CS483-10 Elementary Graph Algorithms \&
Transform-and-Conquer

Instructor: Fei Li

- Depth-first Search - cont

Room 443 ST II

- Topological Sort
- Transform-and-Conquer - Gaussian Elimination

Office hours: Tue. \& Thur. 1:30pm-2:30pm or by appointments
lifei@cs.gmu.edu with subject: CS483
http://www.cs.gmu.edu/~ lifei/teaching/cs483_fall07/
Based on Introduction to the Design and Analysis of Algorithms by Anany Levitin, Jyh-Ming Lien's
notes, and Introduction to Algorithms by CLRS.
CS483 Design and Analysis of Algorithms
1
Lecture 09, September 27, 2007

Depth-first Search (DFS)

- The correctness proof: Use an induction method
\wedge The overall running time of $D F S$ is $O(|V|+|E|)$.
- The time initializing each vertex is $O(|V|)$.
- Each edge $(u, v) \in E$ is examined twice, once exploring u and once exploring v. Therefore takes $O(|E|)$ time.

Outine

Topological Sort

\star Depth-first Search - cont

- Topological Sort
- Transform-and-Conquer - Gaussian Elimination
- An application of DFS
® Input: a directed acyclic graph (DAG)
\star Output: A linear ordering of all its vertices, such that if G contains an edge (u, v), then, u appears before v in the ordering.

Algorithm 0.1: Topological-Sort $(G(V, E))$
Call DFS(G) to compute finishing times $f[v]$ for each vertex v As each vertex is finished, insert it onto the front of a linked list return (the linked list of vertices)

Transform-and-Conquer

A problem is solved by a transformation

- To a simpler/more convenient instance of the same problem (instance simplification)
\star Depth-first Search - cont
- Ex: transforming unsorted to sorted
- Topological Sort
- To a different representation of the same instance (representation change)
- Ex: transforming list to tree, tree to balanced tree, ... , etc.
\star To a different problem for which an algorithm is already available (problem reduction)
- Ex: transforming multiplication to addition
- Instance Simplification
- Element uniqueness
\star Find if a given array contains unique elements.
- Mode (the most repeated element) of an array
- What is the transform?
- Searching for a value in an array
- Find the most repeated element.
\star Representation Change
- What is the transform?
- Gaussian elimination
Δ Search for a value in an array (including binary search).
- What is the transform?
- Heap and heapsort
- Quicksort
- Problem Reduction
- What is the transform?
- Least common multiple
- Paths in a graph - Linear programming (Chapter 10)

Instance Simplification

Instance Simplification - Presorting

Instance Simplification: Solve a problem's instance by transforming it into another simpler/easier instance of the same problem.
\wedge Find if a given array contains unique elements.

- Presorting
- What is the transform? Sorting

Many problems involving lists are easier when list is sorted.
\star Find the most repeated element

- Searching
- What is the transform? Sorting
- Computing the median (selection problem)
\wedge Search for a value in an array (including binary search). - What is the transform? Sorting
- Checking if all elements are distinct (element uniqueness)
∇ Quicksort
- What is the transform? Randomization Also:
- Topological sorting helps solving some problems for directed Acyclic graphs (DAGs).
- Presorting is used in many geometric algorithms.

How Fast Can We Sort?

Searching with Presorting

- Efficiency of algorithms involving sorting depends on efficiency of sorting.
- Problem: Search for a given K in $A[1 \ldots n]$
\wedge Theorem (see Sec. 11.2): $\left\lceil\log _{2} n!\right\rceil \approx n \log _{2} n$ comparisons are necessary
- Presorting-based algorithm: in the worst case to sort a list of size n by any comparison-based algorithm.

1. Sort the array by an efficient sorting algorithm
2. Apply binary search

- Note: About $n \log _{2} n$ comparisons are also sufficient to sort array of size n
\wedge Efficiency: $\Theta\left(n \log _{2} n\right)+O\left(\log _{2} n\right)=\Theta\left(n \log _{2} n\right)$ (by mergesort).
\wedge Good or bad?
- Why do we have our dictionaries, telephone directories, etc. sorted?

Searching with Presorting

- Problem: Search for a given K in $A[1 \ldots n]$
- Presorting-based algorithm:

1. Sort the array by an efficient sorting algorithm

- Brute force algorithm
- Compare all pairs of elements
- Efficiency: $O\left(n^{2}\right)$

2. Apply binary search

- Presorting-based algorithm

1. Sort by efficient sorting algorithm (e.g. mergesort)
2. Scan array to check pairs of adjacent elements

Efficiency: $\Theta\left(n \log _{2} n\right)+O(n)=\Theta\left(n \log _{2} n\right)$

Cumulative cost is reduced.

$M \cdot n$ vs. $n \log _{2} n+M \cdot \log _{2} n$, given M is large.

- Instance Simplification

- Element uniqueness

Representation Change: Gaussian Elimination

- Mode (the most repeated element) of an array
- Searching for a value in an array

Problem: Solve the linear system of a set of n linear equations and n variables.
\star Representation Change

- Example 1
- Gaussian elimination
- AVL tree, 2-3 tree
- Heap and heapsort

$$
\begin{aligned}
& a_{11} x+a_{12} y=b_{1} \\
& a_{21} x+a_{22} y=b_{2}
\end{aligned}
$$

\star Problem Reduction (Chapter 10)

- Least common multiple
- Paths in a graph - Linear programming

Representation Change: Gaussian Elimination

Problem: Solve the linear system of a set of n linear equations and n variables.
\star Given: A system of n linear equations in n unknowns with an arbitrary

- Example 1: coefficient matrix.
- Transform to: An equivalent system of n linear equations in n unknowns with an upper triangular coefficient matrix.

$$
\begin{aligned}
& a_{11} x+a_{12} y=b_{1} \\
& a_{21} x+a_{22} y=b_{2}
\end{aligned}
$$

- Solve the latter by substitutions starting with the last equation and moving up to the first one.
- Example 2 :

$$
\begin{array}{r}
a_{11} x_{1}+a_{12} x_{2}+\cdots+a_{1 n} x_{n}=b_{1} \\
a_{21} x_{1}+a_{22} x_{2}+\cdots+a_{2 n} x_{n}=b_{2} \\
\vdots \\
a_{n 1} x_{1}+a_{n 2} x_{2}+\cdots+a_{n n} x_{n}=b_{n}
\end{array}
$$

$$
\begin{array}{rr}
a_{11} x_{1}+a_{12} x_{2}+\cdots+a_{1 n} x_{n}=b_{1} & a_{11}^{\prime} x_{1}+a_{12}^{\prime} x_{2}+\cdots+a_{1 n}^{\prime} x_{n}=b_{1}^{\prime} \\
a_{21} x_{1}+a_{22} x_{2}+\cdots+a_{2 n} x_{n}=b_{2} & a_{22}^{\prime} x_{2}+\cdots+a_{2 n}^{\prime} x_{n}=b_{2}^{\prime} \\
\vdots & \\
a_{n 1} x_{1}+a_{n 2} x_{2}+\cdots+a_{n n} x_{n}=b_{n} & a_{n n}^{\prime} x_{n}=b_{n}^{\prime}
\end{array}
$$

Transformation by Gaussian Elimination

Gaussian Elimination: Example

$$
2 x_{1}-4 x_{2}+x_{3}=6
$$ the system's coefficient matrix (which do not change the system's solution)

$$
3 x_{1}-x_{2}+x_{3}=11
$$

$$
x_{1}+x_{2}-x_{3}=-3
$$

- for $f \leftarrow 1$ to $n-1$ do

Replace each of the subsequent rows (i.e., rows $i+1, \ldots, n$) by a difference

$$
\begin{array}{llll}
2 & -4 & 1 & 6
\end{array}
$$

between that row and an appropriate multiple of the $i^{t h}$ row to make the new
$\begin{array}{llll}3 & -1 & 1 & 11\end{array}$
coefficient in the $i^{t h}$ column of that row 0 .
$\begin{array}{llll}1 & 1 & -1 & -3\end{array}$

Gaussian Elimination: Example

$$
\begin{array}{rlr}
2 x_{1}-4 x_{2}+x_{3} & =6 \\
3 x_{1}-x_{2}+x_{3} & =11 \\
x_{1}+x_{2}-x_{3} & =-3
\end{array}
$$

$\begin{array}{llll}2 & -4 & 1 & 6\end{array}$
$\begin{array}{lllll}3 & -1 & 1 & 11 & \text { row } 2-\frac{3}{2} \times \text { row } 1\end{array}$
$\begin{array}{lllll}1 & 1 & -1 & -3 & \text { row } 3-\frac{1}{2} \times \text { row } 1\end{array}$
$\begin{array}{llll}2 & -4 & 1 & 6\end{array}$
$\begin{array}{llll}0 & 5 & -\frac{1}{2} & 2\end{array}$
$\begin{array}{lllll}0 & 3 & -\frac{3}{2} & -6 & \text { row } 3-\frac{3}{5} \times \text { row } 2\end{array}$
$\begin{array}{llll}2 & -4 & 1 & 6\end{array}$
$\begin{array}{llll}0 & 5 & -\frac{1}{2} & 2\end{array}$
$0 \quad 0 \quad-\frac{6}{5} \quad-\frac{36}{5}$

- We have:

$$
\begin{array}{rlr}
2 x_{1}-4 x_{2}+x_{3} & =6 \\
5 x_{2}-\frac{1}{2} x_{3} & = & 2 \\
-\underline{6}_{r_{2}} & =-\underline{36}
\end{array}
$$

- Then we can solve x_{3}, x_{2}, x_{1} by backward substitution:

$$
\begin{aligned}
& x 3=\left(-\frac{36}{5}\right) /\left(-\frac{6}{5}\right)=6 \\
& x 2=\left(2+\left(\frac{1}{2}\right) \times 6\right) / 5=1 \\
& x 1=(66+4 \times 1) / 2=2
\end{aligned}
$$

Algorithm 0.2: $\operatorname{GE}(A[1 \cdots n, 1 \cdots n], b[1 \cdots n])$

Append b to A as the last column
for $i \in\{1 \cdots n-1\}$
do $\left\{\begin{array}{l}\text { for } j \in\{i+1 \cdots n\} \\ \text { do }\left\{\begin{array}{c}\text { for } k \in\{j \cdots n\} \\ \text { do for } A[j, k]=A[j, k]-\frac{A[i, k] A[j, i]}{A[i, i]}\end{array}\right.\end{array}\right.$

Algorithm 0.3: $\mathrm{BS}(A[1 \cdots n, 1 \cdots n+1])$

- To solve a linear system $A x=b$: We will call $\operatorname{GE}(A, b)$ and then $x=\mathrm{BS}(A)$
for $j \leftarrow\{n \cdots 1\}$
- Time Complexity:
do $\left\{\begin{array}{l}t \leftarrow 0 \\ \text { for } k \leftarrow\{j+1 \cdots n\} \\ \operatorname{do} t \leftarrow t+A[j, k] \times x[k] \\ x[j] \leftarrow(A[j, n+1]-t) / A[j, j]\end{array}\right.$

More about Gaussian Elimination

- Issues with Gaussian Elimination
- The value of $A[j, i] / A[i, i]$ is repetitively computed
- Small $A[i, i]$ make the algorithm unstable (numerical errors), e.g., $A[j, i] / A[i, i]$ will be too large to cause over flow.
- Solution: pivoting: always select the largest $A[i, i]$

Algorithm 0.4: $\operatorname{GE}(A[1 \cdots n, 1 \cdots n], b[1 \cdots n])$

Append b to A as the last column
for $i \in\{1 \cdots n-1\}$

```
(for \(j \in\{i+1 \cdots n\}\)
do if \(|A[j, i]|>|A[p i v o t, i]|\)
    then pivot \(\leftarrow j\)
for \(j \in\{i \cdots n+1\}\)
do \(\{\operatorname{do} \operatorname{swap}(A[i, k], A[p i v o t, k])\)
for \(j \in\{i+1 \cdots n+1\}\)
    do \(\left\{\begin{array}{l}\text { tem } p \leftarrow \frac{A[j, i]}{A[i, i]} \\ \text { for } k \in\{j \cdots n\} \\ \text { do for } A[j, k]=\end{array}\right.\)
do for \(A[j, k]=A[j, k]-A[i, k] \times t e m p\)
```


LU Decomposition

- LU decomposition ($A=L U$)

Why Gaussian Elimination?
Decompose a matrix into two matrices: an upper triangular matrix and a lower triangular matrix

$$
\left[\begin{array}{lll}
a & b & c \\
d & e & f \\
g & h & i
\end{array}\right]=\left[\begin{array}{ccc}
1 & 0 & 0 \\
l_{21} & 1 & 0 \\
l_{31} & l_{32} & 1
\end{array}\right]\left[\begin{array}{ccc}
u_{11} & u_{12} & u_{13} \\
0 & u_{22} & u_{23} \\
0 & 0 & u_{33}
\end{array}\right]
$$

- Gaussian elimination can be used to compute L (or U), which is then used to compute U (or L).
- LU decomposition is good if you have different $b s$, i.e.,

$$
A x=b \Rightarrow L(U x)=b \Rightarrow U x=b^{\prime}
$$

Matrix Inverse

- Compute Inversion
A^{-1} of an invertible $n \times n$ matrix A. Recall that $A A^{-1}=I$
- We can use Gaussian elimination (Gauss-Jordan elimination to be precise) to compute inverse of a matrix.
- Not all $n \times n$ matrices can be invertible. Such matrices are called singular.

Matrix Determinan

Matrix Determinant (cont.)

- The determinant of a matrix A is denoted $\operatorname{det} A$ or $|A|$
\wedge When $\operatorname{det} A \neq 0, A$ is invertible.
- Example:

$$
\operatorname{det}\left[\begin{array}{lll}
a & b & c \\
d & e & f \\
g & h & i
\end{array}\right]=a e i-a f h-b d i+b f g+c d h-c e g
$$

- Time complexity of a brute force algorithm? $O(n!)$
- Using Gaussian elimination, and some properties of determinant:
- Interchanging two rows changes the sign of the determinant.
- Multiplying a row by a scalar multiplies the determinant by that scalar.
- Replacing any row by the sum of that row and any other row does NOT change the determinant.
- The determinant of a triangular matrix (upper or lower triangular) is the product of the diagonal elements.
- Example:

$$
\begin{gathered}
A=\left[\begin{array}{cc}
5 & 3 \\
-4 & -2
\end{array}\right]=5 \cdot\left[\begin{array}{cc}
1 & 0.6 \\
-4 & -2
\end{array}\right]=5\left[\begin{array}{ll}
1 & 0.6 \\
0 & 0.4
\end{array}\right] \\
D=x \text { and } x / 5=0.4 \Rightarrow x=2
\end{gathered}
$$

Matrix Inverse

Example:

$$
\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right] A^{-1}=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
$$

$$
\left[\begin{array}{cc}
1 & 2 \\
0 & -2
\end{array}\right] A^{-1}=\left[\begin{array}{cc}
1 & 0 \\
-3 & 1
\end{array}\right]
$$

$$
\left[\begin{array}{cc}
1 & 0 \\
0 & -2
\end{array}\right] A^{-1}=\left[\begin{array}{cc}
-2 & 1 \\
-3 & 1
\end{array}\right]
$$

$$
\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] A^{-1}=\left[\begin{array}{cc}
-2 & 1 \\
3 / 2 & -1 / 2
\end{array}\right]
$$

Lecture 09, September 27, 2007

