## CS483-11 Transform-and-Conquer

Instructor: Fei Li
Room 443 ST II
Office hours: Tue. \& Thur. 1:30pm-2:30pm or by appointments
lifei@cs.gmu.edu with subject: CS483
http://www.cs.gmu.edu/~ lifei/teaching/cs483_fall07/

Based on Introduction to the Design and Analysis of Algorithms by Anany Levitin and Professor Jyh-Ming Lien's notes.

## Outline

- Transform and Conquer Techniques (which allow us to handle dynamic data / information)
- Binary search tree
- AVL tree via rotations (or red-black tree or splay tree)
- $2-3$ tree (or $2-3-4$ tree or $B$ tree)
- Heap


## Binary Search Tree

- Binary search tree is a binary tree each of whose nodes $n$ has the following properties:
- All values in the left sub-tree are smaller than the value of $n$
- All values in the right sub-tree are larger than the value of $n$



## Binary Search Tree

- What's the advantage of a binary search tree over an array or a list?
- Efficient related searching and sorting algorithms
- Inorder traversal produces sorted list
$\nabla$ We can search and dynamically insert a value and delete a node from binary search tree.
- Unfortunately, the worst case of these operation can have time complexity: $O(n)$, when the tree becomes a list



## Balanced Search Trees

- Attractiveness of binary search tree is blurred by the bad (linear) worst-case efficiency.
- Two ways to solve this:
- To rebalance binary search tree when a new insertion makes the tree "too unbalanced"
- AVL trees
- red-black trees
- To allow more than one key per node of a search tree
- $2-3$ trees
- 2-3-4 trees
- $B$-trees


## Outline

$\star$ Transform and Conquer Techniques (which allow us to handle dynamic data / information)

- Binary search tree
- AVL tree via rotations (or red-black tree or splay tree)
- $2-3$ tree (or $2-3-4$ tree or $B$ tree)
- Heap


## AVL Tree

$\star$ AVL tree (named after G.M. Adelson-Velsky and E.M. Landis) is always a balanced binary search tree.

- Balance factor of a node $n$ : the difference between the heights of $n$ 's left and right sub-tree.
- The balance factor of every node in an AVL tree must be either $-1,0$, or +1 . The height of an empty tree defined as -1 .


## AVL Tree

- AVL tree rotates nodes to maintain the balance after a node is added or removed from the tree.
$\nabla$ Rotation is performed for a subtree rooted at the lowest unbalanced node.
$\nabla$ There are four types of rotations: L-rotation, R-rotation (single rotations), LR-rotation, RL-rotation (double rotations)


## Case 1: R rotation




Case 2: L rotation

## Case 3: LR rotation



## Case 3: LR rotation



Case 4: RL rotation

## AVL Tree Construction - Example

Build an AVL tree from the list $\{5,6,8,3,2,4,7\}$



## AVL Tree Construction - Example

Build an AVL tree from the list $\{5,6,8,3,2,4,7\}$


## AVL Tree Analysis

$\star$ What is the height $h$ of any AVL tree with $n$ nodes?

- $h \leq 1.4404 \log _{2}(n+2)-1.3277$
- Average height: $1.01 \log _{2} n+0.1$ for large $n$ (found empirically)


## AVL Tree Analysis

- What is the height $h$ of any AVL tree with $n$ nodes?
- $h \leq 1.4404 \log _{2}(n+2)-1.3277$
- Average height: $1.01 \log _{2} n+0.1$ for large $n$ (found empirically)
$\star$ What is the time complexity of the $R-, L-, L R$-, or $R L$-rotations?
- What is the time complexity of search/insert/delete of AVL tree?


## AVL Tree Analysis

$\star$ What is the height $h$ of any AVL tree with $n$ nodes?

- $h \leq 1.4404 \log _{2}(n+2)-1.3277$
- Average height: $1.01 \log _{2} n+0.1$ for large $n$ (found empirically)
- What is the time complexity of the $R$-, $L$-, $L R$-, or $R L$-rotations?
$O(1)$
- What is the time complexity of search/insert/delete of AVL tree?
$O(\log n)$
- Disadvantages:
- Frequent rotations
- Complexity


## Outline

- Transform and Conquer Techniques (which allow us to handle dynamic data / information)
- Binary search tree
- AVL tree via rotations (or red-black tree or splay tree)
- 2-3 tree (or $2-3-4$ tree or $B$ tree)
- Heap


## $2-3$ Tree

- A $2-3$ tree is a search tree in which
- Each node can have two or three kids (with one or two keys);
- Height-balanced (all leaves of the tree are at the same level).



## 2-3 Tree

$\nabla$ For a node with two kids, the node has one key. All the keys in the left (resp., right) sub-tree are smaller (resp., larger) than the key of the node.


## 2-3 Tree

$\star$ For a node with three kids, the node has two keys. All the keys in the left (resp., right) sub-tree are smaller (resp., larger) than the first (resp., second) keys of the node.

The keys in the middle tree have values between the first and second key.


## Building a $2-3$ Tree

- Iteratively insert the values in to the tree
- If the tree is empty, create a node with the value
- Otherwise, search a leaf $n$ that $v$ can be put into and put $v$ to $n$ :

1. If the size of $n$ is three, make the node into to a 2 -node sub-tree $T$.
2. Insert the root of $T$ into $n$ 's parent node.
3. Repeat step 1 and 2 for $n$ 's parent

- Example: Build a $2-3$ tree from the list $\{9,5,8,3,2,4,7\}$

Answer is in the book.

## Analyzing a $2-3$ Tree

$\wedge$ What is the height of a $2-3$ Tree with $n$ nodes?
$\log _{3}(n+1)-1 \leq h \leq \log _{2}(n+1)-1$
$\star$ What is the time complexity of each insertion, search, and delete?
$O(\log n)$

