
CS483-15 Algorithms with Numbers

Instructor: Fei Li

Room 443 ST II

Office hours: Tue. & Thur. 1:30pm - 2:30pm or by appointments

lifei@cs.gmu.edu with subject: CS483

http://www.cs.gmu.edu/∼ lifei/teaching/cs483_fall07/

Part of the slides is based on the book “Algorithms” by S. Dasgupta, C. Papadimitriou, and U. Vazirani.

CS483 Design and Analysis of Algorithms 1 Lecture 15, October 18, 2007

Outline

➣ Primality testing

➣ Cryptography

➣ Universal hashing

CS483 Design and Analysis of Algorithms 2 Lecture 15, October 18, 2007

Factoring vs. Primality

➣ FACTORING: Given a number N , express it as a product of its prime factors.

➣ PRIMALITY: Given a number N , determine whether it is a prime.

CS483 Design and Analysis of Algorithms 3 Lecture 15, October 18, 2007

Factoring vs. Primality

➣ FACTORING: Given a number N , express it as a product of its prime factors.

The fastest method for factoring a number N takes time exponential in

the number of bits N .

➣ PRIMALITY: Given a number N , determine whether it is a prime.

There are efficient algorithms for PRIMALITY.

➣ This strange disparity between these 2 intimately related problems lies the

heart of current secure communication.

CS483 Design and Analysis of Algorithms 4 Lecture 15, October 18, 2007

Basic Arithmetic

➣ Modular arithmetic: How do we handle numbers that are significantly large?

➣ x modulo N : The remainder when x is divided by N . r = x modulo N if

x = q ·N + r with 0 ≤ r < N .

➣ x are y are congruent modulo N if they differ by a multiple of N .

x ≡ y (mod N)⇔ N divides (x− y).

E.g. 253 ≡ 13 (mod 60). 253 minutes is 4 hours and 13 minutes.

59 ≡ −1 (mod 60).

CS483 Design and Analysis of Algorithms 5 Lecture 15, October 18, 2007

Basic Arithmetic

➣ Modular arithmetic: Modular arithmetic deals with all the integers, but

divides N equivalent classes, each of the form {i + k ·N, k ∈ Z} for some

i between 0 and N − 1.

➣ Some rules� If x ≡ x′ (mod N) and y ≡ y′ (mod N), then

x + y ≡ x′ + y′ (mod N) and x · y ≡ x′ · y′ (mod N).� Associatively: x + (y + z) ≡ (x + y) + z (mod N).� Commutativity: x · y ≡ y · x (mod N).� Distributively: x · (y + z) ≡ x · y + x · z (mod N).

CS483 Design and Analysis of Algorithms 6 Lecture 15, October 18, 2007

Exercises

➣ 2345 ≡? (mod 31).

CS483 Design and Analysis of Algorithms 7 Lecture 15, October 18, 2007

Exercises

➣ 2345 ≡? (mod 31).

➣ 2345 ≡ (25)69 ≡ (32)69 ≡ 169 ≡ 1 (mod 31).

➣ Consider the question: compute xy mod N for values of x, y, and N that

are several hundreds bits long.

Can this be done quickly?

If x and y are 20-bits, how long the size of xy?

(219)2
19

= 219·524288, about 10 million bits long.

CS483 Design and Analysis of Algorithms 8 Lecture 15, October 18, 2007

Modular Exponentiation

➣ Compute xy mod N for values of x, y, and N that are several hundreds bits

long.

x mod N → x2 modN → x3 mod N → · · · → xy modN.

If y is 500 bits long, we need to perform y − 1 ≈ 2500 multiplications.

➣ An alternative approach:

x mod N → x2 modN → x4 mod N → · · · → x2⌊log y⌋

modN.

Each takes O(log2 N) time to compute, and there are only log y

multiplications.

xy = (x⌊y/2⌋)2 if y is even.

xy = x · (x⌊y/2⌋)2 if y is odd.

Let n be the largest size in bits of x, y, and N . Running time: O(n3).

CS483 Design and Analysis of Algorithms 9 Lecture 15, October 18, 2007

Extension of Euclid Algorithm

➣ Assume the instructor of CS483 claims that d is the greatest common divisor

of a and b, how can we check this?

➣ Lemma: If d divides both a and b, and d = a · x + b · y for some integers of

x and y, then necessarily d = gcd(a, b).

➣ Proof:

1. d ≤ gcd(a, b).

2. gcd(a, b) must divide a · x + b · y. So, gcd(a, b) divides d,

gcd(a, b) ≤ b.

➣ Example: gcd(13, 4) = 1 since 13 · 1 + 4 · (−3) = 1.

CS483 Design and Analysis of Algorithms 10 Lecture 15, October 18, 2007

Extension of Euclid Algorithm

➣ Input: 2 positive integers a and b. with a ≥ b ≥ 0.

➣ Output: Integers x, y, and d such that d = gcd(a, b) and a · x + b · y = d.

Algorithm 0.1: EXT-GCD(a, b)

if b = 0

return ((1, 0, a))

else






(x′, y′, d) = ext− gcd(b, a mod b)

return ((y′, x′ − ⌊a/b⌋y′, d))

➣ Proof: mathematical induction.

CS483 Design and Analysis of Algorithms 11 Lecture 15, October 18, 2007

Modular division

➣ In real arithmetic, every number a 6= 0 has an inverse 1/a.

➣ x is the multiplicative inverse of a modulo N if ax ≡ 1 (mod N).

➣ Example: Compute 11−1 mod 25.

(1.) Use extended Euclid algorithm, 15 · 25− 34 · 11 = 1.

(2.) Reduce both sides modulo 25, we have−34 · 11 ≡ 1 mod 25. So,

−34 ≡ 16 mod 25 is the inverse of 11 mod 25.

➣ gcd(a, N) divides ax mod N because gcd(a, N) = ax + Ny.

If gcd(a, N) > 1, ax 6≡ 1 mod N . a cannot have a multiplicative inverse

modulo N .

CS483 Design and Analysis of Algorithms 12 Lecture 15, October 18, 2007

Modular Division Theorem

➣ For any a mod N , a has a multiplicative inverse modulo N if and only if it is

relatively prime to N .

➣ When this inverse exists, it can be found in time O(n3) (where as usual n

denotes the number of bits of N) by running the the extended Euclid

algorithm.

CS483 Design and Analysis of Algorithms 13 Lecture 15, October 18, 2007

Outline

➣ Primality testing

➣ Cryptography

➣ Universal hashing

CS483 Design and Analysis of Algorithms 14 Lecture 15, October 18, 2007

Primality Testing

➣ Fermat’s Little Theorem

If p is a prime, then for every 1 ≤ a < p,

ap−1 ≡ 1 (mod p).

➣ Proof.

The numbers a · i (mod p) are distinct because if a · i ≡ a · j (mod p),

then, dividing both sides by a gives i ≡ j (mod p).

S = {1, 2, . . . , p−1} = {a ·1 mod p, a ·2 mod p, . . . , a ·(p−1) mod p}

(p− 1)! ≡ ap−1 · (p− 1)! (mod p).

CS483 Design and Analysis of Algorithms 15 Lecture 15, October 18, 2007

Fermat’s Test

➣ If aN−1 ≡ 1 mod N?

Pass: N is a prime.

Fail: N is a composite.

➣ Lemma If aN−1 6≡ 1 (mod N) for some a relatively prime to N , then, it

must hold for at least half the choices of a < N .

Proof: Fix some value of a for which aN−1 6≡ 1 (mod N). Every b < N

that passes Fermat’s test with respect to N has a twin a · b that fails the test

(a · b)N−1 ≡ aN−1 · bN−1 ≡ aN−1 6≡ 1 mod N.

➣ Pick positive integers a1, a2, . . . , ak < N at random

If aN−1
i ≡ 1 (modN) for i = 1, 2, . . . , k, then, output Y , else output N .

The error of N is not a prime is low: 1
2k .

CS483 Design and Analysis of Algorithms 16 Lecture 15, October 18, 2007

Cryptography

➣ Alice sends msg x to Bob.

➣ x→ e(x).

➣ x← d(e(x)).

➣ e(x) to eavesdropper Eve.

➣ Ideally, e(.) is chosen that without knowing d(.).

CS483 Design and Analysis of Algorithms 17 Lecture 15, October 18, 2007

Private-key Scheme

➣ Alice and Bob meet beforehand and choose a string r of the same length.

e :< message > → < encoded message >

er(11110000) = 11110000
⊕

01110010 = 10000010

er(er(x)) = (x
⊕

r)
⊕

r = x
⊕

(r
⊕

r) = x
⊕

0̄ = x.

CS483 Design and Analysis of Algorithms 18 Lecture 15, October 18, 2007

Public Key Cryptography

➣ Public-key cryptography: anybody can send a message to anybody else

using publicly available information.

➣ Each person has a public key known to the whole world and a secret key

known only to him- or herself.

➣ When Alice wants to send message x to Bob, she encodes it using Bob’s

public key. Bob decrypts it using his secret key.

➣ Approach: Think of messages from Alice to Bob as numbers modulo N .

CS483 Design and Analysis of Algorithms 19 Lecture 15, October 18, 2007

Public Key Cryptography

➣ Property: Pick any 2 primes p and q and let N = p · q. For any e relatively

prime to (p− 1) · (q − 1).

1. The mapping x→ xe mod N is a bijection on {0, 1, . . . , N − 1}.

2. The inverse mapping is easily realized. Let d be the inverse of

e mod(p− 1) · (q − 1). Then, ∀x ∈ {0, 1, . . . , N − 1}.

(xe)d ≡ x mod N.

➣ The first property says x→ xe mod N is a reasonable way to encode x,

given (N, e) is Bob’s public key.

➣ Bob uses d to decrypt x.

CS483 Design and Analysis of Algorithms 20 Lecture 15, October 18, 2007

Proof of RSA

1. (2.) implies (1.) since the mapping is invertible.

2. e is invertible module (p− 1) · (q − 1) because e is relatively prime to this

number.

3. e · d ≡ 1 mod (p− 1) · (q− 1), then, e · d = 1 + k · (p− 1) · (q − 1) for

some k. Show

xe·d − x = x1+k·(p−1)·(q−1) − x

is always 0 modulo N .

Since p and q are primes, using Fermat’s theorem, we can prove above

statement as this expression is divisible by the produce p and q.

CS483 Design and Analysis of Algorithms 21 Lecture 15, October 18, 2007

RSA: Ron Rivest, Adi Shamir and Leonard Adleman at MIT

➣ RSA� Bob picks up 2 large prime numbers p and q. His public key is (N, e),

where N = p · q and e is relatively prime to (p− 1) · (q − 1).

Bob’s secret key is d, the inverse of e modulo (p− 1) · (q − 1). (Use

extended Euclid algorithm to get d).� Alice sends Bob y = xe mod N . (Use efficient modular exponentiation

algorithm.)� Bob decodes x by computing yd mod N .

➣ Basic

a. Given N , e, and y = xe mod N , it is computational intractable to

determine x.

b. FACTORING is HARD.

CS483 Design and Analysis of Algorithms 22 Lecture 15, October 18, 2007

