CS483-09 Elementary Graph Algorithms

Instructor: Fei Li

Room 443 ST II

Office hours: Tue. & Thur. 1:30pm - 2:30pm or by appointments

lifei@cs.gmu.edu with subject: CS483

http://www.cs.gmu.edu/~ lifei/teaching/cs483_fall07/

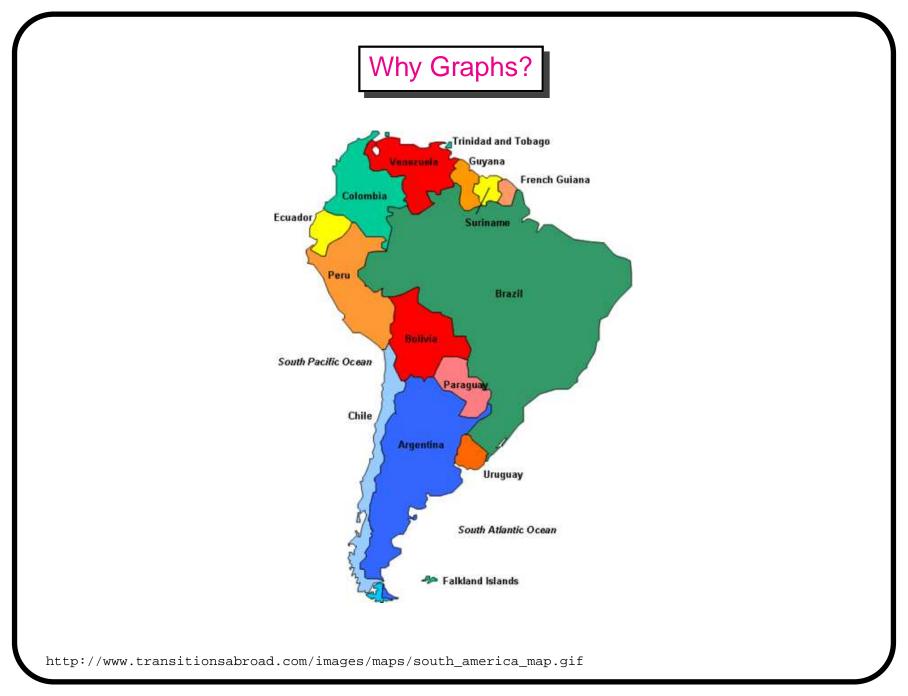
Based on "Introduction to Algorithms" by T. Cormen, C. Leiserson, R. Rivest, and C. Stein and

"Algorithms" by S. Dasgupta, C. Papadimitriou, and U. Vazirani.

Outline

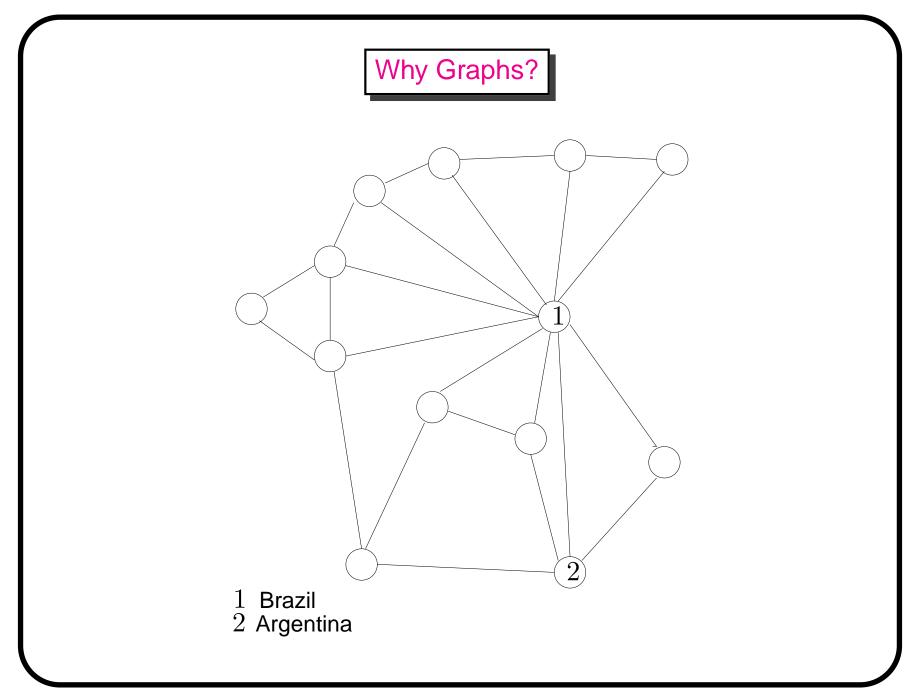
Representation of Graphs

- Breath-first Search
- Depth-first Search
- ➤ Topological Sort

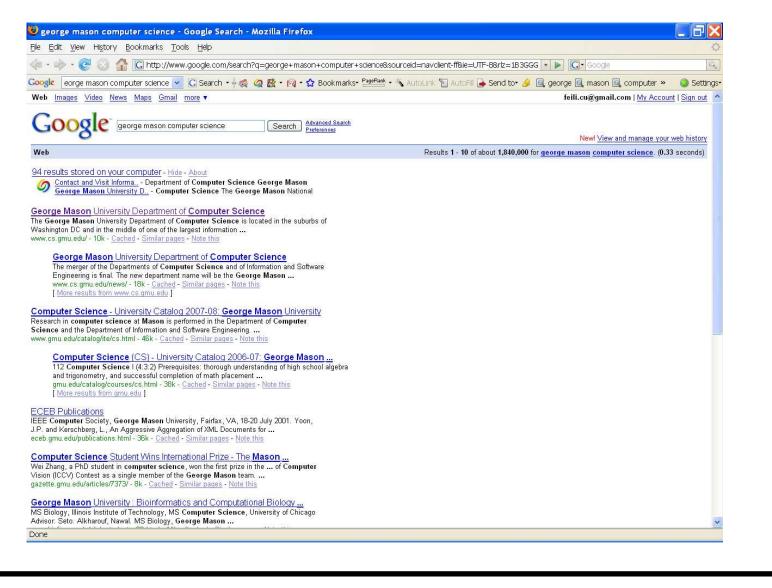


CS483 Design and Analysis of Algorithms

Lecture 09, September 25, 2007

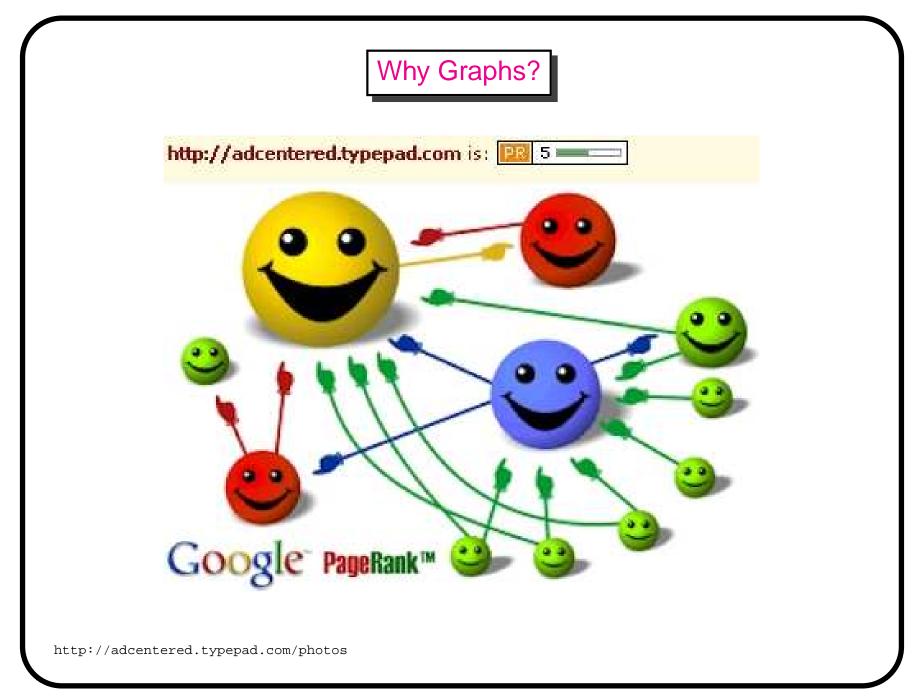


Why Graphs?



CS483 Design and Analysis of Algorithms

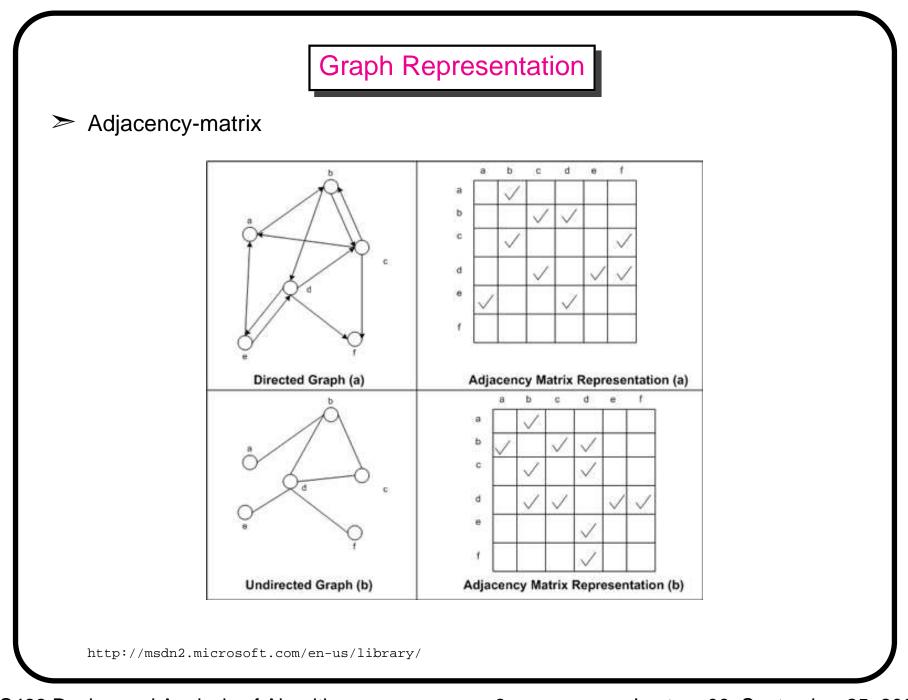
Lecture 09, September 25, 2007



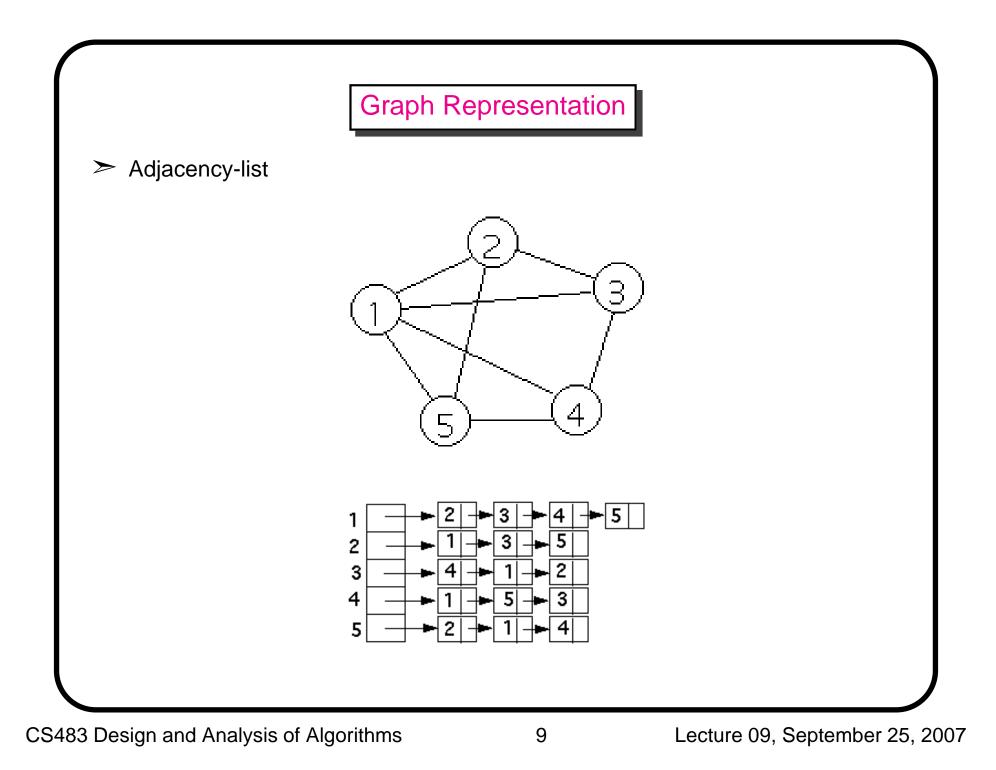
CS483 Design and Analysis of Algorithms

Graphs

- > A graph G = (V, E) is specified by a set of vertices (nodes) V and edges E between selected pairs of vertices.
- Edges are symmetric undirected graph
- Directions over edges directed graph
- > Examples: political maps, exam conflicts, World Wide Web, etc.



CS483 Design and Analysis of Algorithms



Graph Traversal is Important

Exploring a graph is rather like navigating a maze.

Which parts of the graph are reachable from a given vetex?

http://www.sheffordtown.co.uk/maze/index.html

Outline

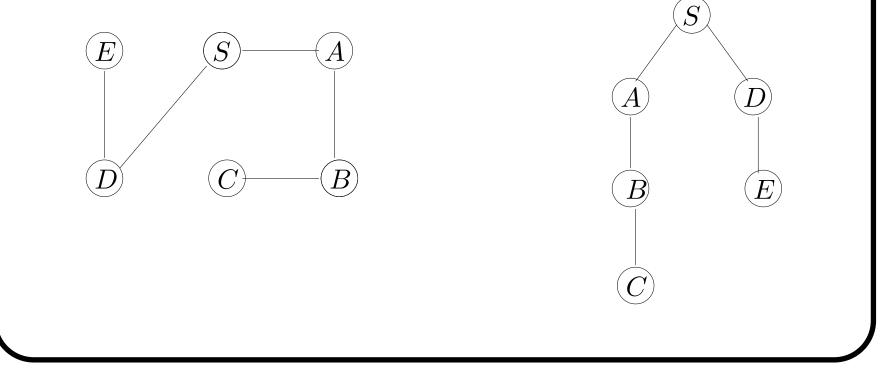
Representation of Graphs

- Breath-first Search
- Depth-first Search
- ➤ Topological Sort

Breath-first Search (BFS)

BFS

- 1. Identifies all the vertices of a graph that can be reached from a designated starting point, and
- 2. Finds explict paths via a depth-first search tree.



Breath-first Search (BFS)

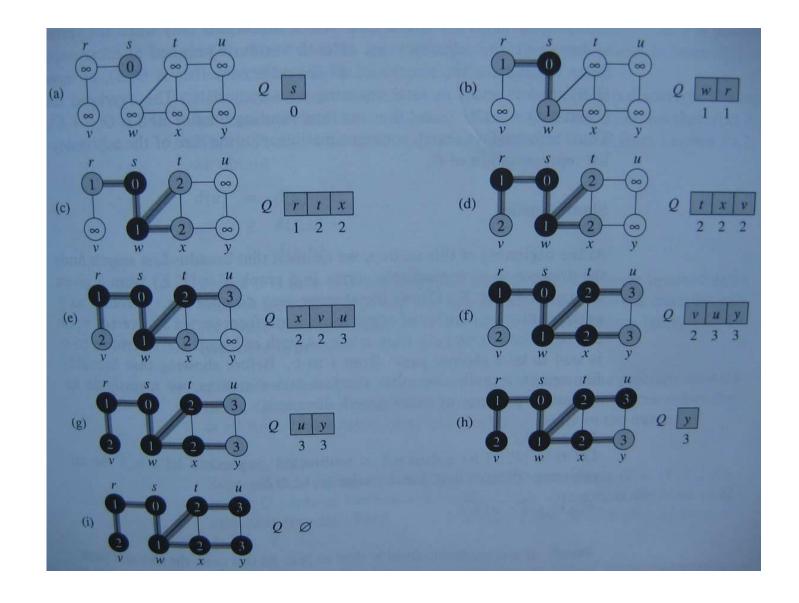
Input: Graph G=(V,E), directed or undirected; vertex $s\in V$

Output: For all vertices u reachable from $s,\,d(u)$ is set to the distance from s to u

Intuition: Proceed layer by layer

Algorithm 0.1: BFS(G, s)

for $\forall u \in V$ $d(u) = \infty$ d(s) = 0Q = [s]while $Q \neq \emptyset$ $\int u = \operatorname{Pop}\left(Q\right)$ for $(u,v) \in E$ $\begin{cases} \left\{ \begin{aligned} & \text{if } d(v) = \infty \\ & \\ & \text{then } \begin{cases} & \text{Push } (Q, v) \\ & d(v) = d(u) + 1 \end{aligned} \right. \end{aligned}$



CS483 Design and Analysis of Algorithms

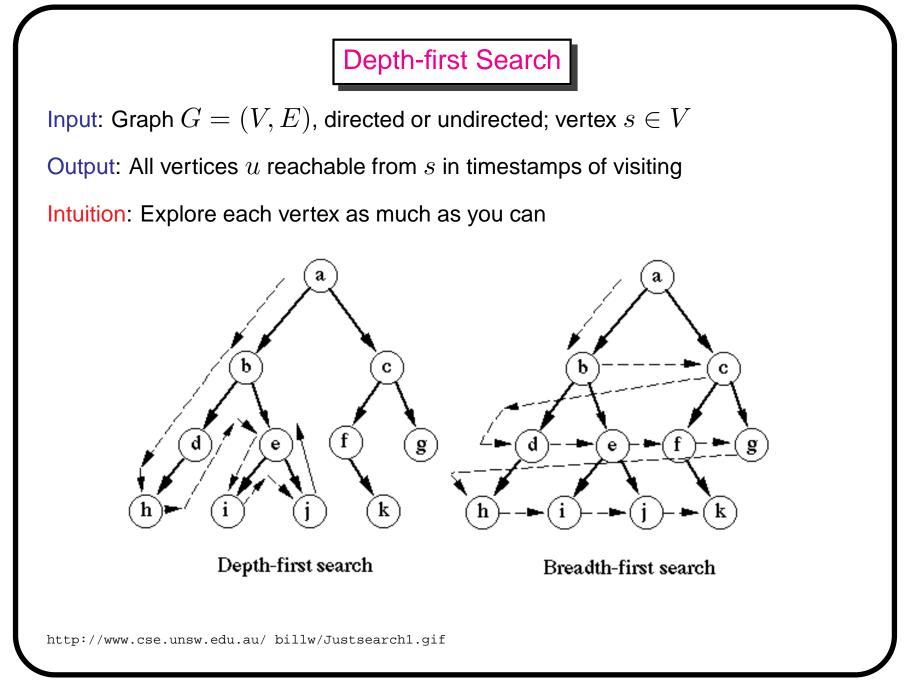
Lecture 09, September 25, 2007

Breath-first Search (BFS)

- ➤ The correctness proof: Use an induction method
- > The overall running time of BFS is O(|V| + |E|).
 - Each vertex is put on the queue exactly once, when it is first encountered, so there are $2 \cdot |V|$ queue operations.
 - Over the course of execution, this loop looks at each edge once (in directed graphs) or twice (in undirected graphs), and therefore takes O(|E|) time.

Outline

- Representation of Graphs
- Breath-first Search
- Depth-first Search
- ➤ Topological Sort



CS483 Design and Analysis of Algorithms

Depth-first Search (DFS)

 $\pi[u]$: the parent of a node u.

 $time[\boldsymbol{u}]:$ timestamp when \boldsymbol{u} is first discovered.

```
Algorithm 0.2: DFS(G(V, E))
 for each vertex u \in V(G)
    \mathbf{do} \operatorname{color}[u] \gets \operatorname{WHITE}
        \pi[u] \gets \mathsf{NIL}
 time \leftarrow 0
 for each vertex u \in V(G)
    \operatorname{do}\operatorname{if}\operatorname{color}[u]=\operatorname{WHITE}
    then DFS-VISIT(u)
```

```
Algorithm 0.3: DFS-VISIT(u)
```

```
\operatorname{color}[u] \gets \operatorname{GRAY}
//White vertex u has just been discovered.
d[u] \gets \mathsf{time} \ \gets \mathsf{time} \ + 1
for each v \in \operatorname{Adj}[u]
//Explore edge (u, v).
       do if \operatorname{color}[v] = \operatorname{WHITE}
      then \pi(u) \leftarrow u
  DFS-VISIT(v)
\operatorname{color}[u] \gets \operatorname{BLACK}
//Blacken u; it is finished.
d[u] \leftarrow \mathsf{time} \leftarrow \mathsf{time} + 1
```

