
CS483-10 Elementary Graph Algorithms &

Transform-and-Conquer

Instructor: Fei Li

Room 443 ST II

Office hours: Tue. & Thur. 1:30pm - 2:30pm or by appointments

lifei@cs.gmu.edu with subject: CS483

http://www.cs.gmu.edu/∼ lifei/teaching/cs483_fall07/

Based on Introduction to the Design and Analysis of Algorithms by Anany Levitin, Jyh-Ming Lien’s

notes, and Introduction to Algorithms by CLRS.
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Outline

➣ Depth-first Search – cont

➣ Topological Sort

➣ Transform-and-Conquer – Gaussian Elimination
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Depth-first Search (DFS)

➣ The correctness proof: Use an induction method

➣ The overall running time of DFS is O(|V |+ |E|).� The time initializing each vertex is O(|V |).� Each edge (u, v) ∈ E is examined twice, once exploring u and once

exploring v. Therefore takes O(|E|) time.
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Outline

➣ Depth-first Search – cont

➣ Topological Sort

➣ Transform-and-Conquer – Gaussian Elimination
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Topological Sort

➣ An application of DFS

➣ Input: a directed acyclic graph (DAG)

➣ Output: A linear ordering of all its vertices, such that if G contains an edge

(u, v), then, u appears before v in the ordering.
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Topological-Sort

Algorithm 0.1: TOPOLOGICAL-SORT(G(V, E))

Call DFS(G) to compute finishing times f [v] for each vertex v

As each vertex is finished, insert it onto the front of a linked list

return (the linked list of vertices)
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Outline

➣ Depth-first Search – cont

➣ Topological Sort

➣ Transform-and-Conquer – Gaussian Elimination
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Transform-and-Conquer

A problem is solved by a transformation

➣ To a simpler/more convenient instance of the same problem (instance

simplification )

- Ex: transforming unsorted to sorted

➣ To a different representation of the same instance (representation change )

- Ex: transforming list to tree, tree to balanced tree, ... , etc.

➣ To a different problem for which an algorithm is already available (problem

reduction )

- Ex: transforming multiplication to addition
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Transform-and-Conquer

➣ Instance Simplification

- Element uniqueness

- Mode (the most repeated element) of an array

- Searching for a value in an array

➣ Representation Change

- Gaussian elimination

- AVL tree, 2-3 tree

- Heap and heapsort

➣ Problem Reduction

- Least common multiple

- Paths in a graph - Linear programming (Chapter 10)
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Instance Simplification

➣ Find if a given array contains unique elements.

- What is the transform?

➣ Find the most repeated element.

- What is the transform?

➣ Search for a value in an array (including binary search).

- What is the transform?

➣ Quicksort

- What is the transform?
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Instance Simplification

➣ Find if a given array contains unique elements.

- What is the transform? Sorting

➣ Find the most repeated element.

- What is the transform? Sorting

➣ Search for a value in an array (including binary search).

- What is the transform? Sorting

➣ Quicksort

- What is the transform? Randomization

CS483 Design and Analysis of Algorithms 15 Lecture 09, September 27, 2007



Instance Simplification - Presorting

Instance Simplification: Solve a problem’s instance by transforming it into another

simpler/easier instance of the same problem.

➣ Presorting

Many problems involving lists are easier when list is sorted.� Searching� Computing the median (selection problem)� Checking if all elements are distinct (element uniqueness)

Also:� Topological sorting helps solving some problems for directed Acyclic

graphs (DAGs).� Presorting is used in many geometric algorithms.
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How Fast Can We Sort?

➣ Efficiency of algorithms involving sorting depends on efficiency of sorting.

➣ Theorem (see Sec. 11.2): ⌈log2 n!⌉ ≈ n log2 n comparisons are necessary

in the worst case to sort a list of size n by any comparison-based algorithm.

➣ Note: About n log2 n comparisons are also sufficient to sort array of size n

(by mergesort).
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Searching with Presorting

➣ Problem: Search for a given K in A[1...n]

➣ Presorting-based algorithm:

1. Sort the array by an efficient sorting algorithm

2. Apply binary search

➣ Efficiency: Θ(n log2 n) + O(log2 n) = Θ(n log2 n)

➣ Good or bad?

➣ Why do we have our dictionaries, telephone directories, etc. sorted?
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Searching with Presorting

➣ Problem: Search for a given K in A[1...n]

➣ Presorting-based algorithm:

1. Sort the array by an efficient sorting algorithm

2. Apply binary search

➣ Efficiency: Θ(n log2 n) + O(log2 n) = Θ(n log2 n)

➣ Good or bad?

➣ Why do we have our dictionaries, telephone directories, etc. sorted?

Cumulative cost is reduced .

M · n vs. n log2 n + M · log2 n, given M is large.
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Element Uniqueness with Presorting

➣ Brute force algorithm� Compare all pairs of elements� Efficiency: O(n2)

➣ Presorting-based algorithm

1. Sort by efficient sorting algorithm (e.g. mergesort)

2. Scan array to check pairs of adjacent elements

Efficiency: Θ(n log2 n) + O(n) = Θ(n log2 n)
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Transform-and-Conquer

➣ Instance Simplification

- Element uniqueness

- Mode (the most repeated element) of an array

- Searching for a value in an array

➣ Representation Change

- Gaussian elimination

- AVL tree, 2-3 tree

- Heap and heapsort

➣ Problem Reduction (Chapter 10)

- Least common multiple

- Paths in a graph - Linear programming
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Representation Change: Gaussian Elimination

Problem: Solve the linear system of a set of n linear equations and n variables.

➣ Example 1:

a11x + a12y = b1

a21x + a22y = b2
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Representation Change: Gaussian Elimination

Problem: Solve the linear system of a set of n linear equations and n variables.

➣ Example 1:

a11x + a12y = b1

a21x + a22y = b2

➣ Example 2:

a11x1 + a12x2 + · · ·+ a1nxn = b1

a21x1 + a22x2 + · · ·+ a2nxn = b2

.

.

.

an1x1 + an2x2 + · · ·+ annxn = bn
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Representation Change: Gaussian Elimination

➣ Given: A system of n linear equations in n unknowns with an arbitrary

coefficient matrix.

➣ Transform to: An equivalent system of n linear equations in n unknowns with

an upper triangular coefficient matrix.

➣ Solve the latter by substitutions starting with the last equation and moving up

to the first one.

➣ Base: If we add a multiple of one equation to another, the overall system of

equations remains equivalent.

a11x1 + a12x2 + · · ·+ a1nxn = b1 a′

11x1 + a′

12x2 + · · ·+ a′

1nxn = b′1

a21x1 + a22x2 + · · ·+ a2nxn = b2 a′

22x2 + · · ·+ a′

2nxn = b′2
.
.
.

.

.

.

an1x1 + an2x2 + · · ·+ annxn = bn a′

nnxn = b′n
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Transformation by Gaussian Elimination

The transformation is accomplished by a sequence of elementary operations on

the system’s coefficient matrix (which do not change the system’s solution):� for f ← 1 to n− 1 do

Replace each of the subsequent rows (i.e., rows i + 1, ..., n) by a difference

between that row and an appropriate multiple of the ith row to make the new

coefficient in the ith column of that row 0.
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Gaussian Elimination: Example

2x1 − 4x2 + x3 = 6

3x1 − x2 + x3 = 11

x1 + x2 − x3 = −3

2 −4 1 6

3 −1 1 11

1 1 −1 −3
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Gaussian Elimination: Example

2x1 − 4x2 + x3 = 6

3x1 − x2 + x3 = 11

x1 + x2 − x3 = −3

2 −4 1 6

3 −1 1 11 row 2− 3
2
× row 1

1 1 −1 −3 row 3− 1
2
× row 1

2 −4 1 6

0 5 − 1
2

2

0 3 − 3
2
−6
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Gaussian Elimination: Example

2x1 − 4x2 + x3 = 6

3x1 − x2 + x3 = 11

x1 + x2 − x3 = −3

2 −4 1 6

3 −1 1 11 row 2− 3
2
× row 1

1 1 −1 −3 row 3− 1
2
× row 1

2 −4 1 6

0 5 − 1
2

2

0 3 − 3
2
−6 row 3− 3

5
× row 2

2 −4 1 6

0 5 − 1
2

2

0 0 − 6
5
− 36

5
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Gaussian Elimination: Example

➣ We have:
2x1 − 4x2 + x3 = 6

5x2 −
1
2
x3 = 2

− 6
5
x3 = − 36

5

➣ Then we can solve x3, x2, x1 by backward substitution:

x3 = (− 36
5

)/(− 6
5
) = 6

x2 = (2 + ( 1
2
)× 6)/5 = 1

x1 = (66 + 4× 1)/2 = 2
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Gaussian Elimination Algorithm

Algorithm 0.2: GE(A[1 · · ·n, 1 · · ·n], b[1 · · ·n])

Append b to A as the last column

for i ∈ {1 · · ·n− 1}

do















for j ∈ {i + 1 · · ·n}

do







for k ∈ {j · · ·n}

do for A[j, k] = A[j, k]− A[i,k]A[j,i]
A[i,i]
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Backward Substitution Algorithm

Algorithm 0.3: BS(A[1 · · ·n, 1 · · ·n + 1])

for j ← {n · · · 1}

do



























t← 0

for k ← {j + 1 · · ·n}

do t← t + A[j, k]× x[k]

x[j]← (A[j, n + 1]− t)/A[j, j]
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Solve Ax = b using Gaussian Elimination

➣ To solve a linear system Ax = b: We will call GE(A,b) and then x = BS(A)

➣ Time Complexity:

T (n) = n2 + (n− 1)2 + · · ·+ (n− (n− 1))2 =

12 + 22 + · · ·+ n2 ≈ 1
3n3 = Θ(n3).
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More about Gaussian Elimination

➣ Issues with Gaussian Elimination� The value of A[j, i]/A[i, i] is repetitively computed� Small A[i, i] make the algorithm unstable (numerical errors), e.g.,

A[j, i]/A[i, i] will be too large to cause over flow.

➣ Solution: pivoting: always select the largest A[i, i]
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Better Gaussian Elimination Algorithm

Algorithm 0.4: GE(A[1 · · ·n, 1 · · ·n], b[1 · · ·n])

Append b to A as the last column

for i ∈ {1 · · ·n− 1}

do

8

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

:

for j ∈ {i + 1 · · ·n}

do if |A[j, i]| > |A[pivot, i]|

then pivot← j

for j ∈ {i · · ·n + 1}

do swap(A[i, k], A[pivot, k])

for j ∈ {i + 1 · · ·n + 1}

do

8

>

>

<

>

>

:

temp←
A[j,i]
A[i,i]

for k ∈ {j · · ·n}

do for A[j, k] = A[j, k]−A[i, k]× temp
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Why Gaussian Elimination?

➣ Solve linear equations Ax = b

➣ LU decomposition

➣ Matrix inverse

➣ Compute Determinant
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LU Decomposition

➣ LU decomposition (A = LU )

Decompose a matrix into two matrices: an upper triangular matrix and a lower

triangular matrix









a b c

d e f

g h i









=









1 0 0

l21 1 0

l31 l32 1

















u11 u12 u13

0 u22 u23

0 0 u33









➣ Gaussian elimination can be used to compute L (or U), which is then used to

compute U (or L).

➣ LU decomposition is good if you have different bs, i.e.,

Ax = b⇒ L(Ux) = b⇒ Ux = b′
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Matrix Inverse

➣ Compute Inversion

A−1 of an invertible n× n matrix A. Recall that AA−1 = I

➣ We can use Gaussian elimination (Gauss-Jordan elimination to be precise) to

compute inverse of a matrix.

➣ Not all n× n matrices can be invertible. Such matrices are called singular.
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Matrix Inverse

Example:




1 2

3 4



A−1 =





1 0

0 1









1 2

0 −2



A−1 =





1 0

−3 1









1 0

0 −2



A−1 =





−2 1

−3 1









1 0

0 1



A−1 =





−2 1

3/2 −1/2




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Matrix Determinant

➣ The determinant of a matrix A is denoted detA or |A|

➣ When detA 6= 0, A is invertible.

➣ Example:

det

2

6

6

4

a b c

d e f

g h i

3

7

7

5

= aei− afh− bdi + bfg + cdh− ceg

➣ Time complexity of a brute force algorithm? O(n!)
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Matrix Determinant (cont.)

➣ Using Gaussian elimination, and some properties of determinant:� Interchanging two rows changes the sign of the determinant.� Multiplying a row by a scalar multiplies the determinant by that scalar.� Replacing any row by the sum of that row and any other row does NOT change the

determinant.� The determinant of a triangular matrix (upper or lower triangular) is the product of the

diagonal elements.

➣ Example:

A =

2

4

5 3

−4 −2

3

5 = 5 ·

2

4

1 0.6

−4 −2

3

5 = 5

2

4

1 0.6

0 0.4

3

5

D = x and x/5 = 0.4⇒ x = 2
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