CS483-10 Elementary Graph Algorithms &

Transform-and-Conquer

Instructor: Fei Li
Room 443 ST |l
Office hours: Tue. & Thur. 1:30pm - 2:30pm or by appointments
|1 fel @s. gnu. edu with subject: CS483
http://ww. cs. gnmu. edu/ ~ lifei/teaching/cs483 fall 07/

Based on Introduction to the Design and Analysis of Algorithms by Anany Levitin, Jyh-Ming Lien’s

notes, and Introduction to Algorithms by CLRS.

CS483 Design and Analysis of Algorithms 1 Lecture 09, September 27, 2007

| Outline I

[1 Depth-first Search — cont

[]
[]

CS483 Design and Analysis of Algorithms 2 Lecture 09, September 27, 2007

CS483 Design and Analysis of Algorithms 3 Lecture 09, September 27, 2007

‘ Depth-first Search (DFS) I

[1 The correctness proof: Use an induction method

[J The overall running time of DF'S'is O(|V| + |E]).

e The time initializing each vertex is O(|V/]).

e Each edge (u,v) € E is examined twice, once exploring u and once

exploring v. Therefore takes O (| F/|) time.

CS483 Design and Analysis of Algorithms 4 Lecture 09, September 27, 2007

| Outline I

[l
[1 Topological Sort

[]

CS483 Design and Analysis of Algorithms 5 Lecture 09, September 27, 2007

‘ Topological Sort I

[1 Input: a directed acyclic graph (DAG)

[1 An application of DFS

[1 Output: A linear ordering of all its vertices, such that if G contains an edge

(u, v), then, u appears before v in the ordering.

CS483 Design and Analysis of Algorithms 6 Lecture 09, September 27, 2007

CS483 Design and Analysis of Algorithms 7 Lecture 09, September 27, 2007

CS483 Design and Analysis of Algorithms 8 Lecture 09, September 27, 2007

‘ Topological-Sort I

Algorithm 0.1: TopoLocIcAL-SORT(G(V, E))

Call DFS(G) to compute finishing times f[v] for each vertex v

As each vertex is finished, insert it onto the front of a linked list

return (the linked list of vertices)

CS483 Design and Analysis of Algorithms 9 Lecture 09, September 27, 2007

CS483 Design and Analysis of Algorithms 10 Lecture 09, September 27, 2007

| Outline I

[1 Transform-and-Conquer — Gaussian Elimination

CS483 Design and Analysis of Algorithms 11 Lecture 09, September 27, 2007

‘ Transform-and-Conquer I

A problem is solved by a transformation

[1 To a simpler/more convenient instance of the same problem (instance

simplification)

- Ex: transforming unsorted to sorted

To a different representation of the same instance (representation change)

- Ex: transforming list to tree, tree to balanced tree, ... , etc.

To a different problem for which an algorithm is already available (problem
reduction)

- Ex: transforming multiplication to addition

CS483 Design and Analysis of Algorithms 12 Lecture 09, September 27, 2007

‘ Transform-and-Conquer I

Instance Simplification
- Element uniqueness
- Mode (the most repeated element) of an array

- Searching for a value in an array

Representation Change

- Gaussian elimination
- AVL tree, 2-3 tree

- Heap and heapsort

Problem Reduction
- Least common multiple

- Paths in a graph - Linear programming (Chapter 10)

CS483 Design and Analysis of Algorithms 13 Lecture 09, September 27, 2007

‘ Instance Simplification I

Find if a given array contains unique elements.

- What is the transform?

Find the most repeated element.

- What is the transform?

Search for a value in an array (including binary search).

- What is the transform?

Quicksort

- What is the transform?

CS483 Design and Analysis of Algorithms 14 Lecture 09, September 27, 2007

‘ Instance Simplification I

Find if a given array contains unique elements.

- What is the transform? Sorting

Find the most repeated element.

- What is the transform? Sorting

Search for a value in an array (including binary search).

- What is the transform? Sorting

Quicksort

- What is the transform? Randomization

CS483 Design and Analysis of Algorithms 15 Lecture 09, September 27, 2007

‘ Instance Simplification - Presorting I

Instance Simplification: Solve a problem’s instance by transforming it into another

simpler/easier instance of the same problem.

[1 Presorting

Many problems involving lists are easier when list is sorted.
e Searching

e Computing the median (selection problem)

e Checking if all elements are distinct (element uniqueness)
Also:

e Topological sorting helps solving some problems for directed Acyclic
graphs (DAGS).

e Presorting is used in many geometric algorithms.

CS483 Design and Analysis of Algorithms 16 Lecture 09, September 27, 2007

| How Fast Can We Sort? I

Efficiency of algorithms involving sorting depends on efficiency of sorting.

Theorem (see Sec. 11.2): [log, n!| &~ nlog, n comparisons are necessary

in the worst case to sort a list of size n by any comparison-based algorithm.

Note: About 1 log, 1 comparisons are also sufficient to sort array of size n

(by mergesort).

CS483 Design and Analysis of Algorithms 17 Lecture 09, September 27, 2007

‘ Searching with Presorting I

Problem: Search for a given K in A[l...n]

Presorting-based algorithm:
1. Sort the array by an efficient sorting algorithm

2. Apply binary search

Efficiency: ©(nlog, n) + O(logs n) = O(nlogy n)

Good or bad?

Why do we have our dictionaries, telephone directories, etc. sorted?

CS483 Design and Analysis of Algorithms 18 Lecture 09, September 27, 2007

‘ Searching with Presorting I

Problem: Search for a given K in A[1...n]

Presorting-based algorithm:
1. Sort the array by an efficient sorting algorithm

2. Apply binary search

Efficiency: ©(nlog, n) + O(logs n) = O(nlogy n)

Good or bad?

Why do we have our dictionaries, telephone directories, etc. sorted?
Cumulative cost is reduced

M - nvs. nlog, n + M -log, n, given M is large.

CS483 Design and Analysis of Algorithms 19 Lecture 09, September 27, 2007

‘ Element Unigueness with Presorting I

[1 Brute force algorithm

e Compare all pairs of elements

e Efficiency: O(n?)

[1 Presorting-based algorithm
1. Sort by efficient sorting algorithm (e.g. mergesort)
2. Scan array to check pairs of adjacent elements

Efficiency: ©(nlog, n) + O(n) = ©(nlog, n)

CS483 Design and Analysis of Algorithms 20 Lecture 09, September 27, 2007

‘ Transform-and-Conquer I

Instance Simplification
- Element uniqueness
- Mode (the most repeated element) of an array

- Searching for a value in an array

Representation Change
- Gaussian elimination
- AVL tree, 2-3 tree

- Heap and heapsort

Problem Reduction (Chapter 10)

- Least common multiple

- Paths in a graph - Linear programming

CS483 Design and Analysis of Algorithms 21 Lecture 09, September 27, 2007

‘ Representation Change: Gaussian Elimination I

Problem: Solve the linear system of a set of n linear equations and n variables.

[1 Example 1:

a11T + a2y = by

21T + a2y = by

CS483 Design and Analysis of Algorithms 22 Lecture 09, September 27, 2007

‘ Representation Change: Gaussian Elimination I

Problem: Solve the linear system of a set of n linear equations and n variables.

[1 Example 1:

a11T + a2y = by

a21T + a22y = b
[1 Example 2:

a11r1 + a12x2 + -+ + a1nTn = b1

a21x1 + a22x2 + - -+ + agnxrn = bo

Anl1T1 + An2T2 + - + ApnTn = bn

CS483 Design and Analysis of Algorithms 23 Lecture 09, September 27, 2007

‘ Representation Change: Gaussian Elimination I

Given: A system of n linear equations in 1 unknowns with an arbitrary

coefficient matrix.

Transform to: An equivalent system of n linear equations in 2 unknowns with

an upper triangular coefficient matrix.

Solve the latter by substitutions starting with the last equation and moving up
to the first one.

Base: If we add a multiple of one equation to another, the overall system of

equations remains equivalent.

/ / / /
a11x1 +ai2x2 + -+ a1pTn = b1 a1 +ajor2 + - +ay, Tn = b]

/ / /
a21T1 + a22x2 + - - + a2pxTn = bo A5oT2 + +++ + a5, Tn = by

/ /
an1T1 + an2x2 + - + annTn = by, AnnIn = bn

CS483 Design and Analysis of Algorithms 24 Lecture 09, September 27, 2007

‘ Transformation by Gaussian Elimination I

The transformation is accomplished by a sequence of elementary operations on

the system’s coefficient matrix (which do not change the system’s solution):

e for f «— 1ton — 1do

Replace each of the subsequent rows (i.e., rows ¢ + 1, ...,) by a difference

between that row and an appropriate multiple of the it row to make the new

h

coefficient in the 7t column of that row O.

CS483 Design and Analysis of Algorithms 25 Lecture 09, September 27, 2007

‘Gaussian Elimination: Examplel

201 — 412 + x3

3x1 — x2 + 3

1 +x2 — 3

CS483 Design and Analysis of Algorithms 26 Lecture 09, September 27, 2007

‘Gaussian Elimination: Examplel

201 — 412 + x3

3rx1 — x2 + x3

1 +x2 — 3

CS483 Design and Analysis of Algorithms 27 Lecture 09, September 27, 2007

‘Gaussian Elimination: Examplel

201 — 4x20 +x3 = 6
3r1 —xo +x3 = 11

r1 +x0—xx3 = —3

CS483 Design and Analysis of Algorithms 28 Lecture 09, September 27, 2007

‘Gaussian Elimination: Examplel

201 — 412 + 3

[1 We have:

x3
x2
xl

CS483 Design and Analysis of Algorithms 29 Lecture 09, September 27, 2007

Gaussian Elimination Algorithm I

Algorithm 0.2: GE(A[l---n,1---n],b[1---n])

Append b to A as the last column

fori € {1---n—1}
(for je {i+1---n}

for k€ {j---n}

dofor A[j, k] = Alj, k] — A[if[]ﬁ][j,i]

do

CS483 Design and Analysis of Algorithms 30 Lecture 09, September 27, 2007

‘ Backward Substitution Algorithm I

Algorithm 0.3: BS(A[l---n,1---n+ 1))

for j «— {n---1}

(t—0
for k«—{j+1---n}

dot <« t+ Alj, k] X x[k]
|zlj] = (Alj,n+1] — 1) /A3, j]

CS483 Design and Analysis of Algorithms 31 Lecture 09, September 27, 2007

‘ Solve Ax = b using Gaussian Elimination I

[] To solve a linear system Az = b: We will call GE(A,b) and then x = BS(A)

[1 Time Complexity:

Tn)=n2+n—-17>%2+--+(n—(n—-1)%=
12—|_22—|—'°'—|—7’L2% n3:@(n3)_

1
3

CS483 Design and Analysis of Algorithms 32 Lecture 09, September 27, 2007

| More about Gaussian Elimination I

[] Issues with Gaussian Elimination

e The value of A[j,i]/Ali, 1] is repetitively computed

e Small A7, ¢| make the algorithm unstable (numerical errors), e.g.,

Alj,1i]/Ali, 1] will be too large to cause over flow.

[J Solution: pivoting: always select the largest A|7, 7|

CS483 Design and Analysis of Algorithms 33 Lecture 09, September 27, 2007

‘ Better Gaussian Elimination Algorithm I

Algorithm 0.4: GE(A[1---n,1---n],b[l---n])

Append b to A as the last column
forice{l---n—1}
(
forje{i+1---n}
doif |A[g,1]| > |Alpivot,]|
then prvot «— j
forje{i---n+1}
do swap(A[i, k], Alpivot, k])
forje{i+1---n+1}
Alj,i]
Ali,i]
do for k€ {j---n}
dofor A[j, k] = Alj, k] — Ali, k] X temp

(temp <«

\

CS483 Design and Analysis of Algorithms 34 Lecture 09, September 27, 2007

‘ Why Gaussian Elimination? I

[1 Solve linear equations Az = b

[1 LU decomposition
[1 Matrix inverse

[1 Compute Determinant

CS483 Design and Analysis of Algorithms 35 Lecture 09, September 27, 2007

‘ LU Decomposition I

[1 LU decomposition (A = LU)

Decompose a matrix into two matrices: an upper triangular matrix and a lower

triangular matrix

a

d
g

f

1

0
0

Uui2

U22
0

[1 Gaussian elimination can be used to compute L (or U), which is then used to

compute U (or L).

[1 LU decomposition is good if you have different bs, i.e.,

Ar=b=L(Ux)=b=Uzx =10

CS483 Design and Analysis of Algorithms 36

Lecture 09, September 27, 2007

| Matrix Inverse I

Compute Inversion

AL of an invertible n X n matrix A. Recallthat AA~1 = T

We can use Gaussian elimination (Gauss-Jordan elimination to be precise) to

compute inverse of a matrix.

Not all n X n matrices can be invertible. Such matrices are called singular.

CS483 Design and Analysis of Algorithms 37 Lecture 09, September 27, 2007

| Matrix Inverse I

Example:

CS483 Design and Analysis of Algorithms

ATl =

38

Lecture 09, September 27, 2007

| Matrix Determinant I

[J The determinant of a matrix A is denoted det A or |A|

[1 Whendet A # 0, Ais invertible.
[1 Example:

= aet —afh —bdt + bfg+ cdh — ceg

[J Time complexity of a brute force algorithm? O(n!)

CS483 Design and Analysis of Algorithms 39 Lecture 09, September 27, 2007

‘ Matrix Determinant (cont.) I

[1 Using Gaussian elimination, and some properties of determinant:

Interchanging two rows changes the sign of the determinant.
Multiplying a row by a scalar multiplies the determinant by that scalar.

Replacing any row by the sum of that row and any other row does NOT change the

determinant.

The determinant of a triangular matrix (upper or lower triangular) is the product of the

diagonal elements.

[1 Example:

1 0.6
-4 =2

—5.

D=zxandz/5=04=x=2

CS483 Design and Analysis of Algorithms 40 Lecture 09, September 27, 2007

