CS483-12 Transform-and-Conquer

Instructor: Fei Li
Room 443 ST |l
Office hours: Tue. & Thur. 1:30pm - 2:30pm or by appointments
|1 fel @s. gnu. edu with subject: CS483
http://ww. cs.gnu. edu/ ~ lifei/teaching/cs483 fall 07/

Based on Introduction to the Design and Analysis of Algorithms by Anany Levitin and Professor

Jyh-Ming Lien’s notes.
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| Outline I

[1 Transform and Conquer Techniques (which allow us to handle dynamic data /

information)
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‘ Priority Queue I

[1 Consider problems that require you to:
e schedule tasks (e.g., CPU)
e match n men to n women (eHarmony.com)

e route mails (Internet package routing)

[1 All these problems need to deal with dynamic data/information and contain

information about priority/ordering/preference.
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Priority Queue I

Consider problems that require you to:

e schedule tasks (e.g., CPU)

e match n men to n women (eHarmony.com)
e route mails (Internet package routing)

All these problems need to deal with dynamic data/information and contain

information about priority/ordering/preference.

A priority queue is needed in these problems to perform the following

operations:
e Find the element with the highest priority
e Delete the element with the highest priority

e Insert element
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‘ Priority Queue I

[1 Options for building a priority queue

® a pointer points to the highest priority (what's the drawback?)
e a sorted array (what’s the drawback?)
e a sorted list (what's the drawback?)

e a balanced binary search tree (what's the drawback?)
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[1 Heap is a binary tree with keys at its nodes (one key per node) such that:

e |t is essentially complete, i.e., all its levels are full except possibly the last

level, where only some rightmost keys may be missing

e For each node n in a heap, n's key is always larger than the keys of n's

kids (so, the largest value is in the root)

[1 Heap is data structure good for building priority queue.
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[1 Only right most leaves are allowed empty (easier to expand, delete, and

store). See the non-heap.

[1 Heap’s elements are ordered top down (along any path down from its root),

but they are not ordered left to right.
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‘ Properties of Heaps I

Given n, there exists a unique binary tree with n nodes that is essentially

complete, with h = [log, n|

The root contains the largest key
The subtree rooted at any node of a heap is also a heap

A heap can be represented as an array
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‘ Heap’s Array Representation I

[1 Store heap’s elements in an array (whose elements indexed, for convenience,

1 to n) in top-down left-to-right order
e The kids of a node with index ¢ have indices 27 and 27 + 1
e The parent of a node with index 7 has index | % |

e Parental nodes are represented in the first /2 locations

[1 Example:

&
(50 Q) —>
D@ @&
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‘ Heap: Insertion I

[1 Assuming that we have a heap, and given a value with key k, insert the value

to the heap.
Algorithm 0.1: HEAPINSERT(H, k)

Place katn + 1
Letz =n + 1
while H[i] > H[| 2 ]]and i > 0

Swap( ], H[[*5]])
— "3

do

[0 Time efficiency: O(logn)

[1 Example:
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‘ Heap: Top-Down Construction I

[J Problem: Given an array A[1 - - - n] of orderable items, output a heap

[1 A heap can be constructed by successive insertions of a new key into a
previously constructed heap. That is, we can call HEAPINSERT iteratively over

all the keys.

Algorithm 0.2: HEAPTOPDOWN(A[L - - - n))

H — All]
fori € {2---n}
do HEAPINSERT(H, Ali])
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‘ Heap: Bottom-Up Construction I

Step O: Initialize the structure with keys in the order given

Step 1. Starting with the last (rightmost) parental node, fix the heap rooted at it, if
it does not satisfy the heap condition: keep exchanging it with its largest child

until the heap condition holds

Step 2: Repeat Step 1 for the preceding parental node
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‘ Heap: Bottom-Up Construction I

Example: Construct a heap for the list 2,9, 7,6, 5, 8

P-AP A
R
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‘ Heap: Bottom-Up Construction Algorithm I

Algorithm 0.3: HEAPBoTTOMUP(A[L - - - n])

fori «— {|n/2]|---1}
do k «— ;v «— Alk]

heap «— false

while notheap and2 -k < n
doj«—2-k

if 7 < m there are two children
doif Alj] < A[j + 1]
doj«—j5+1

if v > A[j]
do heap <« true
else A[k] — A[j]; k «— j

Alk] «— v
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‘ Heap: Deletion I

[1 Deleting the maximum key from a heap is similar to inserting a key

Algorithm 0.4: HEAPDELMAX(H)

swap (H[1], H[n])

Letz =1

while (H[i] < H[2i]or H[i] < H[2i + 1])and i < n
(it H[23) > H[2i + 1]

[ swap(H[i], H[2i])

1= 2

then <

\
;

[ swan (el H(2i 4 1)
\73 =21+ 2

[] What's the time complexity?

[ Example: Build a heap from this list: {2,9,7,6, 5, 8} and delete the root’s key
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‘ Heapsort I

1. Construct a heap for a given list of n keys

2. Repeat operation of root removal 7 — 1 times:

e Exchange keys in the root and in the last (rightmost) leaf

e Decrease heap size by 1

e |f necessary, swap new root with larger child until the heap condition holds

3. In-space sorting
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Stage 1 (heap construction)
197658
298657
298657
928657
968257

CS483 Design and Analysis of Algorithms

Stage 2 (root/max removal)

17

068257
768259
867259
5672|89
765289

265|789
625|789
526789
526789
2/56789
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‘ Heapsort I

[J Pop the largest element from the heap, i.e., call HEAPDELMAX (n — 1) times

[1 What's the complexity?
O(nlogn)
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