
CS483-07 Divide and Conquer

Instructor: Fei Li

Room 443 ST II

Office hours: Tue. & Thur. 1:30pm - 2:30pm or by appointments

lifei@cs.gmu.edu with subject: CS483

http://www.cs.gmu.edu/∼ lifei/teaching/cs483_fall07/

This lecture note is based on notes by Anany Levitin and Jyh-Ming Lian.

CS483 Design and Analysis of Algorithms 1 Lecture 07, September 18, 2007

Announcements

➣ October 9: no class. Oct. 8th is Columbus Day recess.

➣ Review class: October 11.

➣ Midterm is scheduled on October 16, 2007

➣ Today’s lecture: Divide and Conquer (cont’)

1. Quicksort

2. Binary search

3. Binary tree traversal

4. Strassen’s matrix multiplication

CS483 Design and Analysis of Algorithms 2 Lecture 07, September 18, 2007

General Divide-and-Conquer Recurrence

➣ Problem size: n. Divide the problems into b smaller instances; a of them

need to be solved. f(n) is the time spent on dividing and merging.

T (n) = aT (n/b) + f(n).

➣ Master Theorem: If f(n) ∈ Θ(nd), where d ≥ 0, then

T (n) =

⎧⎪⎪⎨
⎪⎪⎩

Θ(nd) if a < bd

Θ(nd log n) if a = bd

Θ(nlog
b

a) if a > bd

CS483 Design and Analysis of Algorithms 3 Lecture 07, September 18, 2007

Sorting Problem

➣ Given an array of n numbers, sort the elements in non-decreasing order.

➣ Input: An array A[1, . . . , n] of numbers

➣ Output: An array A[1, . . . , n] of sorted numbers

CS483 Design and Analysis of Algorithms 4 Lecture 07, September 18, 2007

Mergesort - Algorithm

➣ Given an array of n numbers, sort the elements in non-decreasing order.

Algorithm 0.1: MERGESORT(A[1, . . . n])

if n = 1

then return (A)

else

8>>>>>>><
>>>>>>>:

B ← A[1 · · · �n

2
�]

C ← A[�n

2
� · · ·n]

MergeSort(B)

MergeSort(C)

Merge(B, C, A)

CS483 Design and Analysis of Algorithms 5 Lecture 07, September 18, 2007

Mergesort - Algorithm

➣ Merge two sorted arrays, B and C and put the result in A

Algorithm 0.2: MERGE(B[1, . . . p], C[1, . . . q], A[1, · · · p + q])

i← 1; j ← 1

for k ∈ {1, 2, . . . p + q − 1}

do

⎧⎪⎪⎨
⎪⎪⎩

if B[i] < C[j]

then A[k] = B[i]; i← i + 1

else A[k] = C[j]; j ← j + 1

CS483 Design and Analysis of Algorithms 6 Lecture 07, September 18, 2007

Mergesort - Analysis

➣ All cases have same time efficiency: Θ(n log2 n)

Tmerge(n) = n− 1.

T (n) = 2T (n/2) + n− 1, ∀n > 1, T (1) = 0

➣ Number of comparisons in the worst case is close to theoretical minimum for

comparison-based sorting: �log2 n!� ≈ n log2 n− 1.44n

➣ Space requirement: Θ(n) (not in-place) (In-place: The number are

rearranged within the array.)

➣ Can be implemented without recursion?

➣ Is this algorithm Mergesort stable? (Stable: the output perserves the

input order of equal elements.)

CS483 Design and Analysis of Algorithms 7 Lecture 07, September 18, 2007

Quicksort - Algorithm

➣ Given an array of n numbers, sort the element in non-decreasing order.

Algorithm 0.3: QUICKSORT(A[1 · · ·n])

if n = 1

then return (A)

else

8>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:

Create two arrays B,C

for i ∈ {2, 3, . . . n}

do

8>><
>>:

if A[i] < A[1]

then B ← A[i]

else C ← A[i]

Quicksort(B)

Quicksort(C)

A← (B, A[1], C)

➣ A[1] is chosen as the pivot. In general, any number can be the pivot.

CS483 Design and Analysis of Algorithms 8 Lecture 07, September 18, 2007

➣ Example: 24, 11, 91, 10, 22, 32, 22, 3, 7, 99

➣ Is this algorithm Quicksort stable?

CS483 Design and Analysis of Algorithms 9 Lecture 07, September 18, 2007

Quicksort - Algorithm

➣ Quicksort allows fast “in-place partition”. Consider large files (n ≥ 10000).

Algorithm 0.4: PARTITION(A[a · · · b])

p← A[a]

i← a + 1; j ← b

repeat8>>>>>>>>>><
>>>>>>>>>>:

while A[i] < p

do i← i + 1

while A[j] > p

do j ← j − 1

if i < j

then swap (A[i],A[j])

until i ≥ j

swap (A[a], A[j])

CS483 Design and Analysis of Algorithms 10 Lecture 07, September 18, 2007

Example: 5, 7, 3, 2, 8, 3, 6.

CS483 Design and Analysis of Algorithms 11 Lecture 07, September 18, 2007

Quicksort - Analysis

➣ Best case: split in the middle – Θ(n log n).

T (n) = 2T (n/2) + Θ(n).

➣ Worst case: sorted array! – Θ(n2).

T (n) = T (n− 1) + Θ(n).

➣ Average case: random arrays – Θ(n log n)

➣ Improvements (these combine to 20− 25% improvement):

1. Better pivot selection: median of three partitioning

2. Switch to insertion sort on small subfiles.

3. Elimination of recursion.

CS483 Design and Analysis of Algorithms 12 Lecture 07, September 18, 2007

Binary Search

➣ Imagine that you are placed in an unknown building and you are given a room

number (say STII, 443), you need to find your CS 483 instructor. What will

you do?

➣ Binary Search:

� Very efficient algorithm for searching in sorted array

Example: find 70 in {3, 14, 27, 31, 39, 42, 55, 70, 74, 81, 85, 93, 98}

CS483 Design and Analysis of Algorithms 13 Lecture 07, September 18, 2007

Binary Search - Algorithm

➣ Given a sorted array A of n numbers, find a key K in A

CS483 Design and Analysis of Algorithms 14 Lecture 07, September 18, 2007

Algorithm 0.5: BINARYSEARCH(A[1 · · ·n], K)

a← 1; b← n

while a < b

do

8>>>>>>>>>>><
>>>>>>>>>>>:

m← � a+b

2
�

if K = A[m]

return (m)

else if K < A[m]

b← m− 1

else a← m + 1

return (−1)

CS483 Design and Analysis of Algorithms 15 Lecture 07, September 18, 2007

Binary Search - Analysis

➣ Tworst(n)

Tworst(n) = Tworst(�n/2)+1 = Θ(log2 n), for n > 1, Tworst(1) = 1.

➣ Tbest(n)

1

➣ Tavg(n)

Θ(log2 n).

CS483 Design and Analysis of Algorithms 16 Lecture 07, September 18, 2007

Binary Tree

➣ In a binary tree, each node has zero or two nodes.

➣ Compute the height of a given binary tree T

CS483 Design and Analysis of Algorithms 17 Lecture 07, September 18, 2007

Algorithm 0.6: HEIGHT(T)

if T = ∅ return (−1)

else return (max{Height(TL),Height(TR)}+ 1)

CS483 Design and Analysis of Algorithms 18 Lecture 07, September 18, 2007

Binary Tree Traversals

➣ 3 classical traversals

� Preorder traversals: root→ left subtree→ right subtree

� Inorder traversals: left subtree→ root→ right subtree

� Postorder traversals: left subtree→ right subtree→ root

➣ Example: page 142.

CS483 Design and Analysis of Algorithms 19 Lecture 07, September 18, 2007

Integer Multiplication

➣ What is the time complexity of multiplying two integers using the algorithms we

learned in elementary schools?

Example: how do you compute this: 12345× 67890?

n2 digit multiplication + n addition

➣ Is there a better way of multiplying two integers, in terms of reducing the number of

multiplication?

Carl Friedrich Gauss (1777-1855) discovered that

AB = (a10
n

2 + b)(c10
n

2 + d) = K210n + K110
n

2 + K0, where K2 = ac,

K0 = bd, K1 = (a + b)(c + d)− (K0 + K2).

Example: how do you compute this: 12345× 67890?

CS483 Design and Analysis of Algorithms 20 Lecture 07, September 18, 2007

Integer Multiplication

➣ Divide-and-conquer integer multiplication

Algorithm 0.7: M(A[1 · · ·n], B[1 · · ·n])

if n = 1

then return (A[1]B[1])

else

8>>>>>>>>>><
>>>>>>>>>>:

a← A[1 · · · n

2
], b← A[n

2
+ 1 · · ·n]

c← B[1 · · · n

2
], d← B[n

2
+ 1 · · ·n]

K2 ←M(a, c)

K0 ←M(b, d)

K1 ←M(a + b, c + d)− (K0 + K2)

return (K210n + K110
n

2 + K0)

CS483 Design and Analysis of Algorithms 21 Lecture 07, September 18, 2007

Integer Multiplication

➣ What is the time complexity?

First we formulate the time complexity as: T (n) = 3T (n
2
) + O(n).

Using Master Theorem, we have a = 3, b = 2 and d = 1. So,

T (n) = Θ(nlog
2
3) ≈ Θ(n1.6)

CS483 Design and Analysis of Algorithms 22 Lecture 07, September 18, 2007

Matrix Multiplication

Strassen’s Matrix Multiplication:

2
4 C11 C12

C21 C22

3
5 =

2
4 A11 A12

A21 A22

3
5

2
4 B11 A12

B21 B22

3
5

=

2
4 m1 + m4 −m5 + m7 m3 + m5

m2 + m4 m1 + m3 −m2 + m6

3
5

� m1 = (A11 + A22)(B11 + B22)

� m2 = (A21 + A22)B11

� m3 = A11(B12 −B22)

� m4 = A22(B21 −B11)

� m5 = (A11 + A12)B22

� m6 = (A21 − A11)(B11 + B12)

� m7 = (A12 − A22)(B21 + B22)

CS483 Design and Analysis of Algorithms 23 Lecture 07, September 18, 2007

Matrix Multiplication

➣ What is the time complexity?

T (n) = 7T (n
2
) + O(n)

Using Master Theorem, we have a = 7, b = 4 and d = 1.

So, T (n) = Θ(nlog
2
7) ≈ Θ(n2.8)

➣ Do you still remember what the time complexity of the brute-force algorithm

is?

O(n3)

CS483 Design and Analysis of Algorithms 24 Lecture 07, September 18, 2007

Summary of Sorting Algorithms

Algorithm Time Notes

selection-sort O(n2) in-place. slow (good for

small inputs)

insertion-sort O(n2) in-place. slow (good for

small inputs)

quick-sort expected O(n log n) in-place, randomized,

fastest (good for large

inputs)

merge-sort O(n log n) sequential data access.

fast (good for huge inputs)

CS483 Design and Analysis of Algorithms 25 Lecture 07, September 18, 2007

