CS483-07 Divide and Conquer

Instructor: Fei Li
Room 443 ST I
Office hours: Tue. & Thur. 1:30pm - 2:30pm or by appointments
lifei@cs.gmu.edu with subject: CS483
http://www.cs.gmu.edu/~ lifei/teaching/cs483 fallo07/

This lecture note is based on notes by Anany Levitin and Jyh-Ming Lian.

CS483 Design and Analysis of Algorithms 1 Lecture 07, September 18, 2007

| Announcements I

= QOctober 9: no class. Oct. 8th is Columbus Day recess.
= Review class: October 11.
= Midterm is scheduled on October 16, 2007

= Today’s lecture: Divide and Conquer (cont’)
1. Quicksort
2. Binary search
3. Binary tree traversal

4. Strassen’s matrix multiplication

_ J

CS483 Design and Analysis of Algorithms 2 Lecture 07, September 18, 2007

| General Divide-and-Conquer Recurrence I

= Problem size: n. Divide the problems into b smaller instances; a of them

need to be solved. f(n) is the time spent on dividing and merging.

T(n) =aT(n/b) + f(n).
> Master Theorem: If f(n) € ©(n?), where d > 0, then
O(nd) if a < b4
T(n) =4 O(nlogn) ifa = b?
O(nloge) if a > b?

_

J

CS483 Design and Analysis of Algorithms 3 Lecture 07, September 18, 2007

| Sorting Problem I

= Given an array of n numbers, sort the elements in non-decreasing order.
= Input: An array A[1, ..., n| of numbers

= Output: An array A[l, ..., n] of sorted numbers

_

J

CS483 Design and Analysis of Algorithms 4 Lecture 07, September 18, 2007

| Mergesort - Algorithm I

= Given an array of n numbers, sort the elements in non-decreasing order.

Algorithm 0.1: MERGESORT(A[L,...n])

ifn=1

then return (A)
(B AL [2])
C— A[[2]--n
else ¢ MergeSort(B)
MergeSort(C)

Merge(B,C, A)

_ J

CS483 Design and Analysis of Algorithms 5 Lecture 07, September 18, 2007

| Mergesort - Algorithm I

= Merge two sorted arrays, I3 and C' and put the result in A
Algorithm 0.2: MerGe(BI[1,...p],C[1,...q], A[L,---p+q))

1—1;7 1
fork € {1,2,...p+q—1}
if B[i] < C[j]
do then Alk] = Bli];i «— i+ 1
else A[k] = C[jlsj — j+1

_ J

CS483 Design and Analysis of Algorithms 6 Lecture 07, September 18, 2007

| Mergesort - Analysis I

™ All cases have same time efficiency: ©(nlog, n)

Tmerge (TL) = n — 1

T(n)=2T(n/2)+n—-1, Vn>1, T(1)=0

= Number of comparisons in the worst case is close to theoretical minimum for

comparison-based sorting: [log, n!| ~ nlog,n — 1.44n

= Space requirement: @(n) (not in-place) (In-place: The number are
rearranged within the array.)

= Can be implemented without recursion?

= |s this algorithm Mergesort stable? (Stable: the output perserves the

input order of equal elements.)

_ J

CS483 Design and Analysis of Algorithms 7 Lecture 07, September 18, 2007

4)

| Quicksort - Algorithm I

= Given an array of n numbers, sort the element in non-decreasing order.

Algorithm 0.3: QuicksoRT(A[l - - - n])

ifn=1
then return (A)
(Create two arrays B,C
fori € {2,3,...n}
if Ali] < A[1]
do then B «— A[i]
else C' — Ali]
Quicksort(B)
Quicksort(C)
A — (B, Al1],0)

else

\> A[l] is chosen as the pivot. In general, any number can be the pivot.)

CS483 Design and Analysis of Algorithms 8 Lecture 07, September 18, 2007

= Example: 24, 11, 91, 10, 22, 32, 22, 3, 7, 99

= Is this algorithm Quicksort stable?

_

CS483 Design and Analysis of Algorithms 9

J

Lecture 07, September 18, 2007

-

| Quicksort - Algorithm I

B> Quicksort allows fast “in-place partition”. Consider large files (n > 10000).

Algorithm 0.4: PARTITION(A[a - - - b])

p — Ald]

t—a+1;5<0b

repeat

(while A[i] < p
doi«—1i+1

while A[j] > p
doje—yj—1

ifi <j

| then swap (A[i], A[j])

until ¢ > j

swap (Ala], Alj])

_

CS483 Design and Analysis of Algorithms 10

J

Lecture 07, September 18, 2007

_ J

Example: 5,7, 3, 2,8, 3, 6.

CS483

Design and Analysis of Algorithms 11 Lecture 07, September 18, 2007

_

| Quicksort - Analysis I

> Best case: split in the middle — O(nlogn).

T(n)=2T(n/2)+ O(n).

B Worst case: sorted array! — ©(n?).

T(n)=T(n—1)+ 6(n).
> Average case: random arrays — ©(n log n)
™ Improvements (these combine to 20 — 25% improvement):
1. Better pivot selection: median of three partitioning

2. Switch to insertion sort on small subfiles.

3. Elimination of recursion.

J

CS483

Design and Analysis of Algorithms 12 Lecture 07, September 18, 2007

you do?

= Binary Search:

_

| Binary Search I

> Imagine that you are placed in an unknown building and you are given a room
number (say STII, 443), you need to find your CS 483 instructor. What will

e Very efficient algorithm for searching in sorted array
Example: find 70 in {3, 14, 27, 31, 39, 42, 55, 70, 74, 81, 85, 93, 98}

~

J

CS483 Design and Analysis of Algorithms

13

Lecture 07, September 18, 2007

_

| Binary Search - Algorithm I

= Given a sorted array A of n numbers, find a key K in A

J

CS483 Design and Analysis of Algorithms

14

Lecture 07, September 18, 2007

Algorithm 0.5: BINARYSEARCH(A[L - - - n], K)

a—1;b—n

whilea < b
(
m o |45
if K = A[m)|
return (m
do (m)

else if K < A[m]

b—m-—1

elsea<— m+1

return (—1)

_

J

CS483 Design and Analysis of Algorithms

15

Lecture 07, September 18, 2007

| Binary Search - Analysis I

= Tworst (n)

Tworst(n) = Tworst(t”/zj)"'l = O(logy n), forn > 1, Tyerst(1) = 1.

= Tbest (n)
1
= Tuug(n)

©(logy n).

_

J

CS483 Design and Analysis of Algorithms

16

Lecture 07, September 18, 2007

-

| Binary Tree I

= In a binary tree, each node has zero or two nodes.

o
I
— & 3
(73 (5)
Past {\}
o -

(2) (8) (9)
e o

= Compute the height of a given binary tree T’

_

J

CS483 Design and Analysis of Algorithms 17 Lecture 07, September 18, 2007

Algorithm 0.6: HeIGHT(T))

if T'= (return (—1)
else return (max{Height(Tr), Height(Tr)} + 1)

_

J

CS483 Design and Analysis of Algorithms 18 Lecture 07, September 18, 2007

| Binary Tree Traversals I

= 3 classical traversals
e Preorder traversals: root — left subtree — right subtree
e Inorder traversals: left subtree — root — right subtree

e Postorder traversals: left subtree — right subtree — root

= Example: page 142.

_

J

CS483 Design and Analysis of Algorithms 19 Lecture 07, September 18, 2007

| Integer Multiplication I

= What is the time complexity of multiplying two integers using the algorithms we

learned in elementary schools?
Example: how do you compute this: 12345 x 67890?
n? digit multiplication 4 7 addition
= |s there a better way of multiplying two integers, in terms of reducing the number of
multiplication?

Carl Friedrich Gauss (1777-1855) discovered that

AB = (a10% +b)(c10% + d) = K»10™ + K110% + Ko, where K5 = ac,
Ko=bd, K1 =(a+b)(c+d)— (Ko+ K2).

Example: how do you compute this: 12345 x 67890?

_

J

CS483 Design and Analysis of Algorithms 20 Lecture 07, September 18, 2007

-

| Integer Multiplication I

= Divide-and-conquer integer multiplication

Algorithm 0.7 M(A[1---n], B[1---n])

ifn=1

then return (A[1]B[1])

ra(_A[l...%]’lﬂ_A[%_i_l...n]
c<—B[1---%],d<—B[%—|—1---n]
Ky «— M(a,c)
else
KO — M(bv d)
K1 <—M(a+b,c—|—d) — (K0+K2)
[return (K210™ + K1102 + Ko)
CS483 Design and Analysis of Algorithms 21 Lecture 07, September 18, 2007

_

= What is the time complexity?

| Integer Multiplication I

First we formulate the time complexity as: T'(n) = 37'(5) + O(n).

Using Master Theorem, we have a = 3, b = 2 and d = 1. So,
T(n) = ©(n'°e23) ~ O(n'")

J

CS483 Design and Analysis of Algorithms 22 Lecture 07, September 18, 2007

_

4)

Strassen’s Matrix Multiplication:

| Matrix Multiplication I

Cui Ci2 | | Au An2 Bi1 Aiz
Co1 Co2 A1 Aoz Ba1 Bag

| m1+mgqg—ms5+m7 m3 +ms
mo + my mi1 + m3 — ma + Mg

e my = (A11 + A22)(B11 + Ba22)
o my = (A21 + A22)B11
e m3 = A11(B12 — B22)
e my = Az2(B21 — B11)
o m5 = (A11 + A12)B22
e mg = (A21 — A11)(B11 + Bi2)
e my = (A12 — A22)(B21 + B22)

J

CS483

Design and Analysis of Algorithms 23 Lecture 07, September 18, 2007

_

| Matrix Multiplication I

= What is the time complexity?
T(n)="17T(5)+O(n)
Using Master Theorem, we havea = 7, b =4 and d = 1.
So, T'(n) = O(n'°827) ~ O(n??¥)
= Do you still remember what the time complexity of the brute-force algorithm
is?

O(n?)

J

CS483

Design and Analysis of Algorithms 24 Lecture 07, September 18, 2007

| Summary of Sorting Algorithms I

Algorithm Time Notes

selection-sort | O(n?) in-place. slow (good for
small inputs)

insertion-sort | O(n?) in-place. slow (good for
small inputs)

quick-sort expected O(n log n) in-place, randomized,

fastest (good for large

inputs)

merge-sort O(nlogn) sequential data access.

fast (good for huge inputs)

_ J

CS483 Design and Analysis of Algorithms 25 Lecture 07, September 18, 2007

