
CS483-11 Transform-and-Conquer

Instructor: Fei Li

Room 443 ST II

Office hours: Tue. & Thur. 1:30pm - 2:30pm or by appointments

lifei@cs.gmu.edu with subject: CS483

http://www.cs.gmu.edu/∼ lifei/teaching/cs483_fall07/

Based on Introduction to the Design and Analysis of Algorithms by Anany Levitin and Professor

Jyh-Ming Lien’s notes.
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Outline

➣ Transform and Conquer Techniques (which allow us to handle dynamic data /

information)

� Binary search tree

� AVL tree via rotations (or red-black tree or splay tree)

� 2 − 3 tree (or 2 − 3 − 4 tree or B tree)

� Heap
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Binary Search Tree

➣ Binary search tree is a binary tree each of whose nodes n has the following

properties:

� All values in the left sub-tree are smaller than the value of n

� All values in the right sub-tree are larger than the value of n
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Binary Search Tree

➣ What’s the advantage of a binary search tree over an array or a list?

� Efficient related searching and sorting algorithms

� Inorder traversal produces sorted list

➣ We can search and dynamically insert a value and delete a node from binary

search tree.

➣ Unfortunately, the worst case of these operation can have time complexity:

O(n), when the tree becomes a list
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Balanced Search Trees

➣ Attractiveness of binary search tree is blurred by the bad (linear) worst-case

efficiency.

➣ Two ways to solve this:

� To rebalance binary search tree when a new insertion makes the tree “too

unbalanced”

– AVL trees

– red-black trees

� To allow more than one key per node of a search tree

– 2 − 3 trees

– 2 − 3 − 4 trees

– B-trees
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AVL Tree

➣ AVL tree (named after G.M. Adelson-Velsky and E.M. Landis) is always a

balanced binary search tree.

➣ Balance factor of a node n: the difference between the heights of n’s left

and right sub-tree.

➣ The balance factor of every node in an AVL tree must be either −1, 0, or

+1. The height of an empty tree defined as −1.
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AVL Tree

➣ AVL tree rotates nodes to maintain the balance after a node is added or

removed from the tree.

➣ Rotation is performed for a subtree rooted at the lowest unbalanced node.

➣ There are four types of rotations: L-rotation, R-rotation (single rotations),

LR-rotation, RL-rotation (double rotations)
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Case 1: R rotation
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Case 1: R rotation

Case 2: L rotation
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Case 3: LR rotation
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Case 3: LR rotation

Case 4: RL rotation
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AVL Tree Construction - Example

Build an AVL tree from the list {5, 6, 8, 3, 2, 4, 7}
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AVL Tree Construction - Example

Build an AVL tree from the list {5, 6, 8, 3, 2, 4, 7}
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AVL Tree Analysis

➣ What is the height h of any AVL tree with n nodes?

� h ≤ 1.4404 log2(n + 2) − 1.3277

� Average height: 1.01 log2 n + 0.1 for large n (found empirically)
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AVL Tree Analysis

➣ What is the height h of any AVL tree with n nodes?

� h ≤ 1.4404 log2(n + 2) − 1.3277

� Average height: 1.01 log2 n + 0.1 for large n (found empirically)

➣ What is the time complexity of the R-, L-, LR-, or RL-rotations?

➣ What is the time complexity of search/insert/delete of AVL tree?
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AVL Tree Analysis

➣ What is the height h of any AVL tree with n nodes?

� h ≤ 1.4404 log2(n + 2) − 1.3277

� Average height: 1.01 log2 n + 0.1 for large n (found empirically)

➣ What is the time complexity of the R-, L-, LR-, or RL-rotations?

O(1)

➣ What is the time complexity of search/insert/delete of AVL tree?

O(log n)

➣ Disadvantages:

� Frequent rotations

� Complexity
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2 − 3 Tree

➣ A 2 − 3 tree is a search tree in which

� Each node can have two or three kids (with one or two keys);

� Height-balanced (all leaves of the tree are at the same level).
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2-3 Tree

➣ For a node with two kids, the node has one key. All the keys in the left (resp.,

right) sub-tree are smaller (resp., larger) than the key of the node.
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2 − 3 Tree

➣ For a node with three kids, the node has two keys. All the keys in the left

(resp., right) sub-tree are smaller (resp., larger) than the first (resp., second)

keys of the node.

The keys in the middle tree have values between the first and second key.
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Building a 2 − 3 Tree

➣ Iteratively insert the values in to the tree

� If the tree is empty, create a node with the value

� Otherwise, search a leaf n that v can be put into and put v to n:

1. If the size of n is three, make the node into to a 2-node sub-tree T .

2. Insert the root of T into n’s parent node.

3. Repeat step 1 and 2 for n’s parent

➣ Example: Build a 2 − 3 tree from the list {9, 5, 8, 3, 2, 4, 7}

Answer is in the book.

CS483 Design and Analysis of Algorithms 22 Lecture 11, October 2, 2007



Analyzing a 2 − 3 Tree

➣ What is the height of a 2 − 3 Tree with n nodes?

log3(n + 1) − 1 ≤ h ≤ log2(n + 1) − 1

➣ What is the time complexity of each insertion, search, and delete?

O(log n)
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