CS483-07 Divide and Conquer

Instructor: Fei Li

Room 443 ST II
Office hours: Tue. \& Thur. 1:30pm - 2:30pm or by appointments
lifei@cs.gmu.edu with subject: CS483
http://www.cs.gmu.edu/~ lifei/teaching/cs483_fall07/

This lecture note is based on notes by Anany Levitin and Jyh-Ming Lian.

Announcements

- October 9: no class. Oct. 8th is Columbus Day recess.
- Review class: October 11.
- Midterm is scheduled on October 16, 2007
- Today's lecture: Divide and Conquer (cont')

1. Quicksort
2. Binary search
3. Binary tree traversal
4. Strassen's matrix multiplication

General Divide-and-Conquer Recurrence

- Problem size: n. Divide the problems into b smaller instances; a of them need to be solved. $f(n)$ is the time spent on dividing and merging.

$$
T(n)=a T(n / b)+f(n)
$$

- Master Theorem: If $f(n) \in \Theta\left(n^{d}\right)$, where $d \geq 0$, then

$$
T(n)= \begin{cases}\Theta\left(n^{d}\right) & \text { if } a<b^{d} \\ \Theta\left(n^{d} \log n\right) & \text { if } a=b^{d} \\ \Theta\left(n^{\log _{b} a}\right) & \text { if } a>b^{d}\end{cases}
$$

Sorting Problem

\star Given an array of n numbers, sort the elements in non-decreasing order.
\star Input: An array $A[1, \ldots, n]$ of numbers

- Output: An array $A[1, \ldots, n]$ of sorted numbers

Mergesort - Algorithm

\star Given an array of n numbers, sort the elements in non-decreasing order.

Algorithm 0.1: $\operatorname{MergeSort}(A[1, \ldots n])$
if $n=1$
then return (A)
else $\left\{\begin{array}{l}B \leftarrow A\left[1 \cdots\left\lfloor\frac{n}{2}\right\rfloor\right] \\ C \leftarrow A\left[\left\lceil\frac{n}{2}\right\rceil \cdots n\right] \\ M \operatorname{MergeSort}(B) \\ \operatorname{MergeSort}(C) \\ \operatorname{Merge}(B, C, A)\end{array}\right.$

Mergesort - Algorithm

\star Merge two sorted arrays, B and C and put the result in A

Algorithm 0.2: $\operatorname{Merge}(B[1, \ldots p], C[1, \ldots q], A[1, \cdots p+q])$
$i \leftarrow 1 ; j \leftarrow 1$
for $k \in\{1,2, \ldots p+q-1\}$

$$
\text { do }\left\{\begin{array}{l}
\text { if } B[i]<C[j] \\
\text { then } A[k]=B[i] ; i \leftarrow i+1 \\
\text { else } A[k]=C[j] ; j \leftarrow j+1
\end{array}\right.
$$

Mergesort - Analysis

\star All cases have same time efficiency: $\Theta\left(n \log _{2} n\right)$
$T_{\text {merge }}(n)=n-1$.

$$
T(n)=2 T(n / 2)+n-1, \quad \forall n>1, \quad T(1)=0
$$

- Number of comparisons in the worst case is close to theoretical minimum for comparison-based sorting: $\left\lceil\log _{2} n!\right\rceil \approx n \log _{2} n-1.44 n$
\star Space requirement: $\Theta(n)$ (not in-place) (In-place: The number are rearranged within the array.)
\& Can be implemented without recursion?
- Is this algorithm Mergesort stable? (Stable: the output perserves the input order of equal elements.)

Quicksort - Algorithm

\star Given an array of n numbers, sort the element in non-decreasing order.
Algorithm 0.3: Quicksort($A[1 \cdots n])$
if $n=1$
then return (A)
$\left\{\begin{array}{l}\text { Create two arrays B,C } \\ \text { for } i \in\{2,3, \ldots n\}\end{array}\right.$

Quicksort(B)
Quicksort(C)
$A \leftarrow(B, A[1], C)$
$\vee A[1]$ is chosen as the pivot. In general, any number can be the pivot.

- Example: 24, 11, 91, 10, 22, 32, 22, 3, 7, 99
\star Is this algorithm Quicksort stable?

Quicksort - Algorithm

$\boldsymbol{*}$ Quicksort allows fast "in-place partition". Consider large files ($n \geq 10000$).
Algorithm 0.4: Partition $(A[a \cdots b])$
$p \leftarrow A[a]$
$i \leftarrow a+1 ; j \leftarrow b$
repeat
while $A[i]<p$
do $i \leftarrow i+1$
while $A[j]>p$
do $j \leftarrow j-1$
if $i<j$
then swap $(A[i], A[j])$
until $i \geq j$
$\operatorname{swap}(A[a], A[j])$

Example: $5,7,3,2,8,3,6$.

Quicksort - Analysis

Best case: split in the middle $-\Theta(n \log n)$.

$$
T(n)=2 T(n / 2)+\Theta(n)
$$

- Worst case: sorted array! $-\Theta\left(n^{2}\right)$.

$$
T(n)=T(n-1)+\Theta(n)
$$

- Average case: random arrays $-\Theta(n \log n)$
\vee Improvements (these combine to $20-25 \%$ improvement):

1. Better pivot selection: median of three partitioning
2. Switch to insertion sort on small subfiles.
3. Elimination of recursion.

Binary Search

- Imagine that you are placed in an unknown building and you are given a room number (say STII, 443), you need to find your CS 483 instructor. What will you do?
- Binary Search:
- Very efficient algorithm for searching in sorted array

Example: find 70 in $\{3,14,27,31,39,42,55,70,74,81,85,93,98\}$

Binary Search - Algorithm

- Given a sorted array A of n numbers, find a key K in A

Algorithm 0.5: BinarySearch $(A[1 \cdots n], K)$
$a \leftarrow 1 ; b \leftarrow n$
while $a<b$

$$
\text { do }\left\{\begin{array}{l}
m \leftarrow\left\lfloor\frac{a+b}{2}\right\rfloor \\
\text { if } K=A[m] \\
\text { return }(m) \\
\text { else if } K<A[m] \\
b \leftarrow m-1 \\
\text { else } a \leftarrow m+1
\end{array}\right.
$$

return (-1)

Binary Search - Analysis

$-T_{\text {worst }}(n)$
$T_{\text {worst }}(n)=T_{\text {worst }}(\lfloor n / 2\rfloor)+1=\Theta\left(\log _{2} n\right)$, for $n>1, T_{\text {worst }}(1)=1$.
$-T_{\text {best }}(n)$
1
$-T_{a v g}(n)$
$\Theta\left(\log _{2} n\right)$.

Binary Tree Traversals

- 3 classical traversals
- Preorder traversals: root \rightarrow left subtree \rightarrow right subtree
- Inorder traversals: left subtree \rightarrow root \rightarrow right subtree
- Postorder traversals: left subtree \rightarrow right subtree \rightarrow root
- Example: page 142.

Integer Multiplication

- What is the time complexity of multiplying two integers using the algorithms we learned in elementary schools?

Example: how do you compute this: 12345×67890 ?
n^{2} digit multiplication $+n$ addition

- Is there a better way of multiplying two integers, in terms of reducing the number of multiplication?

Carl Friedrich Gauss (1777-1855) discovered that
$A B=\left(a 10^{\frac{n}{2}}+b\right)\left(c 10^{\frac{n}{2}}+d\right)=K_{2} 10^{n}+K_{1} 10^{\frac{n}{2}}+K_{0}$, where $K_{2}=a c$,
$K_{0}=b d, K_{1}=(a+b)(c+d)-\left(K_{0}+K_{2}\right)$.
Example: how do you compute this: 12345×67890 ?

Integer Multiplication

- Divide-and-conquer integer multiplication

Algorithm 0.7: $\mathrm{M}(A[1 \cdots n], B[1 \cdots n])$

$$
\text { if } n=1
$$

then return $(A[1] B[1])$

$$
\text { else }\left\{\begin{array}{l}
a \leftarrow A\left[1 \cdots \frac{n}{2}\right], b \leftarrow A\left[\frac{n}{2}+1 \cdots n\right] \\
c \leftarrow B\left[1 \cdots \frac{n}{2}\right], d \leftarrow B\left[\frac{n}{2}+1 \cdots n\right] \\
K_{2} \leftarrow M(a, c) \\
K_{0} \leftarrow M(b, d) \\
K_{1} \leftarrow M(a+b, c+d)-\left(K_{0}+K_{2}\right) \\
\text { return }\left(K_{2} 10^{n}+K_{1} 10^{\frac{n}{2}}+K_{0}\right)
\end{array}\right.
$$

Integer Multiplication

\star What is the time complexity?
First we formulate the time complexity as: $T(n)=3 T\left(\frac{n}{2}\right)+O(n)$.
Using Master Theorem, we have $a=3, b=2$ and $d=1$. So, $T(n)=\Theta\left(n^{\log _{2} 3}\right) \approx \Theta\left(n^{1.6}\right)$

Matrix Multiplication

Strassen's Matrix Multiplication:

$$
\begin{aligned}
& {\left[\begin{array}{ll}
C_{11} & C_{12} \\
C_{21} & C_{22}
\end{array}\right]=\left[\begin{array}{ll}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{array}\right]\left[\begin{array}{ll}
B_{11} & A_{12} \\
B_{21} & B_{22}
\end{array}\right]} \\
& =\left[\begin{array}{cc}
m_{1}+m_{4}-m_{5}+m_{7} & m_{3}+m_{5} \\
m_{2}+m_{4} & m_{1}+m_{3}-m_{2}+m_{6}
\end{array}\right]
\end{aligned}
$$

- $m_{1}=\left(A_{11}+A_{22}\right)\left(B_{11}+B_{22}\right)$
- $m_{2}=\left(A_{21}+A_{22}\right) B_{11}$
- $m_{3}=A_{11}\left(B_{12}-B_{22}\right)$
- $m_{4}=A_{22}\left(B_{21}-B_{11}\right)$
- $m_{5}=\left(A_{11}+A_{12}\right) B_{22}$
- $m_{6}=\left(A_{21}-A_{11}\right)\left(B_{11}+B_{12}\right)$
- $m_{7}=\left(A_{12}-A_{22}\right)\left(B_{21}+B_{22}\right)$

Matrix Multiplication

\star What is the time complexity?
$T(n)=7 T\left(\frac{n}{2}\right)+O(n)$
Using Master Theorem, we have $a=7, b=4$ and $d=1$.
So, $T(n)=\Theta\left(n^{\log _{2} 7}\right) \approx \Theta\left(n^{2.8}\right)$
∇ Do you still remember what the time complexity of the brute-force algorithm is?
$O\left(n^{3}\right)$

