CS483-10 Elementary Graph Algorithms & Transform-and-Conquer

Instructor: Fei Li

Room 443 ST II

Office hours: Tue. & Thur. 1:30pm - 2:30pm or by appointments

lifei@cs.gmu.edu with subject: CS483

http://www.cs.gmu.edu/~ lifei/teaching/cs483_fall07/

Based on Introduction to the Design and Analysis of Algorithms by Anany Levitin, Jyh-Ming Lien's

notes, and Introduction to Algorithms by CLRS.


```
Depth-first Search – cont
```

► Topological Sort

Transform-and-Conquer – Gaussian Elimination

Depth-first Search (DFS)

The correctness proof: Use an induction method

- > The overall running time of DFS is O(|V| + |E|).
 - The time initializing each vertex is O(|V|).
 - Each edge $(u, v) \in E$ is examined twice, once exploring u and once exploring v. Therefore takes O(|E|) time.


```
Depth-first Search – cont
```

Topological Sort

- \succ An application of DFS
- Input: a directed acyclic graph (DAG)
- > Output: A linear ordering of all its vertices, such that if G contains an edge (u, v), then, u appears before v in the ordering.

Topological-Sort

Algorithm 0.1: TOPOLOGICAL-SORT(G(V, E))

Call DFS(G) to compute finishing times f[v] for each vertex v

As each vertex is finished, insert it onto the front of a linked list

return (the linked list of vertices)

Depth-first Search – cont

► Topological Sort

Transform-and-Conquer – Gaussian Elimination

Transform-and-Conquer

A problem is solved by a transformation

- To a simpler/more convenient instance of the same problem (instance simplification)
 - Ex: transforming unsorted to sorted
- > To a different representation of the same instance (representation change)
 - Ex: transforming list to tree, tree to balanced tree, \ldots , etc.
- To a different problem for which an algorithm is already available (problem reduction)
 - Ex: transforming multiplication to addition

Transform-and-Conquer

Instance Simplification

- Element uniqueness
- Mode (the most repeated element) of an array
- Searching for a value in an array

Representation Change

- Gaussian elimination
- AVL tree, 2-3 tree
- Heap and heapsort

Problem Reduction

- Least common multiple
- Paths in a graph Linear programming (Chapter 10)

Instance Simplification

- \succ Find if a given array contains unique elements.
 - What is the transform?
- \succ Find the most repeated element.
 - What is the transform?
- \succ Search for a value in an array (including binary search).
 - What is the transform?
- > Quicksort
 - What is the transform?

Instance Simplification

- \succ Find if a given array contains unique elements.
 - What is the transform? Sorting
- \succ Find the most repeated element.
 - What is the transform? Sorting
- \succ Search for a value in an array (including binary search).
 - What is the transform? Sorting
- > Quicksort
 - What is the transform? Randomization

Instance Simplification - Presorting

Instance Simplification: Solve a problem's instance by transforming it into another simpler/easier instance of the same problem.

Presorting

Many problems involving lists are easier when list is sorted.

- Searching
- Computing the median (selection problem)
- Checking if all elements are distinct (element uniqueness)

Also:

- Topological sorting helps solving some problems for directed Acyclic graphs (DAGs).
- Presorting is used in many geometric algorithms.

How Fast Can We Sort?

- > Efficiency of algorithms involving sorting depends on efficiency of sorting.
- > Theorem (see Sec. 11.2): $\lceil \log_2 n! \rceil \approx n \log_2 n$ comparisons are necessary in the worst case to sort a list of size n by any comparison-based algorithm.
- Note: About n log₂ n comparisons are also sufficient to sort array of size n (by mergesort).

Searching with Presorting

- \succ Problem: Search for a given K in A[1...n]
- > Presorting-based algorithm:
 - 1. Sort the array by an efficient sorting algorithm
 - 2. Apply binary search
- $\succ \text{ Efficiency: } \Theta(n \log_2 n) + O(\log_2 n) = \Theta(n \log_2 n)$
- ➤ Good or bad?
- > Why do we have our dictionaries, telephone directories, etc. sorted?

Searching with Presorting

- \succ Problem: Search for a given K in A[1...n]
- > Presorting-based algorithm:
 - 1. Sort the array by an efficient sorting algorithm
 - 2. Apply binary search
- ► Efficiency: $\Theta(n \log_2 n) + O(\log_2 n) = \Theta(n \log_2 n)$
- ➤ Good or bad?

Why do we have our dictionaries, telephone directories, etc. sorted?
Cumulative cost is reduced.

 $M \cdot n$ vs. $n \log_2 n + M \cdot \log_2 n$, given M is large.

Element Uniqueness with Presorting

Brute force algorithm

- Compare all pairs of elements
- Efficiency: ${\cal O}(n^2)$
- Presorting-based algorithm

1. Sort by efficient sorting algorithm (e.g. mergesort)

2. Scan array to check pairs of adjacent elements

Efficiency: $\Theta(n \log_2 n) + O(n) = \Theta(n \log_2 n)$

Transform-and-Conquer

Instance Simplification

- Element uniqueness
- Mode (the most repeated element) of an array
- Searching for a value in an array

Representation Change

- Gaussian elimination
- AVL tree, 2-3 tree
- Heap and heapsort

Problem Reduction (Chapter 10)

- Least common multiple
- Paths in a graph Linear programming

Problem: Solve the linear system of a set of n linear equations and n variables.

> Example 1:

 $a_{11}x + a_{12}y = b_1$ $a_{21}x + a_{22}y = b_2$

CS483 Design and Analysis of Algorithms

Transformation by Gaussian Elimination

The transformation is accomplished by a sequence of elementary operations on the system's coefficient matrix (which do not change the system's solution):

 $\bullet \ \text{ for } f \leftarrow 1 \text{ to } n-1 \text{ do} \\$

Replace each of the subsequent rows (i.e., rows i + 1, ..., n) by a difference between that row and an appropriate multiple of the i^{th} row to make the new coefficient in the i^{th} column of that row 0.

$2x_1$ -	$-4x_2$	$+x_{3}$	=	6
$3x_1$	$-x_{2}$	$+x_{3}$	=	11
x_1	$+x_{2}$	$-x_{3}$	=	-3
2	-4	1	6	
3	-1	1	11	
1	1	-1	-3	

$$2x_1 - 4x_2 + x_3 = 6$$

$$3x_1 - x_2 + x_3 = 11$$

$$x_1 + x_2 - x_3 = -3$$

$$2x_1 - 4x_2 + x_3 = 6$$

$$3x_1 - x_2 + x_3 = 11$$

$$x_1 + x_2 - x_3 = -3$$

> We have:

$$2x_1 - 4x_2 + x_3 = 6$$

$$5x_2 - \frac{1}{2}x_3 = 2$$

$$-\frac{6}{5}x_3 = -\frac{36}{5}$$

> Then we can solve x_3, x_2, x_1 by backward substitution:

$$x3 = (-\frac{36}{5})/(-\frac{6}{5}) = 6$$

$$x2 = (2 + (\frac{1}{2}) \times 6)/5 = 1$$

$$x1 = (66 + 4 \times 1)/2 = 2$$

Gaussian Elimination Algorithm

Algorithm 0.2: GE(
$$A[1\cdots n,1\cdots n],b[1\cdots n]$$
)

Append b to A as the last column

$$\begin{aligned} & \text{for } i \in \{1 \cdots n-1\} \\ & \text{do} \, \begin{cases} & \text{for } j \in \{i+1 \cdots n\} \\ & \text{do} \, \begin{cases} & \text{for } k \in \{j \cdots n\} \\ & \text{do for } A[j,k] = A[j,k] - \frac{A[i,k]A[j,i]}{A[i,i]} \end{cases} \end{aligned}$$

Backward Substitution Algorithm

Algorithm 0.3: $BS(A[1 \cdots n, 1 \cdots n+1])$

$$\begin{split} & \text{for } j \leftarrow \{n \cdots 1\} \\ & \text{do} \, \begin{cases} t \leftarrow 0 \\ & \text{for } k \leftarrow \{j+1 \cdots n\} \\ & \text{do } t \leftarrow t + A[j,k] \times x[k] \\ & x[j] \leftarrow (A[j,n+1]-t)/A[j,j) \end{cases} \end{split}$$

Solve Ax = b using Gaussian Elimination

- > To solve a linear system Ax = b: We will call GE(A,b) and then x = BS(A)
- \succ Time Complexity:

$$T(n) = n^{2} + (n-1)^{2} + \dots + (n-(n-1))^{2} = 1^{2} + 2^{2} + \dots + n^{2} \approx \frac{1}{3}n^{3} = \Theta(n^{3}).$$

More about Gaussian Elimination

 \succ Issues with Gaussian Elimination

- $\bullet\,$ The value of A[j,i]/A[i,i] is repetitively computed
- Small A[i, i] make the algorithm unstable (numerical errors), e.g., A[j, i]/A[i, i] will be too large to cause over flow.

 \succ Solution: pivoting: always select the largest A[i,i]

Better Gaussian Elimination Algorithm

```
Algorithm 0.4: GE(A[1 \cdots n, 1 \cdots n], b[1 \cdots n])
 Append b to A as the last column
 for i \in \{1 \cdots n - 1\}
             for j \in \{i+1 \cdots n\}
                do if |A[j,i]| > |A[pivot,i]|
               then pivot \leftarrow j
             for j \in \{i \cdots n+1\}
    do \{ do swap(A[i,k], A[pivot,k])
              for j \in \{i + 1 \cdots n + 1\}
                \begin{array}{l} \operatorname{do} \left\{ \begin{matrix} temp \leftarrow \frac{A[j,i]}{A[i,i]} \\ & \operatorname{for} k \in \{j \cdots n\} \\ & \operatorname{do} \operatorname{for} A[j,k] = A[j,k] - A[i,k] \times temp \end{matrix} \right. \end{array} \right.
```

Why Gaussian Elimination?

- \succ Solve linear equations Ax = b
- \succ *LU* decomposition
- ➤ Matrix inverse
- Compute Determinant

LU Decomposition

> LU decomposition (A = LU)

Decompose a matrix into two matrices: an upper triangular matrix and a lower triangular matrix

$$\begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ l_{21} & 1 & 0 \\ l_{31} & l_{32} & 1 \end{bmatrix} \begin{bmatrix} u_{11} & u_{12} & u_{13} \\ 0 & u_{22} & u_{23} \\ 0 & 0 & u_{33} \end{bmatrix}$$

- Gaussian elimination can be used to compute L (or U), which is then used to compute U (or L).
- > LU decomposition is good if you have different bs, i.e., $Ax = b \Rightarrow L(Ux) = b \Rightarrow Ux = b'$

Matrix Inverse

Compute Inversion

 A^{-1} of an invertible $n\times n$ matrix A. Recall that $AA^{-1}=I$

- We can use Gaussian elimination (Gauss-Jordan elimination to be precise) to compute inverse of a matrix.
- > Not all $n \times n$ matrices can be invertible. Such matrices are called singular.

Matrix Determinant

- \succ The determinant of a matrix A is denoted $\det A$ or |A|
- \succ When det $A \neq 0$, A is invertible.
- ➤ Example:

$$\det \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} = aei - afh - bdi + bfg + cdh - ceg$$

> Time complexity of a brute force algorithm? O(n!)

Matrix Determinant (cont.)

 \succ Using Gaussian elimination, and some properties of determinant:

- Interchanging two rows changes the sign of the determinant.
- Multiplying a row by a scalar multiplies the determinant by that scalar.
- Replacing any row by the sum of that row and any other row does NOT change the determinant.
- The determinant of a triangular matrix (upper or lower triangular) is the product of the diagonal elements.

➤ Example:

$$A = \begin{bmatrix} 5 & 3 \\ -4 & -2 \end{bmatrix} = 5 \cdot \begin{bmatrix} 1 & 0.6 \\ -4 & -2 \end{bmatrix} = 5 \begin{bmatrix} 1 & 0.6 \\ 0 & 0.4 \end{bmatrix}$$
$$D = x \text{ and } x/5 = 0.4 \Rightarrow x = 2$$