CS483-15 Algorithms with Numbers

Instructor: Fei Li
Room 443 ST |l
Office hours: Tue. & Thur. 1:30pm - 2:30pm or by appointments
|1 fel @s. gnu. edu with subject: CS483
http://ww. cs. gnu. edu/ ~ |ifei/teachi ng/ cs483 fall 07/

Part of the slides is based on the book “Algorithms” by S. Dasgupta, C. Papadimitriou, and U. Vazirani.

CS483 Design and Analysis of Algorithms 1 Lecture 15, October 18, 2007

| Outline I

[1 Primality testing
[1 Cryptography

[1 Universal hashing

CS483 Design and Analysis of Algorithms 2 Lecture 15, October 18, 2007

‘ Factoring vs. Primality I

[1 FACTORING: Given a number [V, express it as a product of its prime factors.

[1 PRIMALITY: Given a number [V, determine whether it is a prime.

CS483 Design and Analysis of Algorithms 3 Lecture 15, October 18, 2007

‘ Factoring vs. Primality I

FACTORING: Given a number N, express it as a product of its prime factors.

The fastest method for factoring a number [NV takes time exponential in
the number of bits [V,

PRIMALITY: Given a number /N, determine whether it is a prime.

There are efficient algorithms for PRIMALITY.

This strange disparity between these 2 intimately related problems lies the

heart of current secure communication.

CS483 Design and Analysis of Algorithms 4 Lecture 15, October 18, 2007

| Basic Arithmetic I

[1 Modular arithmetic: How do we handle numbers that are significantly large?

[1 2 modulo /NV: The remainder when x is divided by /N. » = x modulo N if
x=q -N+rwith0 <r<N.

[1 x are y are congruent modulo /V if they differ by a multiple of /V.

r =1y (mod N) < N divides (x — v).

E.g. 253 = 13 (mod 60). 253 minutes is 4 hours and 13 minutes.
59 = —1 (mod 60).

CS483 Design and Analysis of Algorithms 5 Lecture 15, October 18, 2007

| Basic Arithmetic I

[1 Modular arithmetic: Modular arithmetic deals with all the integers, but
divides IV equivalent classes, each of the form {7 + k - N, k € Z} for some
1 between 0 and NV — 1.

[] Some rules

e Ifx =2’ (mod V) andy = ' (mod N), then

r+y=2+y (modN) and z-y =2z -y (mod NV).

e Associatively: x + (y + 2) = (x + y) + 2z (mod N).
e Commutativity: x -y =y - (mod N).

e Distributively: x - (y+2) =z -y +x -z (mod N).

CS483 Design and Analysis of Algorithms 6 Lecture 15, October 18, 2007

| Exercises I

0 234° =7 (mod 31).

CS483 Design and Analysis of Algorithms 7 Lecture 15, October 18, 2007

| Exercises I

0 2345 =7 (mod 31).
O 2345 = (25)99 = (32)%° = 1% =1 (mod 31).

[1 Consider the question: compute ¥ mod /V for values of , y, and [V that

are several hundreds bits long.

Can this be done quickly?

If x and y are 20-bits, how long the size of Y?

(219)2" = 219524288 ap64t 10 million bits long.

CS483 Design and Analysis of Algorithms 8 Lecture 15, October 18, 2007

‘ Modular Exponentiation I

[1 Compute ¥ mod IV for values of z, y, and IV that are several hundreds bits

long.

rmod N — 22 modN — 22 mod N — --- — zY modN.

If y is 500 bits long, we need to perform y — 1 ~ 2°°0 multiplications.

[1 An alternative approach:

llog vy]
le2

rmod N — z2modN — z*mod N — - — mod V.

Each takes O(log2 N) time to compute, and there are only log y

multiplications.
z¥ = (z¥/21)2if y is even.
z¥ =z - (222 ity is odd.

Let 1 be the largest size in bits of z, y, and /N. Running time: O(n?’).

CS483 Design and Analysis of Algorithms 9 Lecture 15, October 18, 2007

‘ Extension of Euclid Algorithm I

Assume the instructor of CS483 claims that d is the greatest common divisor

of a and b, how can we check this?

Lemma: If d divides both @ and b, and d = a - « + b - y for some integers of

x and ¥, then necessarily d = gcd(a, D).

Proof:

1. d < ged(a, b).

2. ged(a, b) mustdivide a - x + b - y. So, ged(a, b) divides d,
gcd(a,b) < b.

Example: gcd(13,4) = 1since13-1+4-(—=3) = 1.

CS483 Design and Analysis of Algorithms 10 Lecture 15, October 18, 2007

‘ Extension of Euclid Algorithm I

[1 Input: 2 positive integers a and b. witha > b > 0.

[Output: Integers x, y, and d such that d = ged(a,b) anda - x + b -y = d.

Algorithm 0.1: ExT-Gcb(a, b)

ifb=20

return ((1,0,a))

else
(2',y',d) = ext — gcd(b, a mod b)
return (4, 2/ — a/bly/ d)

[1 Proof: mathematical induction.

CS483 Design and Analysis of Algorithms 11 Lecture 15, October 18, 2007

| Modular division I

In real arithmetic, every number a # 0 has an inverse 1/a.
x is the multiplicative inverse of @ modulo N if ax = 1 (mod V).

Example: Compute 1171 mod 25.
(1.) Use extended Euclid algorithm, 15 - 25 — 34 - 11 = 1.

(2.) Reduce both sides modulo 25, we have —34 - 11 = 1 mod 25. So,
—34 = 16 mod 25 is the inverse of 11 mod 25.

gcd(a, N) divides ax mod N because ged(a, N) = ax + Ny.

If ged(a, N) > 1, ax £ 1 mod N. a cannot have a multiplicative inverse
modulo V.

CS483 Design and Analysis of Algorithms 12 Lecture 15, October 18, 2007

| Modular Division Theorem I

[1 Forany a mod IV, a has a multiplicative inverse modulo /V if and only if it is

relatively prime to [V.

L] When this inverse exists, it can be found in time O(n3) (where as usual n

denotes the number of bits of V) by running the the extended Euclid

algorithm.

CS483 Design and Analysis of Algorithms 13 Lecture 15, October 18, 2007

| Outline I

[1 Primality testing
[1 Cryptography

[1 Universal hashing

CS483 Design and Analysis of Algorithms 14 Lecture 15, October 18, 2007

‘ Primality Testing I

If p is a prime, then forevery 1 < a < p,

[Fermat’s Little Theorem

a?~t =1 (mod p).

L] Proof.
The numbers a - ¢ (mod p) are distinct because if a - i = a - j (mod p),

then, dividing both sides by a gives i = j (mod p).

S={1,2,...;,p—1}={a-1modp,a-2modp,...,a-(p—1) mod p}

a?~t . (p—1)! (mod p).

CS483 Design and Analysis of Algorithms 15 Lecture 15, October 18, 2007

| Fermat’s Test I

0 fa™¥~1 =1mod N?
Pass: IV is a prime.

Fail: /V is a composite.

Lemmalfa¥ 1 #£ 1 (mod V) for some a relatively prime to IV, then, it

must hold for at least half the choices of a < V.

Proof: Fix some value of a for which a™¥ =1 2 1 (mod V). Every b < N

that passes Fermat’s test with respect to /N has a twin a - b that fails the test

(a- D)V t=a¥"1 0Nt =aN"1 £ 1 mod V.

Pick positive integers a1, as, ..., ar < IN at random

ifa;' ' =1 (modN)fori =1,2,...,k, then, output Y, else output N.

1

The error of [V is not a prime is low: 5 -

CS483 Design and Analysis of Algorithms 16 Lecture 15, October 18, 2007

‘ Cryptography I

Alice sends msg x to Bob.
x — e(x).

x «— d(e(x)).

e(x) to eavesdropper Eve.

Ideally, e(.) is chosen that without knowing d(.).

CS483 Design and Analysis of Algorithms 17 Lecture 15, October 18, 2007

‘ Private-key Scheme I

[1 Alice and Bob meet beforehand and choose a string r of the same length.

e :< message > — < encoded message >

er(11110000) = 11110000) 01110010 = 10000010

e-(e. (1)) = (x@r)@r:x@(r@r) :x@(_):x.

CS483 Design and Analysis of Algorithms 18 Lecture 15, October 18, 2007

‘ Public Key Cryptography I

Public-key cryptography: anybody can send a message to anybody else

using publicly available information.

Each person has a public key known to the whole world and a secret key

known only to him- or herself.

When Alice wants to send message x to Bob, she encodes it using Bob’s

public key. Bob decrypts it using his secret key.

Approach: Think of messages from Alice to Bob as numbers modulo V.

CS483 Design and Analysis of Algorithms 19 Lecture 15, October 18, 2007

‘ Public Key Cryptography I

[1 Property: Pick any 2 primes p and g and let N = p - q. For any e relatively
primeto (p — 1) - (¢ — 1).
1. The mapping © — x“ mod /V is a bijection on {0, 1,..., N — 1}.

2. The inverse mapping is easily realized. Let d be the inverse of
emod(p—1)-(¢g—1). Then,Vz € {0,1,...,N — 1}

(2¢)% = 2 mod N.

[1 The first property says + — x® mod [V is a reasonable way to encode z,

given (N, e) is Bob’s public key.

[1 Bob uses d to decrypt x.

CS483 Design and Analysis of Algorithms 20 Lecture 15, October 18, 2007

| Proof of RSA I

1. (2.) implies (1.) since the mapping is invertible.

2. eis invertible module (p — 1) - (¢ — 1) because ¢ is relatively prime to this

number.

ce-d=1mod(p—1)-(¢q—1),then,e-d=1+k-(p—1)-(¢g—1) for

some k. Show
o€ — otk (p—1)(g—1) _ o,
is always 0 modulo V.

Since p and q are primes, using Fermat’s theorem, we can prove above

statement as this expression is divisible by the produce p and q.

CS483 Design and Analysis of Algorithms 21 Lecture 15, October 18, 2007

‘ RSA: Ron Rivest, Adi Shamir and Leonard Adleman at I\/IITI

[] RSA
e Bob picks up 2 large prime numbers p and q. His public key is (N, €),
where N = p - q and e is relatively prime to (p — 1) - (¢ — 1).
Bob’s secret key is d, the inverse of e modulo (p — 1) - (¢ — 1). (Use
extended Euclid algorithm to get d).

e Alice sends Bob y = € mod N. (Use efficient modular exponentiation

algorithm.)

e Bob decodes x by computing yd mod V.

[] Basic

a. Given IV, e, and y = x° mod [V, it is computational intractable to

determine x.

b. FACTORING is HARD.

CS483 Design and Analysis of Algorithms 22 Lecture 15, October 18, 2007

