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CS483-11 Transform-and-Conquer

Instructor: Fei Li
Room 443 ST II
Office hours: Tue. & Thur. 1:30pm - 2:30pm or by appointments
lifei@cs.gmu.edu with subject: CS483
http://www.cs.gmu.edu/~ lifei/teaching/cs483 fallo07/

Based on Introduction to the Design and Analysis of Algorithms by Anany Levitin and Professor

Jyh-Ming Lien’s notes.
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= Transform and Conquer Techniques (which allow us to handle dynamic data /

information)
e Binary search tree
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| Binary Search Tree I

> Binary search tree is a binary tree each of whose nodes 7. has the following

properties:
e All values in the left sub-tree are smaller than the value of n

e All values in the right sub-tree are larger than the value of n
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| Binary Search Tree I

= What's the advantage of a binary search tree over an array or a list?

e Efficient related searching and sorting algorithms

e Inorder traversal produces sorted list

= We can search and dynamically insert a value and delete a node from binary
search tree.

= Unfortunately, the worst case of these operation can have time complexity:
O(n), when the tree becomes a list
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| Balanced Search Trees I

= Attractiveness of binary search tree is blurred by the bad (linear) worst-case

efficiency.

> Two ways to solve this:
e To rebalance binary search tree when a new insertion makes the tree “too
unbalanced”
— AVL trees

— red-black trees

e To allow more than one key per node of a search tree

- 2 — 3 trees
- 2—3—4trees
— B-trees
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= Transform and Conquer Techniques (which allow us to handle dynamic data /
information)
[ ]
e AVL tree via rotations (or red-black tree or splay tree)
[ ]
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= AVL tree (named after G.M. Adelson-Velsky and E.M. Landis) is always a
balanced binary search tree.

= Balance factor of a node n: the difference between the heights of n’s left
and right sub-tree.

™ The balance factor of every node in an AVL tree must be either —1, 0, or
+1. The height of an empty tree defined as —1.
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= AVL tree rotates nodes to maintain the balance after a node is added or

removed from the tree.
= Rotation is performed for a subtree rooted at the lowest unbalanced node.

= There are four types of rotations: L-rotation, R-rotation (single rotations),
LR-rotation, RL-rotation (double rotations)
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| Case 1: R rotation I
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| Case 1: R rotation I

Case 2: L rotation
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| Case 3: LR rotation I
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| Case 3: LR rotation I
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Case 4: RL rotation
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|AVL Tree Construction - Example I

Build an AVL tree from the list {5, 6,8, 3,2,4, 7}
0 -1 -
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|AVL Tree Construction - Example I

Build an AVL tree from the list {5, 6,8,3,2,4,7}
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| AVL Tree Analysis I

= What is the height h of any AVL tree with 1 nodes?
e h < 1.4404logy(n + 2) — 1.3277
e Average height: 1.01log, n 4 0.1 for large n (found empirically)
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| AVL Tree Analysis I

= What is the height h of any AVL tree with n nodes?
e h < 1.4404logy(n +2) — 1.3277
e Average height: 1.01log, n 4 0.1 for large n (found empirically)

= What is the time complexity of the R-, L-, L R-, or R L-rotations?

= What is the time complexity of search/insert/delete of AVL tree?
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| AVL Tree Analysis I

= What is the height h of any AVL tree with 1 nodes?
e h <1.4404logy(n +2) — 1.3277
e Average height: 1.01 log, n 4 0.1 for large n (found empirically)

= What is the time complexity of the R-, L-, L R-, or R L-rotations?
O(1)

= What is the time complexity of search/insert/delete of AVL tree?
O(logn)

= Disadvantages:
e Frequent rotations

e Complexity
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= Transform and Conquer Techniques (which allow us to handle dynamic data /

information)

°

°

e 2 — 3tree (or2 — 3 — 4 tree or B tree)
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|2—3Tree|

= A2 — 3tree is a search tree in which
e Each node can have two or three kids (with one or two keys);

e Height-balanced (all leaves of the tree are at the same level).
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> For a node with two kids, the node has one key. All the keys in the left (resp.,

right) sub-tree are smaller (resp., larger) than the key of the node.
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|2—3Tree|

= For a node with three kids, the node has two keys. All the keys in the left

(resp., right) sub-tree are smaller (resp., larger) than the first (resp., second)

keys of the node.

The keys in the middle tree have values between the first and second key.
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| Building a 2 — 3 Tree I

= |teratively insert the values in to the tree
e [f the tree is empty, create a node with the value

e Otherwise, search a leaf n that v can be put into and put v to n:
1. If the size of n is three, make the node into to a 2-node sub-tree 7.
2. Insert the root of 7" into n’s parent node.
3. Repeat step 1 and 2 for n’s parent
> Example: Build a 2 — 3 tree from the list {9, 5, 8,3, 2,4, 7}

Answer is in the book.
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| Analyzing a 2 — 3 Tree I

= What is the height of a 2 — 3 Tree with n nodes?

logs(n+1)—1<h<logy(n+1)—1

= What is the time complexity of each insertion, search, and delete?

O(logn)
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