CS483-15 Algorithms with Numbers

Instructor: Fei Li

Room 443 ST II
Office hours: Tue. \& Thur. 1:30pm-2:30pm or by appointments

```
    lifei@cs.gmu.edu with subject: CS483
http://www.cs.gmu.edu/~ lifei/teaching/cs483_fall07/
```

Part of the slides is based on the book "Algorithms" by S. Dasgupta, C. Papadimitriou, and U. Vazirani.
$>$ Primality testing
$>$ Cryptography
$>$ Universal hashing

Factoring vs. Primality

$>$ FACTORING: Given a number N, express it as a product of its prime factors.
\rangle PRIMALITY: Given a number N, determine whether it is a prime.

Factoring vs. Primality

$>$ FACTORING: Given a number N, express it as a product of its prime factors.
The fastest method for factoring a number N takes time exponential in the number of bits N.
$>$ PRIMALITY: Given a number N, determine whether it is a prime.

There are efficient algorithms for PRIMALITY.
$>$ This strange disparity between these 2 intimately related problems lies the heart of current secure communication.

Basic Arithmetic

$>$ Modular arithmetic: How do we handle numbers that are significantly large?
$>x$ modulo N : The remainder when x is divided by $N . r=x$ modulo N if $x=q \cdot N+r$ with $0 \leq r<N$.
$>x$ are y are congruent modulo N if they differ by a multiple of N.

$$
x \equiv y(\bmod N) \Leftrightarrow N \text { divides }(x-y)
$$

E.g. $253 \equiv 13(\bmod 60) .253$ minutes is 4 hours and 13 minutes. $59 \equiv-1(\bmod 60)$.

Basic Arithmetic

$>$ Modular arithmetic: Modular arithmetic deals with all the integers, but divides N equivalent classes, each of the form $\{i+k \cdot N, k \in \mathbb{Z}\}$ for some i between 0 and $N-1$.
$>$ Some rules

- If $x \equiv x^{\prime}(\bmod N)$ and $y \equiv y^{\prime}(\bmod N)$, then

$$
x+y \equiv x^{\prime}+y^{\prime}(\bmod N) \text { and } x \cdot y \equiv x^{\prime} \cdot y^{\prime}(\bmod N)
$$

- Associatively: $x+(y+z) \equiv(x+y)+z(\bmod N)$.
- Commutativity: $x \cdot y \equiv y \cdot x(\bmod N)$.
- Distributively: $x \cdot(y+z) \equiv x \cdot y+x \cdot z(\bmod N)$.

Exercises

$>2^{345} \equiv ?(\bmod 31)$.

Exercises

$>2^{345} \equiv$? $(\bmod 31)$.
$>2^{345} \equiv\left(2^{5}\right)^{69} \equiv(32)^{69} \equiv 1^{69} \equiv 1(\bmod 31)$.
$>$ Consider the question: compute $x^{y} \bmod N$ for values of x, y, and N that are several hundreds bits long.
Can this be done quickly?

If x and y are 20-bits, how long the size of x^{y} ?
$\left(2^{19}\right)^{2^{19}}=2^{19 \cdot 524288}$, about 10 million bits long.

Modular Exponentiation

$>$ Compute $x^{y} \bmod N$ for values of x, y, and N that are several hundreds bits long.

$$
x \bmod N \rightarrow x^{2} \bmod N \rightarrow x^{3} \bmod N \rightarrow \cdots \rightarrow x^{y} \bmod N
$$

If y is 500 bits long, we need to perform $y-1 \approx 2^{500}$ multiplications.
\geqslant An alternative approach:

$$
x \bmod N \rightarrow x^{2} \bmod N \rightarrow x^{4} \bmod N \rightarrow \cdots \rightarrow x^{2^{\lfloor\log y\rfloor}} \bmod N
$$

Each takes $O\left(\log ^{2} N\right)$ time to compute, and there are only $\log y$ multiplications.
$x^{y}=\left(x^{\lfloor y / 2\rfloor}\right)^{2}$ if y is even.
$x^{y}=x \cdot\left(x^{\lfloor y / 2\rfloor}\right)^{2}$ if y is odd.
Let n be the largest size in bits of x, y, and N. Running time: $O\left(n^{3}\right)$.

Extension of Euclid Algorithm

$>$ Assume the instructor of CS483 claims that d is the greatest common divisor of a and b, how can we check this?

- Lemma: If d divides both a and b, and $d=a \cdot x+b \cdot y$ for some integers of x and y, then necessarily $d=\operatorname{gcd}(a, b)$.
$>$ Proof:

1. $d \leq \operatorname{gcd}(a, b)$.
2. $g c d(a, b)$ must divide $a \cdot x+b \cdot y$. So, $g c d(a, b)$ divides d, $\operatorname{gcd}(a, b) \leq b$.
$>$ Example: $\operatorname{gcd}(13,4)=1$ since $13 \cdot 1+4 \cdot(-3)=1$.

Extension of Euclid Algorithm

> Input: 2 positive integers a and b. with $a \geq b \geq 0$.
$>$ Output: Integers x, y, and d such that $d=g c d(a, b)$ and $a \cdot x+b \cdot y=d$.

Algorithm 0.1: EXT-GCD (a, b)

$$
\begin{aligned}
& \text { if } b=0 \\
& \text { return }((1,0, a)) \\
& \text { else } \\
& \left\{\begin{array}{l}
\left(x^{\prime}, y^{\prime}, d\right)=\operatorname{ext}-\operatorname{gcd}(b, a \bmod b) \\
\text { return }\left(\left(y^{\prime}, x^{\prime}-\lfloor a / b\rfloor y^{\prime}, d\right)\right)
\end{array}\right.
\end{aligned}
$$

$>$ Proof: mathematical induction.

Modular division

\rangle In real arithmetic, every number $a \neq 0$ has an inverse $1 / a$.
$>x$ is the multiplicative inverse of a modulo N if $a x \equiv 1(\bmod N)$.
\geqslant Example: Compute $11^{-1} \bmod 25$.
(1.) Use extended Euclid algorithm, $15 \cdot 25-34 \cdot 11=1$.
(2.) Reduce both sides modulo 25 , we have $-34 \cdot 11 \equiv 1 \bmod 25$. So, $-34 \equiv 16 \bmod 25$ is the inverse of $11 \bmod 25$.
$>\operatorname{gcd}(a, N)$ divides $a x \bmod N$ because $\operatorname{gcd}(a, N)=a x+N y$. If $\operatorname{gcd}(a, N)>1, a x \not \equiv 1 \bmod N$. a cannot have a multiplicative inverse modulo N.

Modular Division Theorem

$>$ For any $a \bmod N, a$ has a multiplicative inverse modulo N if and only if it is relatively prime to N.
$>$ When this inverse exists, it can be found in time $O\left(n^{3}\right)$ (where as usual n denotes the number of bits of N) by running the the extended Euclid algorithm.
$>$ Primality testing
$>$ Cryptography
$>$ Universal hashing

Primality Testing

$>$ Fermat's Little Theorem
If p is a prime, then for every $1 \leq a<p$,

$$
a^{p-1} \equiv 1(\bmod p)
$$

$>$ Proof.
The numbers $a \cdot i(\bmod p)$ are distinct because if $a \cdot i \equiv a \cdot j(\bmod p)$, then, dividing both sides by a gives $i \equiv j(\bmod p)$.

$$
\begin{gathered}
S=\{1,2, \ldots, p-1\}=\{a \cdot 1 \bmod p, a \cdot 2 \bmod p, \ldots, a \cdot(p-1) \bmod p\} \\
(p-1)!\equiv a^{p-1} \cdot(p-1)!(\bmod p)
\end{gathered}
$$

Fermat's Test

$>$ If $a^{N-1} \equiv 1 \bmod N$?
Pass: N is a prime.
Fail: N is a composite.
$>$ Lemma If $a^{N-1} \not \equiv 1(\bmod N)$ for some a relatively prime to N, then, it must hold for at least half the choices of $a<N$.
Proof: Fix some value of a for which $a^{N-1} \not \equiv 1(\bmod N)$. Every $b<N$ that passes Fermat's test with respect to N has a twin $a \cdot b$ that fails the test

$$
(a \cdot b)^{N-1} \equiv a^{N-1} \cdot b^{N-1} \equiv a^{N-1} \not \equiv 1 \bmod N .
$$

\rangle Pick positive integers $a_{1}, a_{2}, \ldots, a_{k}<N$ at random If $a_{i}^{N-1} \equiv 1(\bmod N)$ for $i=1,2, \ldots, k$, then, output Y, else output N.
The error of N is not a prime is low: $\frac{1}{2^{k}}$.

Cryptography

$>$ Alice sends msg x to Bob.
$>x \rightarrow e(x)$.
$>x \leftarrow d(e(x))$.
$>e(x)$ to eavesdropper Eve.
$>$ Ideally, $e($.$) is chosen that without knowing d($.$) .$

Private-key Scheme

$>$ Alice and Bob meet beforehand and choose a string r of the same length.

$$
\begin{gathered}
e:<\text { message }>\rightarrow<\text { encoded message }> \\
e_{r}(11110000)=11110000 \bigoplus 01110010=10000010 \\
e_{r}\left(e_{r}(x)\right)=(x \bigoplus r) \bigoplus r=x \bigoplus(r \bigoplus r)=x \bigoplus \overline{0}=x
\end{gathered}
$$

Public Key Cryptography

$>$ Public-key cryptography: anybody can send a message to anybody else using publicly available information.

- Each person has a public key known to the whole world and a secret key known only to him- or herself.
$>$ When Alice wants to send message x to Bob, she encodes it using Bob's public key. Bob decrypts it using his secret key.
$>$ Approach: Think of messages from Alice to Bob as numbers modulo N.

Public Key Cryptography

$>$ Property: Pick any 2 primes p and q and let $N=p \cdot q$. For any e relatively prime to $(p-1) \cdot(q-1)$.

1. The mapping $x \rightarrow x^{e} \bmod N$ is a bijection on $\{0,1, \ldots, N-1\}$.
2. The inverse mapping is easily realized. Let d be the inverse of $e \bmod (p-1) \cdot(q-1)$. Then, $\forall x \in\{0,1, \ldots, N-1\}$.

$$
\left(x^{e}\right)^{d} \equiv x \bmod N
$$

$>$ The first property says $x \rightarrow x^{e} \bmod N$ is a reasonable way to encode x, given (N, e) is Bob's public key.
$>$ Bob uses d to decrypt x.

Proof of RSA

1. (2.) implies (1.) since the mapping is invertible.
2. e is invertible module $(p-1) \cdot(q-1)$ because e is relatively prime to this number.
3. $e \cdot d \equiv 1 \bmod (p-1) \cdot(q-1)$, then, $e \cdot d=1+k \cdot(p-1) \cdot(q-1)$ for some k. Show

$$
x^{e \cdot d}-x=x^{1+k \cdot(p-1) \cdot(q-1)}-x
$$

is always 0 modulo N.
Since p and q are primes, using Fermat's theorem, we can prove above statement as this expression is divisible by the produce p and q.

RSA: Ron Rivest, Adi Shamir and Leonard Adleman at MIT

$>$ RSA

- Bob picks up 2 large prime numbers p and q. His public key is (N, e), where $N=p \cdot q$ and e is relatively prime to $(p-1) \cdot(q-1)$.
Bob's secret key is d, the inverse of e modulo $(p-1) \cdot(q-1)$. (Use extended Euclid algorithm to get d).
- Alice sends Bob $y=x^{e} \bmod N$. (Use efficient modular exponentiation algorithm.)
- Bob decodes x by computing $y^{d} \bmod N$.
$>$ Basic
a. Given N, e, and $y=x^{e} \bmod N$, it is computational intractable to determine x.
b. FACTORING is HARD.

