
CS483-11 Transform-and-Conquer

Instructor: Fei Li

Room 443 ST II

Office hours: Tue. & Thur. 1:30pm - 2:30pm or by appointments

lifei@cs.gmu.edu with subject: CS483

http://www.cs.gmu.edu/∼ lifei/teaching/cs483_fall07/

Based on Introduction to the Design and Analysis of Algorithms by Anany Levitin and Professor

Jyh-Ming Lien’s notes.

CS483 Design and Analysis of Algorithms 1 Lecture 11, October 2, 2007

Outline

➣ Transform and Conquer Techniques (which allow us to handle dynamic data /

information)

� Binary search tree

� AVL tree via rotations (or red-black tree or splay tree)

� 2 − 3 tree (or 2 − 3 − 4 tree or B tree)

� Heap

CS483 Design and Analysis of Algorithms 2 Lecture 11, October 2, 2007



Binary Search Tree

➣ Binary search tree is a binary tree each of whose nodes n has the following

properties:

� All values in the left sub-tree are smaller than the value of n

� All values in the right sub-tree are larger than the value of n

9

2

41

10

127

5
12

1

2

4

9

10

5

7

CS483 Design and Analysis of Algorithms 3 Lecture 11, October 2, 2007

Binary Search Tree

➣ What’s the advantage of a binary search tree over an array or a list?

� Efficient related searching and sorting algorithms

� Inorder traversal produces sorted list

➣ We can search and dynamically insert a value and delete a node from binary

search tree.

➣ Unfortunately, the worst case of these operation can have time complexity:

O(n), when the tree becomes a list

12

1

2

4

9

10

5

7

CS483 Design and Analysis of Algorithms 4 Lecture 11, October 2, 2007



Balanced Search Trees

➣ Attractiveness of binary search tree is blurred by the bad (linear) worst-case

efficiency.

➣ Two ways to solve this:

� To rebalance binary search tree when a new insertion makes the tree “too

unbalanced”

– AVL trees

– red-black trees

� To allow more than one key per node of a search tree

– 2 − 3 trees

– 2 − 3 − 4 trees

– B-trees

CS483 Design and Analysis of Algorithms 5 Lecture 11, October 2, 2007

Outline

➣ Transform and Conquer Techniques (which allow us to handle dynamic data /

information)

� Binary search tree

� AVL tree via rotations (or red-black tree or splay tree)

� 2 − 3 tree (or 2 − 3 − 4 tree or B tree)

� Heap

CS483 Design and Analysis of Algorithms 6 Lecture 11, October 2, 2007



AVL Tree

➣ AVL tree (named after G.M. Adelson-Velsky and E.M. Landis) is always a

balanced binary search tree.

➣ Balance factor of a node n: the difference between the heights of n’s left

and right sub-tree.

➣ The balance factor of every node in an AVL tree must be either −1, 0, or

+1. The height of an empty tree defined as −1.

CS483 Design and Analysis of Algorithms 7 Lecture 11, October 2, 2007

AVL Tree

➣ AVL tree rotates nodes to maintain the balance after a node is added or

removed from the tree.

➣ Rotation is performed for a subtree rooted at the lowest unbalanced node.

➣ There are four types of rotations: L-rotation, R-rotation (single rotations),

LR-rotation, RL-rotation (double rotations)

CS483 Design and Analysis of Algorithms 8 Lecture 11, October 2, 2007



Case 1: R rotation

CS483 Design and Analysis of Algorithms 9 Lecture 11, October 2, 2007

Case 1: R rotation

Case 2: L rotation

CS483 Design and Analysis of Algorithms 10 Lecture 11, October 2, 2007



Case 3: LR rotation

CS483 Design and Analysis of Algorithms 11 Lecture 11, October 2, 2007

Case 3: LR rotation

Case 4: RL rotation

CS483 Design and Analysis of Algorithms 12 Lecture 11, October 2, 2007



AVL Tree Construction - Example

Build an AVL tree from the list {5, 6, 8, 3, 2, 4, 7}

CS483 Design and Analysis of Algorithms 13 Lecture 11, October 2, 2007

AVL Tree Construction - Example

Build an AVL tree from the list {5, 6, 8, 3, 2, 4, 7}

CS483 Design and Analysis of Algorithms 14 Lecture 11, October 2, 2007



AVL Tree Analysis

➣ What is the height h of any AVL tree with n nodes?

� h ≤ 1.4404 log2(n + 2) − 1.3277

� Average height: 1.01 log2 n + 0.1 for large n (found empirically)

CS483 Design and Analysis of Algorithms 15 Lecture 11, October 2, 2007

AVL Tree Analysis

➣ What is the height h of any AVL tree with n nodes?

� h ≤ 1.4404 log2(n + 2) − 1.3277

� Average height: 1.01 log2 n + 0.1 for large n (found empirically)

➣ What is the time complexity of the R-, L-, LR-, or RL-rotations?

➣ What is the time complexity of search/insert/delete of AVL tree?

CS483 Design and Analysis of Algorithms 16 Lecture 11, October 2, 2007



AVL Tree Analysis

➣ What is the height h of any AVL tree with n nodes?

� h ≤ 1.4404 log2(n + 2) − 1.3277

� Average height: 1.01 log2 n + 0.1 for large n (found empirically)

➣ What is the time complexity of the R-, L-, LR-, or RL-rotations?

O(1)

➣ What is the time complexity of search/insert/delete of AVL tree?

O(log n)

➣ Disadvantages:

� Frequent rotations

� Complexity

CS483 Design and Analysis of Algorithms 17 Lecture 11, October 2, 2007

Outline

➣ Transform and Conquer Techniques (which allow us to handle dynamic data /

information)

� Binary search tree

� AVL tree via rotations (or red-black tree or splay tree)

� 2 − 3 tree (or 2 − 3 − 4 tree or B tree)

� Heap

CS483 Design and Analysis of Algorithms 18 Lecture 11, October 2, 2007



2 − 3 Tree

➣ A 2 − 3 tree is a search tree in which

� Each node can have two or three kids (with one or two keys);

� Height-balanced (all leaves of the tree are at the same level).

k

k << k

k1, k2

k2 <
> k1& < k2

< k1

CS483 Design and Analysis of Algorithms 19 Lecture 11, October 2, 2007

2-3 Tree

➣ For a node with two kids, the node has one key. All the keys in the left (resp.,

right) sub-tree are smaller (resp., larger) than the key of the node.

k

k << k

CS483 Design and Analysis of Algorithms 20 Lecture 11, October 2, 2007



2 − 3 Tree

➣ For a node with three kids, the node has two keys. All the keys in the left

(resp., right) sub-tree are smaller (resp., larger) than the first (resp., second)

keys of the node.

The keys in the middle tree have values between the first and second key.

k1, k2

k2 <
> k1& < k2

< k1

CS483 Design and Analysis of Algorithms 21 Lecture 11, October 2, 2007

Building a 2 − 3 Tree

➣ Iteratively insert the values in to the tree

� If the tree is empty, create a node with the value

� Otherwise, search a leaf n that v can be put into and put v to n:

1. If the size of n is three, make the node into to a 2-node sub-tree T .

2. Insert the root of T into n’s parent node.

3. Repeat step 1 and 2 for n’s parent

➣ Example: Build a 2 − 3 tree from the list {9, 5, 8, 3, 2, 4, 7}

Answer is in the book.

CS483 Design and Analysis of Algorithms 22 Lecture 11, October 2, 2007



Analyzing a 2 − 3 Tree

➣ What is the height of a 2 − 3 Tree with n nodes?

log3(n + 1) − 1 ≤ h ≤ log2(n + 1) − 1

➣ What is the time complexity of each insertion, search, and delete?

O(log n)

CS483 Design and Analysis of Algorithms 23 Lecture 11, October 2, 2007


