CS483-06 Brute Force & Divide and Conquer

Instructor: Fei Li

Room 443 ST II

Office hours: Tue. & Thur. 1:30pm - 2:30pm & 4:30pm - 5:30pm or by

appointments

lifei@cs.gmu.edu with subject: CS483

http://www.cs.gmu.edu/~ lifei/teaching/cs483_fall07/

This lecture note is based on notes by Anany Levitin and Jyh-Ming Lian.

CS483 Design and Analysis of Algorithms

1

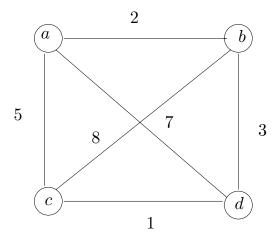
Lecture 06, September 13, 2007

Outline

- ➤ Brute Force
 - Examples: Exhaustive Search
- Divide and conquer
 - Ideas
 - Analysis: Master Theorem
 - Examples: Mergesort

Traveling Salesman Problem

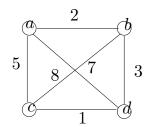
ightharpoonup TSP: Find the shortest tour through a given set of n cities that visits each city exactly once before returning to the city where it starts.



CS483 Design and Analysis of Algorithms

3

Lecture 06, September 13, 2007



Tour	Cost
$a \to b \to c \to d \to a$	2 + 3 + 7 + 5 = 17
$a \to b \to d \to c \to a$	2 + 4 + 7 + 8 = 21
$a \to c \to b \to d \to a$	8 + 3 + 4 + 5 = 20
$a \to c \to d \to b \to a$	8 + 7 + 4 + 2 = 21
$a \to d \to b \to c \to a$	5 + 4 + 3 + 8 = 20
$a \to d \to c \to b \to a$	5 + 7 + 3 + 2 = 17

Traveling Salesman Problem

Analysis

- Input size: $n+n\cdot (n-1)/2=n\cdot (n-1)/2$.
- Running time:

$$T(n) = (n-1)!.$$

CS483 Design and Analysis of Algorithms

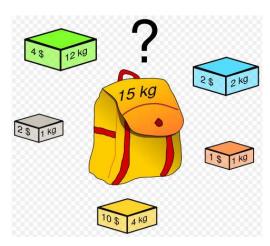
5

Lecture 06, September 13, 2007

Knapsack Problem

ightharpoonup Knapsack Problem: Given n objects, each object i has weight w_i and value v_i , and a knapsack of capacity W (in terms of weight), find most valuable items that fit into the knapsack

Items are not splittable



http://en.wikipedia.org/wiki/Knapsack_problem

Example: Knapsack capacity $W=16\,$

Item	Weight	Value
1	2	\$20
2	5	\$30
3	10	\$50
4	5	\$10

CS483 Design and Analysis of Algorithms

7

Lecture 06, September 13, 2007

Subset	Total weight	Total value	
{1}	2	\$20	
{2}	5	\$30	
{3}	10	\$50	
{4}	5	\$10	
$\{1,2\}$	7	\$50	
$\{1, 3\}$	12	\$70	
$\{1, 4\}$	7	\$30	
$\{2, 3\}$	15	\$80	
$\{2,4\}$	10	\$40	
${3,4}$	15	\$60	
$\{1, 2, 3\}$	17	not feasible	
$\{1, 2, 4\}$	12	\$60	
$\{1, 3, 4\}$	17	not feasible	
$\{2, 3, 4\}$	20	not feasible	
$\{1, 2, 3, 4\}$	22	not feasible	

Knapsack Problem

Analysis

 \bullet Input size: n (items).

• Running time:

The number of subsets of an n-element set is 2^n , including \emptyset .

$$T(n) = \Omega(2^n).$$

CS483 Design and Analysis of Algorithms

9

Lecture 06, September 13, 2007

Assignment Problem

Assignment Problem: There are n people to execute n jobs, one person per job. If ith person is assigned the jth job, the cost is $C[i,j], i,j=1,\ldots,n$. Find the assignment with the minimum total cost.

	Job 1	Job 2	Job 3	Job 4
Person 1	9	2	7	8
Person 2	6	4	3	7
Person 3	5	8	1	8
Person 4	7	6	9	4

Assignment Problem

Analysis

- Input size: n.
- Running time:

$$T(n) = n!$$
.

CS483 Design and Analysis of Algorithms

11

Lecture 06, September 13, 2007

Summary for Brute Force

- Strengths
 - 1. Wide applicability
 - 2. Simplicity
 - 3. Yields reasonable algorithms for some important problems (e.g., matrix multiplication, sorting, searching, string matching)
 - In many cases, exhaustive search or its variation is the only known way to get exact solution
- ➤ Weaknesses
 - Rarely yields efficient algorithms. Some brute-force algorithms are unacceptably slow
 - 2. Not as constructive as some other design techniques
 - Exhaustive-search algorithms run in a realistic amount of time only on very small instances

Outline

- ➤ Brute Force
 - Examples: Exhaustive Search
- Divide and conquer
 - Ideas
 - Analysis: Master Theorem
 - Examples: Mergesort

CS483 Design and Analysis of Algorithms

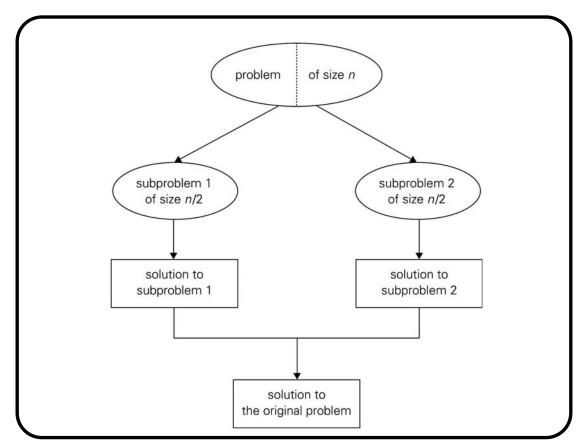
13

Lecture 06, September 13, 2007

Divide and Conquer

The most-well known algorithm design strategy:

- 1. Divide instance of problem into two or more smaller instances
- 2. Solve smaller instances recursively
- 3. Obtain solution to original (larger) instance by combining these solutions



CS483 Design and Analysis of Algorithms

15

Lecture 06, September 13, 2007

Outline

▶ Brute Force

• Examples: Exhaustive Search

➤ Divide and conquer

Ideas

Analysis: Master Theorem

• Examples: Mergesort

General Divide-and-Conquer Recurrence

- ullet Problem size: n. Divide the problems into b smaller instances; a of them need to be solved. f(n) is the time spent on dividing and merging.
- Master Theorem: If $f(n) \in \Theta(n^d)$, where $d \ge 0$, then

$$T(n) = \begin{cases} \Theta(n^d) & \text{if } a < b^d \\ \Theta(n^d \log n) & \text{if } a = b^d \\ \Theta(n^{\log_b a}) & \text{if } a > b^d \end{cases}$$

- Examples:
 - 1. $T(n) = 4T(n/2) + n \Rightarrow T(n) =$
 - 2. $T(n) = 4T(n/2) + n^2 \Rightarrow T(n) =$
 - 3. $T(n) = 4T(n/2) + n^3 \Rightarrow T(n) =$

CS483 Design and Analysis of Algorithms

17

Lecture 06, September 13, 2007

Summary: Algorithm Analysis

- ➤ Recursive algorithms
 - a. The iteration method
 - b. The substitution method
 - c. Master Theorem (T(n) = aT(n/b) + f(n).)

Outline

- ➤ Brute Force
 - Examples: Exhaustive Search
- Divide and conquer
 - Ideas
 - Analysis: Master Theorem
 - Examples: Mergesort

CS483 Design and Analysis of Algorithms

19

Lecture 06, September 13, 2007

Sorting Problem

- $\bullet\,$ Given an array of n numbers, sort the elements in non-decreasing order.
- $\bullet \:$ Input: An array $A[1,\ldots,n]$ of numbers
- $\bullet\,$ Output: An array $A[1,\ldots,n]$ of sorted numbers

Mergesort - Algorithm

ightharpoonup Given an array of n numbers, sort the elements in non-decreasing order.

Algorithm 0.1: MERGESORT $(A[1, \dots n])$

$$\begin{aligned} & \text{if } n = 1 \\ & \text{then return } (A) \\ & = \begin{cases} B \leftarrow A[1 \cdots \lfloor \frac{n}{2} \rfloor] \\ C \leftarrow A[\lceil \frac{n}{2} \rceil \cdots n] \\ & MergeSort(B) \\ & MergeSort(C) \end{cases} \end{aligned}$$

Merge(B, C, A)

▶ Is this algorithm complete?

CS483 Design and Analysis of Algorithms

21

Lecture 06, September 13, 2007

Mergesort - Algorithm

 $\,\blacktriangleright\,$ Merge two sorted arrays, B and C and put the result in A

Algorithm 0.2: $\operatorname{MERGE}(B[1,\ldots p],C[1,\ldots q],A[1,\cdots p+q])$

$$\begin{split} i \leftarrow 1; j \leftarrow 1 \\ \text{for } k \in \{1, 2, \dots p + q - 1\} \\ \text{do } \begin{cases} \text{if } B[i] < C[j] \\ \text{then } A[k] = B[i]; i \leftarrow i + 1 \\ \text{else } A[k] = C[j]; j \leftarrow j + 1 \end{split}$$

Example: 24, 11, 91, 10, 22, 32, 22, 3, 7, 99

Mergesort - Analysis

 \blacktriangleright All cases have same time efficiency: $\Theta(n\log_2 n)$ $T_{\rm merge}(n) = n-1.$

$$T(n) = 2T(n/2) + n - 1, \quad \forall n > 1, \quad T(1) = 0$$

- Number of comparisons in the worst case is close to theoretical minimum for comparison-based sorting: $\lceil \log_2 n! \rceil \approx n \log_2 n 1.44n$
- ightharpoonup Space requirement: $\Theta(n)$ (not *in-place*) (In-place: The number are rearranged within the array.)
- ➤ Can be implemented without recursion?
- ► Is this algorithm Mergesort stable?

CS483 Design and Analysis of Algorithms

23

Lecture 06, September 13, 2007