashed

line) for each case. For VM1, the response time for both cases (controller and non-

controller) stays below the SLA of 0.8 sec except when the workload for VM 1 goes

through its peak period. In these intervals, the controller and non-controller results

have very little statistical difference as can be seen by the confidence intervals.

For the case of VM 2, Fig. 6.8 shows that as soon as the controller starts to

operate (at CI = 2), the response time goes below its SLA of 0.035 sec because of

the immediate boost in the priority level. The figure also shows that without the

controller, this workload always exceed its SLA target.

6.5.2 Results for the CPU-Share Allocation

The variation of the workload intensity, in tps, for each of the workloads in each

VM is shown in Fig. 6.9. As before, the workload intensities show peaks and valleys,
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which are out of phase for the two VMs to force an exchange of CPU allocation

between them. Workload 1 has its peaks at CIs 7–8, 19–20, and then again at 27–30.

Workload 2 has three peaks: at 1–3, 12, and 24. Please note that although the shape

of the curves in Fig. 6.9 is similar to those of Fig. 6.2, the workload intensity values

in this former case is lower than in the latter.

Figures 6.10 and 6.11 show the variation of the utility functions U1 and U2 during

the 60-minute experiment, using the variation of the workload intensity shown in

Fig. 6.9. Each curve shows the variation of the utility function when the autonomic

controller is used and when it is disabled. Figure 6.10 shows that U1 is higher for

VM 1 when the controller is not used. This is due to the fact the controller forces a

higher level for U2, as seen in Fig. 6.11, because VM 2 has a higher weight (0.6 versus

0.4) in the global utility function Ug.

Figure 6.12 shows the the variation of the global utility function Ug during the

60-minute experiment. The figure shows that in most cases the global utility function

for the controller is significantly higher when the controller is enabled than when it

is not. It should be noted that Ug for the controller case remains positive for CI

> 2, i.e., as soon as the controller’s effects start to be felt, while Ug goes to negative

territory at CI = 12 and CI =24 for the non-controller case, when VM 2’s workload

has high peaks in workload intensity.

Figure 6.13 shows the variation of the CPU shares of VMs 1 and 2 during the

60-minute experiment. They both start with the same number of CPU shares each,

i.e., 50%. As CPU resources need to be shifted between VMs, the controller changes

the share allocation automatically. For example, at CI = 7, VM 1 sees a peak in the

number of shares and VM 2 a valley, which coincides with the peaks and valleys seen
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in the workload intensity of Fig. 6.9. The same happens at CI = 19.

Figures 6.14 and 6.15 show the variation of the response time for VMs 1 and 2,

respectively, for the controller and non-controller cases, as well as the SLA (dashed

line) for each case. For VM1, the response time stays below the SLA of 0.5 sec in

both cases, controller and non-controller, except when the workload for VM 1 goes

through its peak period. In these intervals, the response time under the controller

case is significantly higher than when the controller is not used. The fact that VM 1

has a lower weight in the global utility function Ug causes the controller to tolerate

temporary violations of SLA for VM 1. It should be noted that VM 1 received more

shares during these peak periods. If that had not been done, the peaks in response

time would have been higher. It should be noted also that in the non-controller case,

VM 1 uses 50% of the CPU all the time while with the controller it never goes above

40%.

For the case of VM 2, Fig. 6.15 shows that as soon as the controller starts to

operate (i.e., at CI = 2), the response time goes below its SLA of 0.030 sec and stays

at that value throughout the entire experiment, except at CI = 24, when it goes

only slightly above.The figure also shows that without the controller, this workload

exceeds its SLA target by a significant margin at the peak periods for VM 2.
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LevelList0 ← ~a0;
CandidateList← LevelList0;
For i = 1 to d Do

Begin
LevelListi ← ∅;
For each ~a ∈ LevelListi−1 Do

LevelListi ← LevelListi ∪ V(~a);
LevelListi ← Top (k, LevelListi);
CandidateList ← CandidateList ∪LevelListi;

End;
~aopt ← max (CandidateList)

Figure 6.1: Controller Algorithm.
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Figure 6.10: Variation of U1 as a function of time, in CIs, for the CPU shares case.
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Figure 6.11: Variation of U2 as a function of time, in CIs, for the CPU shares case.
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Figure 6.12: Variation of Ug as a function of time, in CIs, for the CPU shares case.
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Figure 6.13: Variation of the CPU shares of VMs 1 and 2 as a function of time, in

CIs.



179

0


1


2


3


4


5


6


7


8


9


10


1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30


Control Interval


V
M

1 
R

es
p

. T
im

e 
(s

ec
)


R1  (no controller)
 R1 (controller)
 SLA


Figure 6.14: Variation of response time for VM 1 as a function of time, in CIs, for

the CPU shares case.
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Figure 6.15: Variation of response time for VM 2 as a function of time, in CIs, for
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Chapter 7: Conclusion and Future Work

7.1 Contributions

In this research we showed how autonomic systems can be empowered by the use

of predictive analytic performance models. The idea revolves around the concept of

augmenting autonomic systems by adding a controller engine and building mecha-

nisms into the autonomic systems to allow them to receive control decisions from

the controller. The controller’s goal is to determine and communicate new configura-

tion changes to the autonomic system on a regular basis in order to keep the system

running at its peak performance.

We demonstrated how our proposed control approach can achieve this goal in an

efficient manner. We presented and evaluated controller algorithms that are used to

drive new configuration decisions for the case of three autonomic systems, namely

an autonomic multithreaded server, an autonomic Internet data center, and an au-

tonomic virtualized server. For each of these autonomic systems, the controller al-

gorithm makes use of a combination of online analytic performance models for the

system and a combinatorial search technique. The online analytic performance model

guides the heuristic search technique in exploring the state of possible configuration

vectors. A configuration vector is a vector whose elements denote either values of con-

figuration parameters or resource allocation settings that can be changed dynamically.

Online analytic performance models are helpful to the heuristic search technique in
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the sense that they can predict the values of performance metrics that correspond

to any configuration vector. The heuristic search method uses this knowledge to

avoid exploring configuration vectors that are not very promising performance-wise.

Therefore, the heuristic search technique reduces its exploration time and returns the

best configuration vector at the end. The controller algorithm instructs, then, the

autonomic system to implement the new configuration changes.

For the case of an autonomic multithreaded server we showed the effectiveness

of our approach for the case of a simulated server and a real Apache Web server

subject to a workload generated by the SURGE workload generator. We evaluated

the impact of several control decisions including the choice of a particular heuristic

serach technique, the use of workload forecasting, and the frequency of control. We

also assessed the robustness of the system under highly variable workload conditions,

the sensitivity of the system with respect to the service level agreements and the

relative importance of the different performance metrics of interest. We extended our

approach to the case of an autonomic multithreded server with multiple classes of

customer requests.

For the case of autonomic Internet data centers, we showed how self-management

can be achieved through the use of analytic performance models that scale very well

with respect to the number of: application environments, resources, and classes of

customer requests. We also contrasted our approach to a machine learning one. The

work on the autonomic Internet data center provided us with a chance to deal with an

additional design issue for the controller, namely the use of thin vs. fat local and global

controllers. For the case of the simulated Internet data center, the global controller

is fat while the local controllers are thin. For the case of the real Internet Data
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center, on the other hand, the global controller is thin while the local controllers are

fat. We also showed that our control approach is not only efficient at maintaining an

overall higher performance for the entire Internet data center, but that the technique

is robust enough to cope with situations where servers may fail. Our experimental

results demonstrated that even in the presence of resource failures, the controller can

make the right decisions of replacing the failed servers by operational ones from other

application environments that are not that much in need of extra computing capacity.

For the case of an autonomic virtual server, we showed through simulation how

our control approach can be used in an effective and efficient manner to drive the

CPU allocation among the different hosted virtual machines. We considered both the

cases of priority based and CPU share based allocations.

7.2 Future Research

The work on autonomic virtualized environments is still at a preliminary, but promis-

ing, stage. Future work on this topic should include implementing these techniques

on an actual machine running a virtual machine monitor and several virtual machines

with different workloads. The use of an open source virtual machine monitor such as

Xen running on top of Linux could provide a very good experimental testbed for this

kind of research.

The controller approach proposed in this research requires that a performance

model be built for the system to be controlled. Moreover, such model should be de-

tailed enough to capture the effect on performance of the parameters to be controlled.

This endeavor requires modeling expertise, which is not necessarily easy to come by.

As a future research, one should look for methods for automatically generating models
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for a system. These methods would probably be driven by a library of existing and

possible models to be used with data collected from the system that relates inputs

to outputs. The “automatic model finder” would try to “fit”’ a performance model

to the data. This is clearly not an easy task, but clearly a very interesting topic for

future research.
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[52] D. A. Menascé, “Security Performance,” IEEE Internet Computing (2003)
May/June, Vol. 7, No. 3, 84–87
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