
CS483-12 Transform-and-Conquer

Instructor: Fei Li

Room 443 ST II

Office hours: Tue. & Thur. 1:30pm - 2:30pm or by appointments

lifei@cs.gmu.edu with subject: CS483

http://www.cs.gmu.edu/∼ lifei/teaching/cs483_fall07/

Based on Introduction to the Design and Analysis of Algorithms by Anany Levitin and Professor

Jyh-Ming Lien’s notes.
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Outline

➣ Transform and Conquer Techniques (which allow us to handle dynamic data /

information)� Binary search tree� AVL tree via rotations (or red-black tree or splay tree)� 2− 3 tree (or 2− 3− 4 tree or B tree)� Heap
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Priority Queue

➣ Consider problems that require you to:� schedule tasks (e.g., CPU)� match n men to n women (eHarmony.com)� route mails (Internet package routing)

➣ All these problems need to deal with dynamic data/information and contain

information about priority/ordering/preference.
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Priority Queue

➣ Consider problems that require you to:� schedule tasks (e.g., CPU)� match n men to n women (eHarmony.com)� route mails (Internet package routing)

➣ All these problems need to deal with dynamic data/information and contain

information about priority/ordering/preference.

➣ A priority queue is needed in these problems to perform the following

operations:� Find the element with the highest priority� Delete the element with the highest priority� Insert element

CS483 Design and Analysis of Algorithms 4 Lecture 12, October 4, 2007



Priority Queue

➣ Options for building a priority queue� a pointer points to the highest priority (what’s the drawback?)� a sorted array (what’s the drawback?)� a sorted list (what’s the drawback?)� a balanced binary search tree (what’s the drawback?)
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Heap

➣ Heap is a binary tree with keys at its nodes (one key per node) such that:� It is essentially complete, i.e., all its levels are full except possibly the last

level, where only some rightmost keys may be missing� For each node n in a heap, n’s key is always larger than the keys of n’s

kids (so, the largest value is in the root)
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➣ Heap is data structure good for building priority queue.
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Heap

➣ Only right most leaves are allowed empty (easier to expand, delete, and

store). See the non-heap.
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➣ Heap’s elements are ordered top down (along any path down from its root),

but they are not ordered left to right.
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Properties of Heaps

➣ Given n, there exists a unique binary tree with n nodes that is essentially

complete, with h = ⌈log2 n⌉

➣ The root contains the largest key

➣ The subtree rooted at any node of a heap is also a heap

➣ A heap can be represented as an array
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Heap’s Array Representation

➣ Store heap’s elements in an array (whose elements indexed, for convenience,

1 to n) in top-down left-to-right order� The kids of a node with index i have indices 2i and 2i + 1� The parent of a node with index i has index ⌊ i

2
⌋� Parental nodes are represented in the first n/2 locations

➣ Example:
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Heap: Insertion

➣ Assuming that we have a heap, and given a value with key k, insert the value

to the heap.

Algorithm 0.1: HEAPINSERT(H, k)

Place k at n + 1

Let i = n + 1

while H[i] > H[⌊n+1

2
⌋] and i > 0

do







Swap (H[i], H[⌊n+1

2
⌋])

i← ⌊n+1

2
⌋

➣ Time efficiency: O(log n)

➣ Example:
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Heap: Top-Down Construction

➣ Problem: Given an array A[1 · · ·n] of orderable items, output a heap

H[1 · · ·n].

➣ A heap can be constructed by successive insertions of a new key into a

previously constructed heap. That is, we can call HEAPINSERT iteratively over

all the keys.

Algorithm 0.2: HEAPTOPDOWN(A[1 · · ·n])

H ← A[1]

for i ∈ {2 · · ·n}

do HEAPINSERT(H, A[i])
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Heap: Bottom-Up Construction

Step 0: Initialize the structure with keys in the order given

Step 1: Starting with the last (rightmost) parental node, fix the heap rooted at it, if

it does not satisfy the heap condition: keep exchanging it with its largest child

until the heap condition holds

Step 2: Repeat Step 1 for the preceding parental node
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Heap: Bottom-Up Construction

Example: Construct a heap for the list 2, 9, 7, 6, 5, 8

CS483 Design and Analysis of Algorithms 13 Lecture 12, October 4, 2007



Heap: Bottom-Up Construction Algorithm

Algorithm 0.3: HEAPBOTTOMUP(A[1 · · ·n])

for i← {⌊n/2⌋ · · · 1}

do k ← i; v ← A[k]

heap ← false

while not heap and 2 · k ≤ n

do j ← 2 · k

if j < n there are two children

do if A[j] < A[j + 1]

do j ← j + 1

if v ≥ A[j]

do heap ← true

else A[k]← A[j]; k ← j

A[k]← v
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Heap: Deletion

➣ Deleting the maximum key from a heap is similar to inserting a key

Algorithm 0.4: HEAPDELMAX(H)

swap (H[1], H[n])

Let i = 1

while (H[i] < H[2i] or H[i] < H[2i + 1]) and i < n

do
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:

if H[2i] > H[2i + 1]

then

8

<

:

swap(H[i], H[2i])

i = 2i

else

8

<

:

swap(H[i], H[2i + 1])

i = 2i + 2

➣ What’s the time complexity?

➣ Example: Build a heap from this list: {2, 9, 7, 6, 5, 8} and delete the root’s key
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Heapsort

1. Construct a heap for a given list of n keys

2. Repeat operation of root removal n− 1 times:� Exchange keys in the root and in the last (rightmost) leaf� Decrease heap size by 1� If necessary, swap new root with larger child until the heap condition holds

3. In-space sorting
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Stage 1 (heap construction) Stage 2 (root/max removal)

1 9 7 6 5 8 9 6 8 2 5 7

2 9 8 6 5 7 7 6 8 2 5 | 9

2 9 8 6 5 7 8 6 7 2 5 | 9

9 2 8 6 5 7 5 6 7 2 | 8 9

9 6 8 2 5 7 7 6 5 2 | 8 9

2 6 5 | 7 8 9

6 2 5 | 7 8 9

5 2 | 6 7 8 9

5 2 | 6 7 8 9

2 | 5 6 7 8 9
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Heapsort

➣ Pop the largest element from the heap, i.e., call HEAPDELMAX (n− 1) times

➣ What’s the complexity?

O(n log n)
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